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Abstract: Cardiovascular diseases (CVDs) have been regarded as the leading cause of death with 32%
of the total deaths around the world. Owing to the large number of symptoms related to age, gender,
demographics, and ethnicity, diagnosing CVDs is a challenging and complex task. Furthermore,
the lack of experienced staff and medical experts, and the non-availability of appropriate testing
equipment put the lives of millions of people at risk, especially in under-developed and developing
countries. Electronic health records (EHRs) have been utilized for diagnosing several diseases recently
and show the potential for CVDs diagnosis as well. However, the accuracy and efficacy of EHRs-based
CVD diagnosis are limited by the lack of an appropriate feature set. Often, the feature set is very small
and unable to provide enough features for machine learning models to obtain a good fit. This study
solves this problem by proposing the novel use of feature extraction from a convolutional neural
network (CNN). An ensemble model is designed where a CNN model is used to enlarge the feature
set to train linear models including stochastic gradient descent classifier, logistic regression, and
support vector machine that comprise the soft-voting based ensemble model. Extensive experiments
are performed to analyze the performance of different ratios of feature sets to the training dataset.
Performance analysis is carried out using four different datasets and results are compared with
recent approaches used for CVDs. Results show the superior performance of the proposed model
with 0.93 accuracy, and 0.92 scores each for precision, recall, and F1 score. Results indicate both the
superiority of the proposed approach, as well as the generalization of the ensemble model using
multiple datasets.

Keywords: cardiovascular disease prediction; transfer learning; feature extraction; deep learning

1. Introduction

Cardiovascular disease (CVD) has been regarded as the leading cause of death around
the world [1]. Reports show that a person dies every 36 s in the United States (US) from
CVDs implying one CVD death in every four deaths [2,3]. Worse still, 32% of the total
deaths in the world are due to CVDs indicating that one death in every three deaths is
caused by heart-related disorders [4]. The European cardiology society (ESC) statistics
show that approximately 26 million adults around the world are diagnosed with CVD.
About half of the patients diagnosed with CVD die in one to two years. The high mortality
rate from CVDs leads to a significant burden on the health care system. About 3% of the
total budget of the health care system is used for CVD treatment [5]. In the US alone,
approximately 291 billion dollars are spent from 2014 to 2015 on the health care system and
medicine [6].
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WHO statistics indicate that CVD is the leading cause of death in the world [7],
with approximately 17.9 million deaths around the world with high mortality in Asian
and low to middle-income countries [8]. Males are most likely to be affected by CVD as
compared to females, especially in the middle or old age [9,10]. Due to many contributing
factors leading to different symptoms and different levels of symptoms concerning age,
demographics, and ethnicity, CVDs are difficult to diagnose. High blood pressure, abnormal
pulse rate, cholesterol levels, etc. contribute to different types of CVD [11]. CVD symptoms
might be different in different genders; for example, a male might have chest discomfort
such as extreme fatigue, nausea, and shortness of breath while females might have just
chest pain [3]. These factors make the diagnosis process challenging and demanding. Early
diagnosis of CVD can be very difficult [12]. For diagnosing CVD, multiple tests are required,
in addition to trained and expert staff. A lack of staff and medical experts can lead to a large
number of false predictions with the potential risk of mortality. Angiography is considered
the most accurate and precise method for the prediction of CVD, but its high cost makes it
less accessible, especially in low-income countries [13].

Surgical treatment of CVD is a challenging task, especially in developing countries
due to the non-availability of trained staff, testing equipment, and other resources [14].
Physical examinations, despite being expensive, are not free from flaws and imperfections.
Recently, electronic health records (EHRs) have exhibited a substantial potential to offer
useful insights for research in clinical medicine. A large body of work has been presented
using EHRs for CVD as well and can be very helpful for the early diagnosis of CVD.
Both machine learning and deep learning models have been deployed for CVD prediction;
however, they have several limitations. For example, the provided prediction accuracy
and F measures are not high enough. Similarly, the results are not generalizable, as using a
different dataset might show very different results concerning true positive rates. The last
but most important problem is feature engineering which has a direct influence on the
performance of prediction models. Predominantly, the EHRs have a low number of features
and a good fit of the model is not achieved which leads to poor prediction performance. This
study resolves these problems by proposing the use of features extracted by a convolutional
neural network (CNN) with machine learning models. In brief, this study makes the
following contributions:

• A novel method of using CNN with machine learning models is developed, where
CNN is used to enlarge the feature set and linear models are used for predicting CVD.
Extensive experiments are performed to evaluate the impact of the ratio of an enlarged
feature set on the prediction performance.

• A soft-voting-based ensemble model is introduced that leverages three linear mod-
els including stochastic gradient descent classifier (SGDC), logistic regression (LR),
and support vector machine (SVM) to be trained on a CNN features set.

• Performance evaluation is carried out on four different datasets for results generaliza-
tion using accuracy, precision, recall, and F1 score. Performance analysis is realized
with several state-of-the-art approaches, and deep learning gated recurrent unit (GRU)
and CNN models are also implemented. Results show significant improvement in
CVD prediction.

This paper is further organized into four sections. Starting with the related work in
Section 2, it discusses the proposed approach, datasets, and models in Section 3. Results
and discussions are given in Section 4 while the conclusions are provided in Section 5.

2. Related Work

Keeping in view the importance of CVD diagnosis, several approaches have been
presented on the topic. Predominantly, such approaches are based on machine and deep
learning models that utilize two publicly available datasets including ‘Statlog’ and ‘Cleve-
land’ for CVDs. This section discusses the most recent and relevant works that offer high
prediction accuracy.
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Reddy et al. [15] proposed a machine learning-based system comprising attribute
evaluators. The authors use ten different machine learning models from different categories,
such as Bayesian-based models, tree-based models, rules-based models, etc. To obtain
high accuracy for heart disease prediction, they use all attributes of the Cleveland dataset,
as well as the optimal attributes obtained from the three attribute evaluators. Results show
that sequential minimal optimization obtains an accuracy of 85.148% using the full set
of attributes and 86.468% accuracy using optimal attributes. Similarly, a heart disease
prediction model is developed by the Perumal et al. [16], which uses the Cleveland dataset.
The study uses feature standardization and feature reduction using principal component
analysis for training the models. Findings indicate that accuracy scores of 87% and 85% can
be accomplished with LR and SVM, respectively.

Along the same lines, Ref. [17] makes use of five different machine learning models
such as SVM, KNN, RF, decision tree (DT), and LR on the UCI 303 records dataset that
has 10 attributes. Using a standard training and testing procedure, a maximum accuracy
of 85.71% with receiver operating characteristic curve-area under the curve (ROC-AUC)
of 0.8675 is obtained using a fine-tuned RF. In the same way, Ref. [18] presents a ma-
chine learning-based classification model for CVD prediction using the Cleveland dataset.
For training, the feature reduction technique is used to select the 4 highly contributing
attributes out of 13 attributes. The highest accuracy is obtained by both LR and Gaussian
Naive Bayes (GNB) each with an 82.75% accuracy and 0.87 AUC. Shah et al. present a su-
pervised learning algorithm-based model in [19] with the Cleveland dataset. The Cleveland
dataset contains 303 instances and 76 attributes, out of which only 14 attributes are used by
this study. Results suggest that the maximum accuracy of 90.789% is obtained using KNN.
Similarly, study [20] used four different benchmark datasets to perform CVD prediction.
The performance is analyzed using the top 2 and top 4 features/attributes from the datasets.
Ten machine learning classifiers show appropriate classification and predictive performance
for CVDs using the top two attributes. Similarly, three main attributes for the detection and
prediction of CVDs are identified. Results show that accuracy scores of 81.32% and 77.84%
are obtained on the Cleveland and Framingham dataset, respectively, while 74.44% and
73.38% accuracy scores are obtained on the Faisalabad institute of cardiology and South
African health datasets, respectively.

Amin et al. [21] sought to identify the key features and data mining techniques for
enhancing the accuracy of heart disease prediction. A series of predictive models are devel-
oped using different combinations of attributes and seven machine learning models. The re-
sults reflect that the best-performing model achieves an accuracy of 87.4%. Mohan et al. [22]
propose a machine learning-based heart disease prediction model (HRFLM) that combines
a linear model with features obtained from RF. HRFLM operates with diverse feature
configurations and various classification techniques. Experimental results indicate that the
highest accuracy of 88.7% is obtained using the proposed HRFLM. Similarly, Ref. [23] uses
six machine learning techniques for heart disease prediction. The maximum accuracy of
85% is obtained using LR on the Statlog dataset. Both individual and ensemble learning
approaches such as J48, MLP, Bayes Net, NB, RF, and random tree (RT) are investigated
for CVD prediction in [24]. RT proved to be highly accurate with an accuracy of 70.77%.
The study subsequently employed a new-fangled method that achieved an accuracy of 80%.

Several points can be derived from the above-discussed research works. First, Statlog
and Cleveland datasets are the most used datasets for CVD prediction. Secondly, despite
the high accuracy of deep learning in general, predominantly machine learning models
SVM, KNN, RF, DT, LR, etc. are used for CVD prediction. Primarily, the availability
of small-sized datasets makes machine learning models appropriate and more suitable
for the task. Finally, the provided accuracy for CVD prediction requires further research
and investigation to enhance the performance of machine learning models. This study
contributes to achieving this goal by proposing the use of CNN features to enrich the
feature set for obtaining higher prediction accuracy.
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3. Methods
3.1. Proposed Methodology

Taking the performance of machine learning models into consideration, this study
leverages supervised machine learning models for CVD prediction. The proposed method-
ology is shown in Figure 1. It follows a sequence of operations, starting with the dataset
collection. This research uses a publicly available dataset ‘Heart Failure Prediction Dataset
(HFPD)’ from Kaggle [25]. The dataset is developed by combining five datasets with
11 common features, which makes it the largest available dataset for heart disease so far.

Cardiovascular 
Disease Dataset

Data
Normalization

Data Splitting

Training
Set

Testing
Set

CNN Features

SGLVPerformance
Evaluation 

Step 1

Step 2

Step 3

Step 4

Step 5

Acquiring of dataset from public 
data repository 

Data Preprocessing e.g (Data
Normalization, Handle Missing

Values)

 New feature set generation using
CNN according to nature of data

Data splitting for training and
testing of models. Training and

testing size 80%: 20% 

Proposed ensemble model

Step 6

Model training and testing

Figure 1. The architecture of the proposed methodology.

The dataset contains a total of 918 observations and has two classes. It comprises
11 attributes that are grouped under different types, such as numeric, nominal, binary, etc.
A brief description of each attribute is provided in Table 1.

The dataset used for experiments contains numerical values and categorical features
where categorical features indicate the string data. For example, the ’sex’ attribute in
Table 1 has categorical values and contains ’M’ and ’F’ for males and females, respectively.
Categorical values are easily understood by humans; however, such values are not fed
into machine learning models for training. Conversion or data normalization aims at
transforming these values into numeric values which are appropriate for machine learning
models. For converting categorical values to numeric values, two methods can be used:
dummy variable encoding and label encoding. Dummy variable encoding uses 0 and 1 to
indicate the exclusion or inclusion of a category, irrespective of the number of categories.
This study uses label encoding for transforming categorical data into numeric data which
makes the data deployable with the machine learning and deep learning models directly.
We deployed the encoding technique on the whole dataset using the Panda library of
Python, and the results are shown in Table 2.
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Table 1. Description of dataset attributes.

Attribute Data Type Description

Age Integer This attribute contains the age of a patient (years).

Sex String This attribute contains the sex/gender of the patient in string format,
[M = male, F = female]

Chest pain type String
This attribute contains the type of the chest pain experienced by the patient in
string format, [TA = typical angina, ATA = Atypical angina,
NAP = Non-anginal pain, Asy = asymtomatic]

Resting BP Integer Resting blood pressure of the patient in mmHg

Cholesterol Integer Serum cholesterol in mm/dL

Fasting BS Integer Fasting blood sugar [1 = if fasting BS > 120 mg/dL, 0 = otherwise]

Resting ECG String

Electrocardiogram (ECG) result [Normal = Normal, ST = having ST-T wave
abnormality (T wave inversions and/or ST elevation or depression of
>0.05 mV), LVH = showing probable or definite left ventricular hypertrophy
by Estes’ criteria]

Max HR Integer This attribute contains the maximum heart rate of a patient [Numeric value
between 60 and 202]

Exercise Angina String Exercise-induced angina [Y = yes, N = no]

Old Peak Float ST depression induced by exercise relative to rest

ST-Slope String Slop or the peak exercise ST segment [Up = upsloping, Flat = flat,
Down = downsloping]

Heart Disease Integer Binary Target, [Class 1 = heart disease, Class 0 = normal]

Table 2. Results of the encoding technique on the sample dataset.

Age Sex ChestPainType RestingBP Choles. FastingBS RestingECG MaxHR Exer.Angina Oldpeak ST_Slope HeartDisease

Before Encoding

40 M ATA 140 289 0 Normal 172 N 0.0 Up 0

49 F NAP 160 180 0 Normal 156 N 1.0 Flat 1

37 M ATA 130 283 0 ST 98 N 0.0 Up 0

After Encoding

12 1 1 41 147 0 1 98 0 10 2 0

21 0 2 55 40 0 1 82 0 20 1 1

9 1 1 31 141 0 2 25 0 10 2 0

After data normalization, data are split into training and testing sets with a ratio of 0.8
to 0.2 for training and testing of models, respectively. The split ratio is defined empirically
based on the performance evaluations made using different split ratios of 0.75:0.25, 0.70:0.30,
and 0.85:0.15. The best results are obtained with a 0.80:0.20 train-test split ratio. The number
of samples for training and testing is given in Table 3. Class 0 indicates the healthy people
while Class 1 represents CVD patients.

Table 3. Number of samples for training and testing.

Set Total Samples Class 0 Class 1

Training 734 321 413

Testing 184 89 95
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3.2. Proposed Ensemble Model Convolutional SGLV

Predominantly, CVD datasets have a small number of features that is not appropriate
to obtain higher performance using the machine learning algorithms. Often, linear models
such as LR, SGDC, and SVM show good performance with a large feature set [26,27].
To resolve these issues, this study proposes an approach called ConvSGLV. The ConvSGLV
is the combination of deep learning and machine learning models. Initially, it uses the CNN
model for feature engineering to increase the size of the feature set. Later, the enriched
feature set is used with the ensemble model that combines three linear models including
SGD, LR, and SVM to make the final prediction using a soft voting criterion.

3.2.1. Convolutional Neural Networks

The CNN model for feature engineering consists of four layers including the embed-
ding layer, 1D convolutional layer, max-pooling layer, and flatten layer. The embedding
layer takes 11 features of the CVD dataset with 20,000 vocabulary size and 300 output
dimensions with an input length of 11. The embedding layer is followed by the 1D convolu-
tional layer with 5000 filters, 2× 2 kernel size, and the rectifier linear unit (ReLU) activation
function. To map the important features from 1D convolution output, a max-pooling layer
with a 2 × 2 pool size is used. In the end, a Flatten layer is incorporated to convert the
output again into a one-dimensional array for machine learning models [28].

Suppose that the CVD dataset X consists of a tuple set ( f si, tci), where i is the index of
the tuple, f s is the feature set, and tc is the target class column; then, the embedding layer
can be used to convert the training set into the required input format as

EL = embedding_layer(Vs, Os, I)
EOs = EL( f s)

(1)

where EOs represents the output of the embedding layer which generates the input for the
convolutional layer, and EL is the embedding layer that consists of three parameters; one
vocabulary size Vs, two output dimensions, and three input lengths.

Vocabulary size defines how much bigger the input can be in the model. The vo-
cabulary size is set to 20,000, indicating that the model can take inputs within the range
of 0 to 20,000. Second, we used the output dimension parameter Os with the value 300,
which indicates that, when the input data passes through the embedding layer, its output
dimension is 300. The third parameter is the input length I, which represents the number of
features in the original dataset which are 11. The embedding layer processes the input data
and generates the output for further processing by the CNN model. The output dimensions
of the embedding layer are EOs = (None, 11, 300):

1D− Convs = CNN(F, Ks, AF)← EOs (2)

where 1D− Convs is the output by the 1D convolutional layer.
The 1D− Convs is extracted from the output of the embedding layer. We used 5000 fil-

ters, i.e., F = 5000, in CNN layers and a kernel size of Ks = 2× 2. A rectified linear unit
(ReLU) activation function AF is used to set all negative values to zero in the 1D− Convs
output matrix while others remain constant:

f (x) = max(0, E)s (3)

The max-pooling layer is used to map the significant features from the CNN. A pool
size of 2× 2 is used for the feature map. Here, Fmap are features after max-pooling, Ps = 2
is the pooling window size, and S− 2 is the stride:

C f = Fmap =

⌊
I − Ps

S

⌋
+ 1 (4)
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In the end, a Flatten layer is used to convert 3D data into 1D because machine learning
models work on 1D data. In this way, a total of 25,000 features are obtained to train machine
learning models. The below equation shows the features for the training of learning models:

C f =

( 1, 1 · · · 1, 14
...

. . .
...

918, 1 · · · 918, 14


)

=

 1, 1 · · · 1, 25,000
...

. . .
...

918, 1 · · · 918, 25,000


3.2.2. Stochastic Gradient Logistic Vector

This study proposes an ensemble model which is a combination of three linear models
LR, SVM, and SGDC. These models are used for ensemble because of their best individual
performance on the experimental dataset. Additionally, these models perform well on a
large feature set data with the binary class problem [29,30]. The models are joined using
the majority voting criteria.

LR is a statistical model used for the classification problem especially and can per-
form significantly better for binary classification. LR uses a logistic function to solve the
classification problem and can be defined as

f (x) =
1

1 + e−x (5)

The linear regression equation modifies the logistic function to adopt the model for
binary classification and provides the between 0 and 1. The following equation shows the
hypothesis of LR

z = β0 + β1X (6)

hθ(x) =
1

1 + e−(β0+β1X)
(7)

The second model in the SGLV model is SVM, which is a linear model used for
classification and regression problems. SVM uses hyper-planes to classify the data and
is easy to deploy, especially for binary classification problems. SVM draws multiple
hyperplanes to separate the data and selects the one that classifies the data with a high-class
boundary margin. The hyperplane can be defined as

WTx + b = 0 (8)

where w is weight vector, x is input vector, and b is bias.
The best hyperplane can give significant results on linear data and binary classification

problems. We can also write it as

WTxi + b =

+1
0
−1

 (9)

The third model in SGVL is SGDC, which is also a linear model and is used with
an SGD optimizer. SGD randomly picks one data point from the whole data set at each
iteration to reduce the computational complexity. Three linear models are used with the
best hyperparameters setting found using the grid search method and combined under
majority voting criteria. The SGLV is defined as

LRt = LRtrain(C f ) (10)

SVMt = SEMtrain(C f ) (11)

SGDCt = SGCDtrain(C f ) (12)

where LRt, SVMt, and SGDCt represent the trained models on CNN features and the
predictions of all the trained models on test data can be defined as
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p1, p2, p3 = LRt(test), SVMt(test), SGDCt(test) (13)

where p1, p2, and p3 are the predictions by individual models and majority voting on
models’ prediction can be defined as

SGLVp = mode{p1, p2, p3} (14)

where SGLVp is the final prediction of SGLV models using the majority voting criteria and
the approach diagram is shown in Figure 2.
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Figure 2. Architecture of the proposed ConvSGLV.

3.3. Evaluation

For performance evaluation, several evaluation parameters are used such as accuracy,
precision, recall, and F1 score. These evaluation parameters can be calculated using the
confusion matrix values including true positive (TP), true negative (TN), false positive (FP),
and false negative (FN):

• TP is when the model predicts the record as 0 and the actual label of the record is
also 0;

• TN is when the model predicts a record as 1 and the actual label of the record is also 1;
• FP is when the model predicts the record as 1 and the actual label of the record is 0;
• FN is when the model predicts the record as 0 and the actual label of the record is 1.

Equations used to calculate accuracy, precision, recall, and F1 score are provided
as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(15)

Precision =
TP

TP + FP
(16)

Recall =
TP

TP + FN
(17)

F1 score = 2× Precision× Recall
Precision + Recall

(18)

4. Results

The study performs several experiments to analyze the performance of the proposed
approach in comparison to other machine learning and deep learning models. All ex-
periments are performed on the Intel Corei7 7th generation machine with Windows 10
operating system. TensorFlow, Keras, and Sci-kit learn frameworks are used in Python
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language to implement the proposed approach and machine learning and deep learning
models. Experiments are performed separately using the original feature set from the heart
disease dataset, as well as the CNN features.

4.1. Performance of Models Using Original Features

Initially, the experiments are performed using the original feature set from the heart
disease dataset, and the results are provided in Table 4. Results indicate that the tree-based
ensemble model extra tree classifier (ETC) outperforms other models with a significant
accuracy of 0.88. Similarly, other tree-based models RF and AdaBoost (ADA) classifier also
achieve good accuracy scores of 0.85 and 0.83, respectively. Linear models such as LR and
SVM show better performance in terms of accuracy score each with 0.86 accuracy. However,
the ensemble of the linear model shows better performance as compared to individual
linear models with a 0.87 accuracy score.

Table 4. Results using the original feature set.

Model Accuracy Class Precision Recall F1 Score

DT 0.77

0 0.75 0.75 0.75

1 0.79 0.79 0.79

Avg 0.77 0.77 0.77

ADA 0.83

0 0.80 0.83 0.81

1 0.85 0.82 0.84

Avg 0.82 0.83 0.83

SVM 0.86

0 0.85 0.85 0.85

1 0.87 0.87 0.87

Avg 0.86 0.86 0.86

RF 0.85

0 0.85 0.81 0.83

1 0.85 0.88 0.86

Avg 0.85 0.84 0.85

ETC 0.88

0 0.87 0.86 0.86

1 0.88 0.89 0.89

Avg 0.87 0.87 0.87

LR 0.86

0 0.86 0.85 0.85

1 0.87 0.88 0.88

Avg 0.86 0.86 0.86

SGDC 0.71

0 0.86 0.43 0.57

1 0.66 0.94 0.78

Avg 0.76 0.68 0.67

SGLV 0.87

0 0.85 0.83 0.84

1 0.86 0.88 0.87

Avg 0.86 0.86 0.86

The performance of the tree-based model ETC is good as compared to linear models
because often linear models work well with a large feature set. The tree-based models,
on the other hand, can be good even on a small feature set. Despite the better performance
of ETC, the accuracy does not meet the standards of heart prediction accuracy and must
be further improved. For this purpose, further experiments are performed using CNN
extracted features and an ensemble machine learning model.

4.2. Performance of Models Using CNN Features

The second set of experiments is carried out using the CNN features to analyze the
performance of machine learning and the proposed ensemble model, and the results are
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shown in Table 5. The objective of using the features from the CNN model is to enlarge
the feature set that is expected to increase the accuracy of linear models. Machine learning
models are trained and tested using the CNN extracted features for these experiments.

Table 5. Experiment results using the convolutional feature set.

Model Accuracy Class Precision Recall F1 Score

DT 0.79

0 0.78 0.76 0.77

1 0.80 0.82 0.81

Avg 0.79 0.79 0.79

ADA 0.88

0 0.85 0.88 0.86

1 0.90 0.87 0.89

Avg 0.87 0.88 0.87

SVM 0.88

0 0.85 0.88 0.86

1 0.90 0.87 0.89

Avg 0.87 0.88 0.87

RF 0.89

0 0.93 0.82 0.87

1 0.86 0.95 0.90

Avg 0.90 0.89 0.89

ETC 0.85

0 0.81 0.85 0.83

1 0.88 0.84 0.86

Avg 0.85 0.85 0.85

LR 0.90

0 0.93 0.87 0.90

1 0.88 0.94 0.91

Avg 0.90 0.90 0.90

SGDC 0.88

0 0.85 0.86 0.86

1 0.89 0.88 0.89

Avg 0.87 0.87 0.87

SGLV 0.92

0 0.93 0.91 0.92

1 0.92 0.94 0.93

Avg 0.92 0.92 0.92

Experiment results show that the proposed linear ensemble model SGLV shows signif-
icantly better results with the highest accuracy of 0.92 and outperforms all other models. It
indicates a substantial improvement in the performance of SGLV and shows an improve-
ment of 5.74% in the performance than its performance with the original features. In the
same fashion, individual linear models also obtain better results with CNN features as
compared to the original feature set. LR achieves a 0.90 accuracy while SVM and SGDC
each obtain a 0.88 accuracy score indicating improvements of 0.04, and 0.02, respectively.
Tree-based RF is also good with a 0.89 accuracy score; however, DT is the worst with a
0.79 accuracy score. This significant improvement in the accuracy of models is attributed to
the increase in the number of features when CNN is used for feature extraction. Features
generated from the CNN model are highly correlated with the target class and make data
linearly separable, so linear models show better performance than other models.

4.3. Performance Comparison with Original vs. CNN Features

A performance comparison of the models’ results is carried out to show the change in
the performance when using the CNN features. Comparison results are given in Figure 3.
It shows that the performance of all the used models is elevated significantly when used
with the proposed CNN features. Primarily, the large feature set generated from the CNN
model provides better and more important features for the machine learning models,
especially linear models to obtain a good fit which leads to improved results. Secondly, it is
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also possible that CNN features make the feature space more discriminative and linearly
separable which helps linear models more than tree-based models. To corroborate this
hypothesis, both feature sets are further analyzed.

Figure 3. Comparison between model performance with proposed features and original features.

Figure 4 shows the plotted feature sets, both the original features and the CNN
extracted features. It can be seen in Figure 4a that the original feature set does not have
a discriminating distribution and features for both the classes occupy almost the same
feature space. Consequently, the classification accuracy of both tree-based models and
linear models is not very high with the original feature set. However, when the CNN model
is used to extract the features, it has a twofold impact on the features. First, the feature set
becomes large, as 25,000 features are extracted using CNN, which increases the number of
features than the original dataset. Secondly, it increases the distance between the features
of each class and makes them more separable. Figure 4 shows the feature space concerning
the target classes for both the original 11 features dataset and 25,000 features dataset. We
used PCA to visualize the feature space impact with the original dataset, as well as for
CNN feature extraction. A scatter plot is used to visualize the feature space which takes
two variables as input, but our datasets consist of 12 features and 25,000 features. Thus, we
reduce the features into two variables using the PCA technique. PCA finds the maximum
variance direction in high dimensional data and converts it into low dimension feature
space compared to the original one. We apply first the data normalization technique
and then the PCA technique to visualize the feature space. It can be observed that the
samples for both the target classes are highly overlapped with the original feature set, while
with augmented 25,000 features, samples are linearly separable, which helps to boost the
accuracy of the models.
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Figure 4. Visualization of the features sets, (a) original features and (b) CNN features set.

4.4. Influence of Number of Features

Further experiments are performed to define the role of the number of features as
different sizes of the feature set may show very different results. For the most part, a large
feature set is good for linear machine learning models to obtain a good fit. However,
increasing the size of the feature set after a certain point would not yield any improvements.
Instead, it may demote the performance and increase the computational complexity of the
models. For this purpose, experiments are performed using 10,000, 15,000, 20,000, and
25,000 CNN features for all the models, and results are provided in Table 6. Experimental
results suggest that the highest accuracy is obtained using a feature set of 25,000 features
for the given dataset. The feature set size may vary concerning the nature of the dataset,
the number of samples in the dataset, the number of classes, etc.

A comparison of all the models with respect to the number of correct predictions (CP)
and the number of wrong predictions (WP), using both the original features and CNN
features, is provided in Table 7. It shows that the highest performance for CVD prediction
is by the proposed ensemble model SGLV with 170 CPs, followed by LR and RF with 166
and 164 CPs, respectively. This performance is significantly higher as compared to their
performance using the original features where the highest CPs by the SGLV is 160 only.
Results corroborate that enlarging the feature set using the CNN features improves the
performance of machine learning models.
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Table 6. Models’ accuracy using a different number of features.

Model
Features

10,000 15,000 20,000 25,000

DT 0.67 0.78 0.79 0.79

ADA 0.80 0.83 0.83 0.88

SVM 0.84 0.85 0.85 0.88

RF 0.86 0.82 0.84 0.89

ETC 0.83 0.81 0.83 0.85

LR 0.86 0.84 0.88 0.90

SGDC 0.86 0.83 0.81 0.88

SGLV 0.86 0.86 0.88 0.92

Table 7. Number of correct and wrong predictions for all models.

Model
CNN Features Original Features

CP WP CP WP

DT 146 38 142 42

ADA 161 23 152 32

SVM 161 23 158 26

RF 164 20 156 28

ETC 156 28 161 23

LR 166 18 159 25

SGDC 161 23 130 54

SGLV 170 14 160 24

4.5. Validating the Performance of Proposed CNN Features

This study uses several datasets to validate the performance of the proposed idea of us-
ing the CNN features to enlarge the feature set for elevating the classification accuracy of the
models. For this purpose, four additional datasets have been selected including Cleveland
Heart Disease (CHD), Statlog Heart Disease (SHD), South African Heart Disease Dataset
(SAHDD), and HFPD. The same procedure is followed, as described previously, to generate
CNN features, and the results are presented in Table 8. Results confirm that using the CNN
extracted features helps the machine learning models obtain improved performance.

Table 8. Performance validation using four different datasets.

Dataset
Accuracy

CNN Features Original Features

CHD 0.93 0.82

SHD 0.90 0.80

SAHDD 0.77 0.75

HFPD 0.92 0.86

4.6. Experimental Results of Deep Learning Models

Besides the machine learning models and the proposed ensemble model, two deep
learning models are also implemented for the heart disease prediction task including CNN
and GRU. The architecture of these models is optimized to achieve better accuracy; details
related to the architecture of each model are given in Table 9. The models are compiled
with binary_crossentropy loss function because of the binary target class and the ’Adam’
optimizer is used for optimization.
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Table 9. Architecture of deep learning models.

Model Hyper-Parameter Setting

GRU

Embedding (1000, 100, 11)
Dropout (0.2)
GRU (64, return_sequences = True)
Dense (2, activation=‘softmax’)
loss = ‘binary_crossentropy’, optimizer = ‘adam’, epochs = 100

CNN

Embedding (1000, 100, 11)
Conv1D (128, 2, activation = ‘relu’)
MaxPooling1D (pool_size = 2)
Flatten ()
Dense (2, activation = ‘softmax’)
loss = ’binary_crossentropy’, optimizer = ‘adam’, epochs = 100

The models are trained using 100 epochs. Experimental results are provided in Table 10,
which indicates that the CNN model shows comparatively better results than the GRU
with an accuracy of 0.82. Despite that, the performance of deep learning models is inferior
to machine learning models. Deep learning models are data-intensive and require a large
number of samples for obtaining a good fit. The heart disease dataset is small and has
only 11 features, which make it inappropriate for the deep learning models. The dataset
is equally inappropriate for the machine learning models; however, the novel method of
enlarging the feature elevates the performance of the machine learning models.

Table 10. Results for deep learning models used in the study.

Model Accuracy Class Precision Recall F1 Score

CNN 0.82

0 0.77 0.77 0.77

1 0.85 0.85 0.85

Avg 0.81 0.81 0.81

GRU 0.81

0 0.75 0.78 0.77

1 0.85 0.83 0.84

Avg 0.80 0.80 0.80

4.7. Computational Complexity of Models

We find the computational complexity of all models in terms of execution time for
CVD prediction, and the results are given in Table 11. As expected, models take more time
with 25,000 CNN features as compared to original features. Proposed SGLV takes 7.99 s
for training and testing when used with 11 features; however, it is increased to 17.06 s
when CNN features are used. An increase in the size of the feature set also increases
the computational cost of other machine learning models. However, accuracy is more
important as compared to the computational cost in the medical field. Thus, a trade-off can
be made between the accuracy and the computational cost of the proposed approach.

Table 11. Comparison of computational complexity.

Models Using Original Features Using CNN 25,000 Features

DT 0.01 9.45

ADA 0.43 105.01

SVM 1.79 4.99

RF 0.38 7.90

ETC 0.33 15.45

LR 0.01 2.97

SGDC 0.01 0.93

SGLV 7.99 17.06
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4.8. Performance Comparison with State-of-the-Art Studies

A performance comparison is done for the proposed method to show its significance
over recent heart disease prediction methods. For this purpose, results from the proposed
approach are compared with state-of-the-art studies.

For comparison, three famous heart disease datasets are selected including the CHD,
SHD, and SAHDD datasets. For a fair comparison, only those studies that use the same
datasets for experiments have been selected. For the CHD dataset, Refs. [22,31–34] are se-
lected. The study [22] proposed a hybrid RF with a linear model (HRFLM) for heart disease
prediction. Ref. [31] used the machine learning model LR to achieve high accuracy results on
the CHD dataset. Similarly, Ref. [32] used CHD to experiment with heart disease detection.
The authors deployed Bernoulli Naive Bayes (BNB) and RF for prediction. BNB outper-
forms with an accuracy of 0.85. The study [33] used cluster-based DT learning (CDTL) and
RF to obtain higher prediction accuracy. Another study [34] used ModifiedBoostARoota-
CatBoost (MBAR-CB), CatBoost classifiers (CBC), ModifiedBoostARoota-XGBoost (MBAR-
XGB), XGBoost Classifier (XGBC) for CHD, SHD, and SAHDD, respectively. The study [35]
proposed an ensemble learning approach for heart disease prediction. The authors con-
ducted experiments on the SHD and achieved an 0.88 accuracy score using the proposed
ensemble model. A few of these studies perform experiments using more than one dataset.
Table 12 shows the comparison between the proposed approach and these studies.

Table 12. Performance comparison with recent studies for heart disease prediction.

Dataset Ref. Year Model Used Accuracy

CHD

[22] 2019 HRFLM 0.880

[31] 2021 LR 0.868

[32] 2021 Naïve Bayes 0.850

[33] 2021 RF with CDTL 0.893

[34] 2021 MBAR-CB, CBC 0.918

Current study 2021 ConvSGLV 0.930

SHD

[34] 2021 MBAR-CB, CBC 0.870

[35] 2021 Ensemble model 0.88

Current study 2021 ConvSGLV 0.90

SAHDD
[34] 2021 MBAR-XGB, XGBC 0.75

Current study 2021 ConvSGLV 0.77

HFPD Current study 2021 ConvSGLV 0.92

Table 12 shows that the proposed approach ConvSGLV outperforms the state-of-the-
art approaches for heart disease prediction and shows significantly better performance.
For example, the highest accuracy from state-of-the-art approaches on the CHD data are
by [34] that obtains a 0.918 accuracy score; however, the proposed ConvSGLV obtains a 0.93
accuracy score. Similarly, using other datasets such as SHD and SAHDD, the performance
of the ConvSGLV is superior to state-of-the-art approaches.

5. Conclusions

Cardiovascular diseases are becoming widespread with a dangerously higher mor-
tality rate and current CVD prediction approaches lack high accuracy and robustness.
Accurate and efficient CVD prediction necessitates intuitive and novel approaches to pro-
vide higher classification performance, which is not achievable with current methods and
low attributed CVD datasets. This study proposes the novel use of a CNN enlarged fea-
ture set to overcome this limitation and proposes a linear ensemble model that is used
with CNN features to obtain higher prediction performance. Extensive experiments are
performed to validate the performance of the proposed approach with different machine
learning and deep learning models using a different number of features from the CNN



Diagnostics 2022, 12, 1474 16 of 17

model. The findings suggest that the CNN feature set is large and more separable than
the original feature set which helps to elevate the performance of the models. For perfor-
mance validation, four datasets are used and performance comparison is conducted with
the state-of-the-art approaches, which proves the supremacy of the proposed ConvSGLV
model. The ConvSGLV outperforms all the models. Keeping in view the experiments with
four different datasets, the performance of the ConvSGLV is robust and efficient. Results
indicate that the performance of the proposed approach, although better than [34], is lower
with the SAHDD dataset as compared to other datasets. It indicates the limitation on part of
generalizing the results and requires further investigation. SAHDD dataset is imbalanced,
has a small feature set than other datasets and fewer number of samples, which requires
in-depth study using the proposed approach. Similarly, the computational complexity of
the proposed is higher and a trade-off is needed between accuracy and computational
complexity. In the future, we want to extend the proposed approach for the prediction
of other diseases with a mixed feature set. We also intend to reduce the computational
complexity of the approach without compromising the accuracy.

Author Contributions: Conceptualization, F.R.; Data curation, A.I.; Formal analysis, F.R. and N.A.;
Funding acquisition, M.A.; Investigation, K.M. and M.A.; Methodology F.R., A.I. and K.M.; Resources,
M.A.; Software, A.I.; Supervision, I.A.; Validation, I.A. and N.A.; Visualization, K.M.; Writing—
original draft, F.R.; Writing—review and editing, I.A. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by University of Hafr Albatin, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. World Health Statistics. Cardiovascular Diseases, Key Facts. 2021. Available online: https://www.who.int/news-room/fact-

sheets/detail/cardiovascular-diseases-(cvds) (accessed on 10 March 2022).
2. Center for Disease Control and Prevention. Heart Disease Facts. 2021. Available online: https://www.cdc.gov/heartdisease/

facts.htm (accessed on 5 March 2022).
3. Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.;

Delling, F.N.; et al. Heart disease and stroke statistics—2020 update: A report from the American Heart Association. Circulation
2020, 141, e139–e596. [CrossRef] [PubMed]

4. World Health Organization. Cardiovascular Diseases. 2021. Available online: https://www.who.int/health-topics/
cardiovascular-diseases#tab=tab_1 (accessed on 5 March 2022).

5. Haq, A.U.; Li, J.P.; Memon, M.H.; Nazir, S.; Sun, R. A hybrid intelligent system framework for the prediction of heart disease
using machine learning algorithms. Mob. Inf. Syst. 2018, 2018, 21. [CrossRef]

6. Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng,
S.; Das, S.R.; et al. Heart disease and stroke statistics—2019 update: A report from the American Heart Association. Circulation
2019, 139, e56–e528. [CrossRef] [PubMed]

7. Ishaq, A.; Sadiq, S.; Umer, M.; Ullah, S.; Mirjalili, S.; Rupapara, V.; Nappi, M. Improving the prediction of heart failure patients’
survival using SMOTE and effective data mining techniques. IEEE Access 2021, 9, 39707–39716. [CrossRef]
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