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Aims Angiography-derived fractional flow reserve (angio-FFR) permits physiological lesion assessment without the need for an 
invasive pressure wire or induction of hyperaemia. However, accuracy is limited by assumptions made when defining the 
distal boundary, namely coronary microvascular resistance (CMVR). We sought to determine whether machine learning 
(ML) techniques could provide a patient-specific estimate of CMVR and therefore improve the accuracy of angio-FFR.

Methods 
and results

Patients with chronic coronary syndromes underwent coronary angiography with FFR assessment. Vessel-specific CMVR 
was computed using a three-dimensional computational fluid dynamics simulation with invasively measured proximal and 
distal pressures applied as boundary conditions. Predictive models were created using non-linear autoregressive moving 
average with exogenous input (NARMAX) modelling with computed CMVR as the dependent variable. Angio-FFR 
(VIRTUheart™) was computed using previously described methods. Three simulations were run: using a generic 
CMVR value (Model A); using ML-predicted CMVR based upon simple clinical data (Model B); and using ML-predicted 
CMVR also incorporating echocardiographic data (Model C). The diagnostic (FFR ≤ or >0.80) and absolute accuracies of 
these models were compared. Eighty-four patients underwent coronary angiography with FFR assessment in 157 vessels. 
The mean measured FFR was 0.79 (±0.15). The diagnostic and absolute accuracies of each personalized model were: (A) 
73% and ±0.10; (B) 81% and ±0.07; and (C) 89% and ±0.05, P < 0.001.

Conclusion The accuracy of angio-FFR was dependent in part upon CMVR estimation. Personalization of CMVR from standard clin-
ical data resulted in a significant reduction in angio-FFR error.
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Clinical data and machine learning were utilized to improve the accuracy of angio-FFR. Data were collected from patients with chronic coronary syn-
dromes and undergoing coronary angiography. Fractional flow reserve assessment, combined with computational fluid dynamics modelling, was utilized 
to determine the vessel-specific coronary microvascular resistance (CMVR). Other clinical and transthoracic echocardiographic (TTE) data were en-
tered into a machine learning model to identify predictors of CMVR. Two models were created, the first incorporating basic clinical data (Model B) 
and the second incorporating TTE data. Model-predicted CMVR was then incorporated in vFFR computation. Both personalized models were com-
pared with the standard vFFR method (Model A). Diagnostic accuracy increased on account of model personalization (Model A = 73%, Model 
B = 81%, Model C = 89%). CFD, computational fluid dynamics; CMVR, coronary microvascular resistance; FFR, fractional flow reserve; vFFR, virtual 
(angio-)fractional flow reserve.

Keywords Stable angina • Fractional flow reserve • Transthoracic echocardiogram

Introduction
Fractional flow reserve (FFR) is the gold standard method for deter-
mining physiological coronary artery lesion significance and guiding 
percutaneous coronary intervention (PCI).1 However, it remains 
underused due to practical and methodological constraints. 
Angiography-derived virtual fractional flow reserve (angio-FFR) per-
mits the assessment of coronary physiology without the need for an 
invasive pressure wire or induction of hyperaemia.2–4 Typically, 
angio-FFR is calculated by applying a mathematical solution of flow, 
based upon the laws of fluid dynamics, to a geometric reconstruction 

of coronary anatomy, derived from the angiogram. A number of 
models have been developed, demonstrating reasonable diagnostic 
accuracy, i.e. the ability to predict whether FFR is ≤ or >0.80. 
However, significant quantitative (absolute) errors have been re-
ported, with 95% limits of agreement of FFR ±0.14 for most pub-
lished models.5 One of the major sources of error relates to 
assumptions made when defining the boundary conditions of the 
model, and those of the distal boundary are particularly important.6

The distal boundary of a physiological coronary model represents 
the distal coronary microvascular resistance (CMVR), which is an im-
portant determinant of coronary blood flow. Without invasive 
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measurement, the CMVR is unknown and so a generic value usually 
based on population averages data is typically applied. This is known 
to limit the accuracy of angio-FFR prediction. We hypothesized that 
lesion-specific CMVR could be predicted from patient data and that 
this would increase the accuracy of angio-FFR.

Methods
Study population
Patients with chronic coronary syndromes were recruited. Patients were 
excluded if they had presented acutely within the previous 60 days, had 
undergone previous coronary artery bypass graft surgery, had chronic 
total occlusion(s), if they were unable to consent or if was deemed dan-
gerous to pass a pressure wire. All patients provided written informed 
consent. The study was approved by the local ethics committee (13/ 
YH/0070). Clinical, demographic, FFR, angiographic, and echocardio-
graphic data were collected. All study echocardiograms were reported 
by a single independent expert.

Procedure protocol
Patients underwent invasive coronary angiography according to local 
protocols. All arteries with a lesion of at least 50% diameter as assessed 
visually were examined with a pressure wire. Hyperaemia was induced by 
an intravenous infusion of adenosine, 140 µg/kg/min. The FFR value was 
measured during maximal stable hyperaemia. The decision to proceed to 
PCI was at the operators’ discretion, guided by the FFR result.

Three-dimensional reconstruction of 
coronary geometry
A three-dimensional (3D) reconstruction of the coronary artery was 
created offline after the procedure using previously described meth-
ods.7,8 Two clear orthogonal planes from similar phases of the cardiac 
cycle, as close to 90° apart as possible, were selected to segment and re-
construct coronary artery luminal geometry. This surface reconstruction 
was then discretized (meshed) into a finite number of volumetric ele-
ments in preparation for computational fluid dynamics (CFD) simulation.

Coronary microvascular resistance 
calculation
Personalized CMVR was computed using a 3D CFD simulation with in-
vasively measured proximal and distal pressures at the respective bound-
aries. CFD simulation was performed to a residual target of 10−6 

(ANSYS, PA, USA). Using the hydraulic equivalent of Ohm’s law coron-
ary blood flow (QCFD) and distal pressure (Pd) were used to calculate 
CMVR:

CMVR =
Pd

QCFD 

Machine learning (NARMAX) predictive 
modelling
To identify predictors of CMVR, machine learning (ML) was employed, 
with a non-linear autoregressive moving average with exogenous inputs 
(NARMAX) model. Two models were created; the first was based on 
routinely collected clinical, laboratory, and electrocardiographic data 
(B), and the second additionally incorporating transthoracic echocardio-
graphic (TTE) data (C). In order to identify the most important variables, 
a comprehensive cross-validation procedure was performed (random 

k-folder cross-validation). This technique is well validated and frequently 
employed in the assessment of ML models.9 We firstly detect and deter-
mine the most important model terms (either single features/variables or 
cross-product terms). Following common practice, the data points were 
randomly split into training (75%) and test (25%) data sets. Such splitting 
was repeated 100 times producing a total of 100 models. The final model 
was built incorporating the most frequently selected model terms from 
the 100 runs. To test the performance of the model, we randomly se-
lected 100 sub-data sets from the original data, with 20% leave out in 
each sub-data set. The model was then run for each of these sub-data 
sets. Model performance was assessed by calculating the average correl-
ation coefficient and R2 from the 100 data sets.

Angio-fractional flow reserve computation 
(VIRTUheart™)
Angio-FFR was computed using the CFD-based VIRTUheart™ model of 
coronary physiology as described previously.3,7 Three simulations were 
run for each case, using a generic CMVR (Model A), the predicted 
CMVR from NARMAX Model B, and the predicted CMVR from 
NARMAX Model C.

Statistical analysis
Data are presented as mean (±standard deviation) and number (percent-
age) unless stated otherwise. Comparison of the quantitative accuracy of 
the three models was made by comparing average absolute error, mean 
bias, and correlation coefficients. Agreement was assessed by creating 
Bland–Altman plots and limits of agreement were compared. All statistics 
are carried out using SPSS version 26 (IBM, NY, USA).

Results

Baseline characteristics
One hundred and fifty-seven arteries were modelled from 84 pa-
tients. The mean age was 64.3 (±10) years, 64 (76%) were males, 
52 (62%) had hypertension, and 16 (19%) had Type 2 diabetes mel-
litus. Baseline clinical and lesion characteristics are demonstrated in 
Table 1.

Prediction of coronary microvascular 
resistance
Coronary microvascular resistance was successfully computed in all 
arteries. Mean CMVR was 10.1E+9 (±10.7) Pa/m3/s. For Model B (ba-
sic clinical and angiographic data), 16 terms were identified as being 
predictive of CMVR. The top five parameters identified by the model 
were outlet diameter, vessel (left anterior descending artery, right 
coronary artery, left circumflex artery, or a major branch), myocar-
dial jeopardy index (MJI), Duke angiographic jeopardy score, and inlet 
diameter. When this personalized model was applied, the correlation 
coefficient and R2 were 0.80 and 0.63, respectively. For Model C, 
additionally incorporating TTE data, 18 terms were identified and 
used to build the final model. The top five parameters identified by 
the model were outlet diameter, end-diastolic intraventricular septal 
wall thickness, vessel, left-ventricular mass, and minimum lumen 
diameter. The average correlation coefficient and R2 were 0.84 and 
0.69, respectively.
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Effect of personalization upon 
angio-fractional flow reserve 
computation
Using personalized CMVR significantly improved the diagnostic 
and quantitative accuracy of angio-FFR (VIRTUheart™). An ex-
ample case in shown in Figure 1. Diagnostic accuracy improved 
with model personalization from 73% for Model A to 81% with 
Model B and 89% with Model C (P < 0.001). The diagnostic accur-
acy of each model across the range of angio-FFR values is demon-
strated in Figure 2. On receiver-operator characteristic curve 
analysis, area under the curve was 0.88, 0.91, and 0.96 for 
Models A–C, respectively (Figure 3). Average absolute error re-
duced with personalization from FFR ±0.10 for Model A, to FFR 
±0.07 with Model B, and FFR ±0.05 with Model C (P < 0.001). 
A full breakdown of results is shown in Table 2. Bland–Altman 
plots are shown in Figure 4.

Discussion
We have demonstrated that CMVR can be estimated from rou-
tinely collected clinical data. Moreover, personalizing angio-FFR 
computation by incorporating model-predicted CMVR signifi-
cantly improved diagnostic and quantitative accuracy. The add-
ition of TTE data to the model further improved angio-FFR 
accuracy.

Inaccuracy in angio-fractional flow 
reserve computation
Coronary angiogram-derived FFR has emerged as a non-invasive al-
ternative to pressure wire based FFR. Since its first description by 
Morris et al. in 2013,3 the computational technology has advanced, 
processing times have been reduced, and a number of manufacturers 
now offer commercial angio-FFR solutions that are beginning to be 
incorporated into clinical practice.2,4,10–13–14 The way in which the 
accuracy of these models is reported varies. Most studies primarily 
quote the diagnostic accuracy (ability to predict FFR ≤ or >0.80); 
which is largely similar between models (∼85–90%). Quantitative 
or ‘absolute’ accuracy (the ability to predict the actual FFR value) is 
less well reported and, when it is, is relatively poor, with 95% limits 
of agreement in the order of ±0.14 for most models (Table 3).11–14

Although methods vary slightly between groups, the overall princi-
ples remain the same. Angio-FFR is derived by applying a mathemat-
ical solution of flow, based upon the laws of fluid dynamics, to a 
geometric reconstruction of coronary anatomy that is derived 
from the coronary angiogram. Potential sources of error can arise 
due to the accuracy of the 3D reconstruction (not considered in 
this study, but generally applicable to all model systems) and to as-
sumptions made when defining the boundary conditions.

Defining the boundary conditions
The boundary conditions are the physical conditions at each of the 
boundaries of the model. For a coronary arterial model, there are 
three boundaries: the inlet, the vessel wall, and the outlet. For pa-
tients undergoing invasive angiography, the inlet boundary is known 
precisely (proximal aortic pressure). The vessel wall is typically mod-
elled as a rigid wall. Although this is not physiologically accurate, this 
method is widely accepted in coronary circulation models, because 
small variations in the vessel calibre are averaged out over the cardiac 
cycle.15 The distal (outlet) boundary presents the greatest challenge. 
This boundary is the distal CMVR, which regulates coronary blood 
flow and is known to vary from patient to patient in healthy and dis-
eased states; yet there is currently no way to measure it, without in-
vasive instrumentation. Therefore, current models rely upon 
assumptions and generalizations when defining their models. The 
Medis QFR® model (Medis Medical Imaging, Leiden, The 
Netherlands) uses TIMI frame counting to estimate flow in one ver-
sion of the model,2 the PIE medical CAAS vFFR system (PIE Medical 
Imaging, Maastricht, The Netherlands) estimates hyperaemic blood 
flow empirically from clinical data4 and the Cathworks FFR angio™ 

system (Cathworks Ltd, Israel) uses scaling laws to estimate the 
microcirculatory bed resistance.10 In VIRTUheart™, the modelling 
system used in this study, a generic CMVR value can be applied to 
all patients3 or, as in this study, it can be adapted by incorporating 
a panel of personalized parameters. The assumptions regarding the 
boundary conditions are the greatest source of error, as shown in 
a previous study.6 We therefore postulated that by personalizing 
CMVR, we could significantly reduce error in angio-FFR computa-
tion. In the current study, personalization increased the diagnostic ac-
curacy of VIRTUheart™ angio-vFFR from 73 to 89% and halved the 
average absolute error (from 0.10 to 0.05). This is the first time that 
angio-FFR has been personalized to this extent.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Baseline patient characteristics

Patient characteristics N = 84

Age 64.2 (±10)

Male 64 (76%)

Hypertension 52 (62%)
Hypercholesterolaemia 59 (70%)

T2DM 16 (19%)

Smoking status
Never smoked 32 (38%)

Ex-smoker 44 (52%)

Current smoker 8 (10%)
Previous MI 30 (36%)

PVD 4 (5%)

Lesion characteristics N = 157
Vessel

LAD 76 (48%)

LCX 29 (18%)
RCA 35 (22%)

Dx 13 (8.3%)

OM 2 (1.3%)
Intermediate 2 (1.3%)

FFR 0.79 (±0.15)

Myocardial jeopardy index (%) 32 (±15)

Dx, diagonal artery; LAD, left anterior descending artery; LCX, left circumflex 
artery; MI, myocardial infarction; OM = obtuse marginal artery; PVD, peripheral 
vascular disease; RCA, right coronary artery; T2DM, Type 2 diabetes mellitus.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/e
h
jd

h
/a

rtic
le

/3
/3

/4
8
1
/6

6
9
1
8
2
8
 b

y
 g

u
e
s
t o

n
 1

0
 O

c
to

b
e
r 2

0
2
2



Improving the accuracy of angio-FFR                                                                                                                                                         485

Predictors of coronary microvascular 
resistance
The most important predictors of CMVR were arterial outlet diam-
eter, MJI, vessel, inter-ventricular septal wall thickness, and left- 
ventricular mass. These are clearly all related to subtended myocar-
dial mass, which is in turn related to CMVR. Arterial outlet diameter 
has a direct relationship with CMVR that has previously been de-
scribed.16 Based upon the hydraulic equivalent of Ohm’s law, 
CMVR can be calculated as the ratio of distal pressure and coronary 
blood flow. Thus, CMVR is related inversely to flow, which is in turn 
related to vessel size. The relationship between vessel size and flow 
rate was first proposed by Murray, who stated that flow is propor-
tional to vessel diameter to an exponent of an empirically derived 
constant (k).16 This relationship can be understood by considering 
the Hagen–Poiseuille law which states that where Q = flow, ΔP = 

pressure drop, r = vessel radius, h = viscosity, and l = vessel length:

Q = ΔP πr4/8hl.

The MJI provides an estimation of the subtended myocardial mass, 
based upon angiographic coronary anatomy.17 Each coronary vessel 
is assigned a score from 0 to 3 depending on its size (3 = a large vessel 

Figure 1 An illustrative example of angio-fractional flow reserve (VIRTUheart™). Coronary angiography revealed disease in the left anterior 
descending artery (top left). Invasive fractional flow reserve was 0.77 (bottom left). Results from angio-fractional flow reserve modelling are shown 
on the right-hand panels. Accuracy improved with the personalized models (B and C, angio-fractional flow reserve 0.72 and 0.77, respectively) com-
pared with the generic Model A (angio-fractional flow reserve 0.84).

Figure 2 Diagnostic accuracy of each angio-fractional flow re-
serve models (A–C) across the range of angio-fractional flow re-
serve values. Diagnostic accuracy (ability to predict fractional flow 
reserve < or >0.80) for each model was assessed and compared. 
The blue, red, and green lines reveal the diagnostic accuracy of 
Models A–C, respectively, across the range of angio-fractional 
flow reserve values. Accuracy is lowest around the 0.80 diagnostic 
threshold and highest with the personalized models (B and C).
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covering >2/3 of the distance from base to apex, 2 = a medium-sized 
vessel covering between 1/3 and 2/3 distance from base to apex, 1 = 

a small vessel covering <1/3 distance base to apex and 0 = an insignifi-
cant vessel). The MJI is then calculated as the total score of all the 
branches distal to the lesion being studied as a proportion of the total 
score of all vessels. Therefore, a 70% lesion located at the left main 
coronary artery will have a substantially greater MJI than a 70% lesion 
in a distal branch. In the present study, MJI was inversely related to 
CMVR. This is because, at each branching point, flow decreases and 
the driving pressure remains relatively constant. In accordance with 
our findings, a previous study demonstrated an inverse relationship 
between MJI and the index of microvascular resistance measured at 

invasive coronary angiography.18 TTE-derived inter-ventricular septal 
wall thickness and left-ventricular mass provide a direct assessment 
of total myocardial mass and ventricular wall hypertrophy. Total cor-
onary flow is proportional to myocardial mass; therefore, it is unsur-
prising that we demonstrated an inverse relationship between these 
parameters and CMVR.

Personalizing angio-fractional flow 
reserve prediction
Simple personalization of the coronary arterial distal boundary based 
upon estimates of outlet vessel diameter and left ventricular mass has 
previously been described in the derivation of FFR-CT. In the 
Heartflow™ FFR-CT model, outlet pressure is predicted from the dia-
meters of the coronary outlets and the myocardium subtended (esti-
mated from CT-derived ventricular volume quantification).19 As this 
model is based upon CT, these data are more readily available. Ours 
is the first description of this level of personalization of angio-vFFR mod-
els. Moreover, we have extended our analysis to incorporate other clin-
ical parameters that influence CMVR beyond these two measures.

Importantly, we have produced two models; one with, and one 
without, TTE data. Incorporation of TTE data significantly improved 
the accuracy of our model as it can provide an accurate estimation of 
LV mass and septal wall hypertrophy. However, not all patients at-
tending the catheter laboratory will have had a TTE as part of their 
clinical routine. We therefore wanted to produce a simplified model, 
that, even without TTE, could provide an estimation of CMVR, im-
proving angio-vFFR accuracy. The operator can then choose the ap-
propriate model based upon the data available to them at the time. 
Equally, where TTE is not available, a quick focused scan could be 
performed to obtain the key parameters.

Limitations
The sample size of this study was modest, although it was larger than 
similar validation studies. Many of the model parameters, in particular 
those derived from TTE, are likely to be subject to a degree of inter- 
observer variability. The impact of this on model accuracy was not 
assessed as part of the current study. Further work will be required 
to determine the applicability of our model, which was based on data 

Figure 3 Comparison of receiver-operating characteristic for 
the three models of angio-fractional flow reserve (A–C). 
Receiver-operating characteristic curves were created for each 
model (A–C) and compared. The area under the curve was 0.87, 
0.91, and 0.96, respectively. vFFR, virtual (angio-)fractional flow 
reserve.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Effect of coronary microvascular resistance personalization upon angio-fractional flow reserve 
(VIRTUheart™) accuracy

Angio-FFR (generic, A) Angio-FFR (NARMAX, B) Angio-FFR (NARMAX, C) P-value
n = 157 n = 157 n = 80

Mean delta (bias) −0.036 (±0.12) −0.0018 (±0.10) −0.007 (±0.07) 0.30

Limits of agreement −0.28 to 0.21 −0.20 to 0.20 −0.15 to 0.13
Average error 0.095 ± 0.088 0.069 ± 0.074 0.05 (±0.05) <0.001

Correlation 0.65 0.75 0.79 0.02

Diagnostic accuracy 73% 81% 89% 0.005
Sensitivity 54% 71% 86% <0.001

Specificity 86% 89% 91% 0.27

PPV 73% 83% 89% 0.005
NPV 72% 80% 89% 0.003

NPV, negative predictive value; PPV, positive predictive value.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/e
h
jd

h
/a

rtic
le

/3
/3

/4
8
1
/6

6
9
1
8
2
8
 b

y
 g

u
e
s
t o

n
 1

0
 O

c
to

b
e
r 2

0
2
2



Improving the accuracy of angio-FFR                                                                                                                                                         487

from a single centre. External validation will also be required. Some 
data were not available, and therefore, missing imputation was used. 
Personalization was based upon the VIRTUheart™ model of 
angio-FFR. Whether our model would be applicable to other 
angio-FFR models remains to be determined. When compared 
with other commercial solutions, personalized angio-FFR 
(VIRTUheart™) performed similarly (Table 3); however, caution is 
required when comparing diagnostic accuracies because each modal-
ity was validated on a different patient population. This study was not 
designed to determine the superiority of the VIRTUheart™ model 
over other commercial solutions.

Conclusions
The accuracy of angiography-derived FFR is dependent upon CMVR es-
timation. This parameter can be personalized based upon routinely col-
lected clinical data, leading to a significant reduction in error. This effect 
is further enhanced when TTE data are additionally incorporated.
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Figure 4 Bland–Altman plots demonstrating agreeability between angio-fractional flow reserve and fractional flow reserve for all three models. 
Bland–Altman plots demonstrating the difference between measured fractional flow reserve and virtual (angio-)fractional flow reserve plotted 
against the mean value using the generic coronary microvascular resistance model (left), Model A (centre), and Model B (right). The two dark lines 
represent the limits of agreement 2 SD above and below the mean delta. mFFR, measured fractional flow reserve; vFFR, virtual (angio-)fractional 
flow reserve; CMVR, coronary microvascular resistance.
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Table 3 Comparison of the accuracy of available angio-fractional flow reserve solutions

Angio-FFR (NARMAX) Cathworks11 PIE medical CAAS vFFR12 Medis QFR13 caFFR E14

VIRTUheart™

No. of vessels 80 319 334 969 328

Mean delta (bias) −0.007 (±0.07) — 0.002 (±0.06) 0.009 (±0.07) −0.002 (±0.05)
Limits of agreement −0.15 to 0.13 −0.14 to 0.12 −0.12 to 0.12 −0.12 to 0.14 −0.10 to 0.09

Average error 0.05 (±0.05) — —

Correlation 0.79 0.80 0.74 0.80 0.89
Diagnostic accuracy 89% 92% 90% 95.7%

Sensitivity 86% 94% 81% 84% 90.4%

Specificity 91% 91% 95% 88% 98.6%
PPV 89% 89% 90% 80% 97.2%

NPV 89% 95% 90% 95% 95%

NPV, negative predictive value; PPV, positive predictive value.
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Impact on daily practice
Using ML techniques, it is possible to predict vessel-specific CMVR 
from routinely collected clinical and TTE data. When personalized, 
CMVR values are incorporated into the angio-FFR model and accur-
acy is significantly improved. This level of personalization can be 
achieved with and without the incorporation of TTE parameters, 
the latter providing the highest accuracy.
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