SCHOOL OF OPERATIONS RESEARCH
AND INDUSTRIAL ENGINEERING
COLLEGE OF ENGINEERING
CORNELL UNIVERSITY
ITHACA, NY 14853-3801

TECHNICAL REPORT NO. 1073

May 1992

INCORPORATING CONDITION
MEASURES INTO THE
COMPLEXITY THEORY OF
LINEAR PROGRAMMING '

by

James Renegar

1Research was supported by IBM and by NSF grant #CCR-9103285.

INCORPORATING CONDITION MEASURES INTO THE
COMPLEXITY THEORY OF LINEAR PROGRAMMING

JAMES RENEGAR

1. INTRODUCTION

1.1 This work is an attempt, among other things, to begin developing a complexity
theory in which problem instance data is allowed to consist of real, even irrational,
numbers and yet computations are of finite precision.

Complexity theory generally assumes that the exact data specifying a problem in-
stance is used by algorithms. The efficiency of an algorithm is judged relative to the
“size” of the input. For the Turing model of computation, size refers to the bit-length
of the input, which is required to consist of integers (or rational numbers separated into
numerators and denominators).

We replace customary measures of size with “condition measures”. These measures
reflect the amount of data accuracy necessary to achieve the desired computational goal.
The measures are similar in spirit, and closely related, to condition numbers.

1.2 To introduce concepts gradually we begin by discussing the most basic decision
problem in linear programming, that of determining if a system of constraints is con-
sistent. Qur main technical results do not concern this problem.

Let Az < b, = > 0 be the system of interest where A is an m X n matrix whose
coefficients are real numbers. The system is represented by the “data vector” d :=
(A,b) € R™**+™; think of the coefficients of A and b as being strung into a long vector.
We refer to R™"*™ as “data space”; each vector in data space represents a problem
instance.

For an instance d' = (A4',b') let

Soln(d') := {z; A’z <V, = > 0}.

In attempting to determine if the instance d is a consistent system of constraints we
assume algorithms will be provided with rational approximate data d = (A,b) and an
upper bound § on its error, i.e., ||d — d|lcc < &. One can think, for instance, as the
approximate data consisting of truncated decimal expansions of the actual real number
data.

*Research supported by IBM and by NSF Grant #CCR-9103285.

Typeset by ApS-TEX

In working only with the approximate data d and the upper bound §, an algorithm
will not be able to distinguish the actual instance d from any other instance within
distance 8 of d. Thus, to make a decision about the actual instance d, the decision must
be correct for all instances within distance é of d. With this as motivation, we define
the “condition measure of instance d with respect to the decision problem” as follows:

If Soln(d) # ¢ define
C(d) := ||dlloo/ sup{&; ||d' — dlleo < § = Soln(d") # ¢} (1.1)

Replace “£” with “=" if Soln(d) = ¢.

Observe that 1/C(d) is the minimal relative perturbation size required to obtain a
system from d whose answer for the decision problem is different than the answer for
d. Roughly speaking, log C(d) relative bits of data accuracy are necessary to reach a
decision.

Note that 0 < C(d) < oo.

Instance d is “ill-posed for the decision problem” if C(d) = 005 it is “ill-conditioned”
if C(d) is large.

Note that C(d) is invariant under positive scaling d — td just as the decision problem
is invariant; the reader might find it useful to assume ||d||c = 1 in what follows, or
what is essentially the same, assume ||d||oc = 1.

Now we discuss what we want of an algorithm. We consider algorithms with input
and output as follows:

Input: d = (4,5),6
Output: One of the following statements:
A) “Consistent”
B) “Inconsistent”
C) “Decision Deferred”

There are three properties we want such an algorithm to possess.

I.) Correctness. The algorithm should never make an incorrect decision for the ac-
tual problem instance d which is only known approximately to the algorithm. If
the algorithm replies “Consistent”, correctness requires that all systems within
distance & of the input d be consistent. Similarly, if the algorithm replies “In-
consistent”. Also, the algorithm must be applicable to any instance, i.e. d may
vary from one application to the next.

I1.) Computational Efficiency. There are various ways to define this. In this paper,
we take the approach of traditional complexity theory: Requiring the input d, 6
to consist only of rational numbers, we say the algorithm is computationally
efficient if it terminates within polynomial-time as measured in terms of the
bit-length of the input.

I11.) Data Efficiency. We want the algorithm to make a decision using nearly minimal
data precision. We say that the algorithm is data efficient if there exist a positive
constant E and a polynomial p(m,n), both independent of the actual instance

2

d and input (d, §), such that the algorithm makes a decision if
§ < 1
ldlleo = p(m,n)C(d)F’
i.e., the algorithm makes a decision when provided with E times the number

of relative bits of accuracy necessary to make a decision (plus a number of bits
growing only like the logarithm of the dimensions of the instance).

(1.2)

We say that an algorithm for the decision problem is fully efficient if it is correct,
computationally efficient and data efficient.

Important Note. It is conceivable to the author that when a more formal framework
is developed to encompass a broader class of problems it may be necessary to replace
(1.2) with something like

o 1

[l = ol m)C(@petmm’ (1.3)

i.e., a decision is made when provided with py(m,n) times the number of bits of relative
accuracy necessary to make a decision.

Is there an algorithm for the decision problem which is fully efficient? The answer
is “yes” as is shown in Section 3. In fact, for constraints of the form Az < b,z > 0 as
we are considering, the construction and analysis of such an algorithm are deceptively
trivial, assuming the algorithm can call on a polynomial-time algorithm for LP as a
subroutine. In terms of (1.2) we have E = 1,p(m,n) = 2.

(In all of our algorithm constructions we rely on a polynomial-time LP algorithm
as a subroutine; any such algorithm is adequate. We treat the polynomial-time LP
algorithm as a “black box”.)

If one remove the non-negativity constraints, considering systems Az < b, it is not
easy to argue the existence of a fully efficient algorithm for the decision problem. How-
ever, Vera [4] has constructed and analyzed one, obtaining E = 3 in (1.2).

A foremost goal in this type of complexity theory is to keep E in (1.2) as small as
possible, subject to the condition of polynomially-bounded running time in terms of the
bit-length of d, 6.

It is important to understand that once one has a good algorithm for one form of
constraints it does not immediately yield a good algorithm for other forms. This is
in contrast to traditional complexity theory. For example, in traditional complexity
theory one can replace the single-variable, single-equation system 3z = 6 with the
equivalent two-constant system 3z < 6,3z > 6; such transformations roughly preserve
bit-length. However, when developing a complexity theory based on condition measures,
such transformations are inadequate. The first system is “well-posed” with respect to
the decision problem; small perturbations preserve consistency. The second system is
ill-posed; arbitrarily small perturbations can destroy consistency.

3

Judging the efficiency of algorithms relative to condition measures introduces de-
mands on algorithms not required in traditional complexity theory, but the converse is
also true. Judged relative to condition measures, algorithms are required to perform
few operations in deciding that an instance consistent (inconsistent) if the instance is
far from being inconsistent (consistent). However, algorithms are not even required to
make a decision for ill-posed instances, regardless of how accurate the data is. The
reason why is the requirement that input d, é satisfy the strict inequality l|d—d||co < 6.
If we replaced “<” with “<”, the results of this paper would be unaffected, but the
character of the general theory would not be. The relation “<” would force our theory
to be strictly more stringent than traditional complexity theory because it would require
that any rational data instance be solved in polynomial-time; just input d=d,6 =0.
A strict inequality leaves rational data vectors d undistinguished from irrational ones.
A strict inequality leaves open the possibility of efficient algorithms, when judged in
terms of condition measures, for problems which are NP-hard in the sense of traditional
complexity theory; this possibility is not addressed by this paper.

1.3 We move to the next level of difficulty, constructing an approximate solution to a
system of constraints when one exists. Again we let d = (4,b) denote the data vector
of the actual instance, d = (A,b) denote rational approximate data, and 6 denote a
rational upper bound on the data error, ||d — d||c0 < 8.

We consider algorithms with input and output as follows:

Input: d=(4,b), é
Output: One of the following statements:
A) “Consistent.
Approximate solution: Z.
Error bound: &.”
B) “Inconsistent.”

C) “Decision Deferred.”

The approximate solution Z and error bound & are computed by the algorithm. If the
algorithm replies statement A then it is asserting that there exists € Soln(d) satisfying
HIIZ - j”oo S €.

We allow € = oco; we assume the algorithm (Turing machine) has a distinguished
symbol for oco.

Noting that Soln(d) = Soln(td) for all ¢ > 0, the reader might find it useful to assume
l|d|]eo = 1 in what follows, or what is essentially the same, assume lldl]oo = 1.
What do we want of such algorithm?

I.) Correctness. Besides the aspects of correctness previously discussed, correctness
requires that if the algorithm replies statement A, then

l|d' = d]leo < § = 3 2’ € Soln(d') 3 ||z’ — Z||eo <&,
that is, Z is an approximate solution for all instances d’' within error § of d.

4

I1.) Computational Efficiency. The algorithm terminates within polynomial-time as
measured in terms of the bit-length of the input d, 6.
I11.) Data Efficiency. The next few paragraphs are devoted to a discussion of this.

Data efficiency is more involved here, primarily because we are not simply dealing
with a yes-no answer, but also because the tasks are becoming layered; first there is the
task of deciding consistency; second there is the task of computing Z and € if the system
is determined to be consistent.

We associate a condition measure with each task layer. For the first layer, that
of deciding consistency, the condition measure is the same as before, C(d). The first
requirement of data efficiency is that the algorithm reply statement A or B whenever 6
satisfies (1.2), where E and p(m,n) are again instance- and input-independent.

The second layer of tasks is that of computing Z and € (possibly o) if consistency has
been determined. The condition measure associated with this should reflect the finest
solution accuracy one could hope for with the given data accuracy. There are various
non-equivalent ways to formalize this, at least one of which is natural for algorithm
analysis.

For instance d and all € > 0, define

C(d,€) := ||dl|oo/ sup{6;3Z 3 ||d' —d||cc < 6 = 3z’ € Soln(d') 3 ||z’ — &|]eo < €}, (1.4)

In words, 1/C(d, €) represents the largest relative inaccuracy in the data with which
one could hope to compute a point & guaranteed to be within error € of a solution for
d, i.e., log C(d, €) relative bits of accuracy are necessary.

Note that C(d) < C(d,e).

Besides requiring an algorithm to decide consistency efficiently, we also require for
all € > 0 that

§ 1
<
ldllo ~ p(m,n)C(d,)"

= [Algorithm replies A where € < €],

i.e., the algorithm requires at most E times the number of relative bits of accuracy
required to compute an e-approximate solution.
In summary:

I1I. Data Efficient. There exist positive constants E; and polynomials p;(m,n), ¢ =
1,2, all instance- and input-independent, such that:
* The algorithm replies A or B if

§ 1
< .
ldllsc ~ p1(m,n)C(d)"

(1.5)

* For all € > 0,

6 1
< = [Algorithm replies A where € < €|, 1.6
s < mmac@an =~ A P L, (1.6)

Again we say that an algorithm is fully efficient if it is correct, computationally
efficient and data efficient.

There do exist fully efficient algorithms in this context. It is again a deceptively
trivial matter to construct and analyze such an algorithm for constraints of the form
Az < b,z > 0. We do so in Section 3, obtaining Ey = E; = 1, pi(m,n) = p2(m,n) = 2.
It is not easy to argue the existence of fully efficient algorithms for other forms of
constraint. Vera [4] has done so.

Some readers must wonder how our so-called condition measures relate to condition
numbers. Roughly, one can think of the limit

limsup eC(d,¢)

€l0

as a condition number for instance d. In the context of linear equations, one can easily
verify that an analogous limit gives the usual condition number. However, the above
limit is not necessarily close to condition numbers for linear inequalities as defined,
say, by Maugasarian [2]; the main difference stems from the fact that C(d,€) is highly
dependent on both 4 and b in d = (A,b) whereas condition numbers in the literature
as represented by [2] are assigned to A by considering the worst-case b; in the context
of square systems of linear equations the two approaches are roughly equivalent, but in
the context of linear inequalities they are not. Both approaches have their merits.

Condition numbers are defined asymptotically; by contrast, our “condition measures”
are global.

1.4 Now we consider linear programming proper, our main focus. We restrict attention
to problems with constraints of the form Az < b,z > 0. In this context such constraints
ease the analysis but do not make it trivial.

So consider LP’s of the form

mach:v

st Az <b
z <0.

The data vector is d = (A, b,c). Approximate data, assumed to be rational, is denoted
by d = (A,b,¢), and § again denotes an upper bound on the error, l|d — d]|oo < 8.

For an LP instance d' = (A',¥,¢'), let Opt(d') denote the optimal solution set, and
Feas(d') the feasible region, i.e., Feas(d') := {z; A’z < ',z > 0}. Let DualFeas(d')
denote the feasible region of the dual LP.

We consider algorithms with input and output as follows:

6

Input: d=(A4,b,¢), 6
Output: One of the following statements:

A) “There is an optimal solution.
Approximation: T
Error bound: €.

B) “Unbounded optimal solution.”

C) “Infeasible.”

D) “Feasible, but decision on the
existence of an optimal solution

is deferred.”
E) “All decisions deferred.”

As before we allow € = co. If the algorithm replies statement A then it is asserting that
there exists © € Opt(d) such that ||z — Z||e < e

Noting Feas(td) = Feas(d) and Opt(td) = Opt(d) for all t > 0, the reader might find
it useful to assume the normalization ||d||ec = 1 (or ||d||ec = 1) in what follows.

We now have three layers of tasks: (1) decide primal feasibility; (2) if primal feasible
than decide dual feasibility; (3) if both primal and dual feasible, then compute Z and €.
With each task layer we have a condition measure:

(1) The same as the value we have been denoting C(d), i.e., if Feas(d) # ¢ then
define

Cp(d) := ||d||oo/ sup{é; ||d' — dl|ec < 6 = Feas(d') # ¢}. (L.7)

Replace “#£” with “=” if Feas(d) = ¢.
(2)
Cpp(d) := max{Cp(d),Cp(d)} (1.8)
where Cp(d) is defined as Cp(d) is, but with DualFeas(d) instead of Feas(d).
(3) Forall e >0,

C(d,€) := ||d||o/ sup{6; 3% 3 ||d' — dl|ec < 6 = Fz' € Opt(d') 3 [lz' — #||oo < €}. (1.9)

Note that Cp(d) < Cpp(d) < C(d,¢); the condition measures are monotonic in the task
number.
A fully efficient algorithm is one possessing the following three properties:

I. Correctness. The statement replied must be valid for all instances within dis-
tance & of d.
II. Computational Efficiency. Polynomial-time in the input bit-length.
III. Data Efficiency. There exist positive constants E; and and polynomials
pi(m,n), t = 1,2,3, all instance- and input-independent, such that:

0 1

Tl < G)Co(d)E = [Algorithm replies A, B, C or D] (1.10)
oo 1 3 P t

6 1
<
ldllc ~ p2(m,n)Cpp(d)">
For all € > 0,

= [Algorithm replies A, B or C] (1.11)

1) 1
[dlee = 7am,n)C(d, €)F

= [Algorithm replies A where € < ¢.] (1.12)

In Section 4 we construct and analyze a fully efficient algorithm. Regarding (1.7,
we obtain

o < 1
lld]loc = KnCpp(d)3C(d,€)?

= [Algorithm replies A where € < €. (1.13)

K denoting a constant. Strictly speaking we thus obtain E3 = 6, but in a sense, E3 = 3,
at least when C(d, €) is large relative to Cpp(d), as it will be as € | 0 if d has a unique
optimal solution and Cpp(d) < oo.

Important Remarks. Requirement (1.12) is stringent, perhaps too much so even
for linear programming; it creates technical headaches when Opt(d) has positive radius
(i.e., Opt(d) is a positive-dimensional facet) and e is only slightly larger than the radius
of Opt(d).

Our algorithm measures the exact £eo-radius of certain polytopes specified by rational
constraints. This can be done in polynomial time; by contrast, it is NP-hard to measure
the £,-radius of polytopes (Bodlaender, Gritzmann, Klee and Van Leeuwen [1D).

It is the author’s strong opinion that the particular norm should not be of extreme
importance in a complexity theory based on condition measures. Perhaps the most
natural way to remove the dependence is to replace the right-side of (1.12) with

[Algorithm replies A where € < pa(m, n)el, (1.14)

where ps(m,n) is yet another polynomial. This alleviates the technical headaches men-
tioned above. For our algorithm we obtain

6 1
<
lld]|oo = KnCpp(d)3C(d, €)?

= [Algorithm replies A where € < 2¢.] (1.15)

Comparing (1.13) and (1.15), we save a factor of C(d, €) in the denominator on the left
only at the expense of a factor of 2 on the right. However, to see what we lose with
(1.15) consider an LP instance d such that Opt(d) is of radius & > 0 and Cpp(d) < oo;
then C(d,e) = oo « e < & Note (1.15) does not require the algorithm be able to
compute e-approximate optimal solutions for € < e < 2€, whereas (1.13) does.

A final remark: in a more formal theory pertaining to a broader class of problem one
might want to replace the exponents E; with polynomials.

8

In Section 5 we consider the problem of computing a feasible point whose objective
value is nearly optimal, again assuming constraints are of the form Az < b, z > 0. Asthe
reader might expect, continuity of the optimal objective value under data perturbations
makes this problem much easier than that of approximating optimal solutions. (The
author finds optimal solution discontinuities more intriguing than the relatively tame
optimal objective value.)

Vera [4] has “extended” all of our results to other forms of LP’s. Although he relies
on some of our ideas, the other forms of LP’s present many complications requiring
much originality; his work is a very significant step beyond ours. Readers might be
interested to know that he finds analytical centers to be particularly useful.

9. RELATIONS BETWEEN MEASURES OF CONDITION AND SOLUTION SIZE, ETC.

In this section we establish a few simple, but crucial, relations between condition
measures and sizes of solutions, etc. These relations are similar in spirit, and similar
in role, to the following much used relation in traditional complexity theory: if an L-
bit linear programming problem has a feasible point (optimal solution) then it has one
satisfying ||z]|e < 2F.

The relations established in this section generalize substantially as is shown in Rene-
gar [3]. However, we now only consider problem instances d = (A,b,c) of the form

max clz
st. Az <b
z > 0.

Fixing m and n (the number of constraints and variables), let Pri¢ denote the set
of primal infeasible LP’s (represented as data vectors), and let Dual¢ denote the set of
dual infeasible LP’s.

For d = (A, b, c) let dis(d, Prig) denote the {-distance from d to the set Pri¢; define
dis(d, Dual¢) analogously.

Let d* denote the LP which is dual to d, i.e., d* is as follows:

min b7y
st. ATy>c
y 2 0.

Let k(d) denote the optimal objective value of d; if d is unbounded define k(d) = ooj; if
d is primal infeasible define k(d) = —oo.

Proposition 2.1. Assume d = (4,b,c) satisfies Opt(d) # ¢ and dis(d, Dualg) > 0.

Then
e[}, ~H(D)}

<
z € Opt(d) = ||z[1 < dis(d, Dual¢)

Proof. Fix an optimal solution z # 0. Let p > 0 and consider the perturbed LP

d+ Ad:= (A+ AAbc+ Ac)

where
AA = — (——L—) bel
l|[1
Ac e (ma,x{O, —k(d) + p}) .
2|l
Note that

(A+AA)x <0
(c+ Ac)Tz > 0.

Farkas’ lemma implies d + Ad € Dual¢. Since

masc{|[blloes —k(d) + p}

Ad|eo <
1] T

and since p > 0 is arbitrary, the proposition follows. [

Proposition 2.2. Assume d* has an optimal solution. Then every optimal solution y

for d* satisfies
max{||c||eo, k(d)}
dis(d, Pri¢)

Hyllr <

Proof. Analogous to the proof of Proposition 2.1. [
Proposition 2.3. Assume k(d) is finite. Then

_ 15]]oo el oo
dis(d, Prig)

110]]co]lel] o0

< k(d) < dis(d, Duald)

Proof. In proving the rightmost inequality we may assume k(d) > 0. Letting = denote
an optimal solution for d we then have from Proposition 2.1

[[8llooll€lloo

=Tz < = dis(d, Duald)
k(d) = c = < |lef|oollzlls < dis(d, Dual¢)

The leftmost inequality is established analogously, relying on Proposition 2.2. [

10

Lemma 2.4. Assume k(d) is finite and Ad := (0,Ab,0). Then

max{||c||oo, k(d)}
dis(d, Prig)

k(d + Ad) — k(d) < ||Ab]|eo
Proof. Let y denote an optimal solution for d*. Since y is also feasible for the dual of
d + Ad, we have
Kd+ Ad) < (b -+ AbYTy = K(d) + (A6)Ty < Kd) + [|Ab] oIyl

Substituting the bound of Proposition 2.2 for ||y||; completes the proof. [

Proposition 2.5. Assume Ad := (AA, Ab,Ac) and assume both k(d) and k(d + Ad)
are finite. Then

k(d+ Ad) — k(d) < [[AA [m"";fs‘('f,‘,‘;f;,.’;()d)}} [maX{‘Z:{dA-:)IIAOZz’, —I—Di(acllq;; Ad)}]
max{||¢[|o, k(d)}]
dis(d, Pri)
max{||b + Abl|oo, —k(d + Ad)}]
dis(d + Ad, Dualg)

+ 18 |

Ao [

Trivially, an analogous lower bound on k(d + Ad) — k(d) is obtained by interchanging
the roles of d and d + Ad.

Remark. The value —k(d + Ad) occurring on the right side of the inequality can be
replaced with —k(d); this follows immediately from the inequality by considering the
two cases k(d + Ad) < k(d) and k(d) < k(d + Ad). Similarly, the value k(d + Ad)
appearing in the analogous lower bound can be replaced with k(d).

Proof. Let = denote an optimal solution for d + Ad. Let A'd := (0,A'd,0) where
A'b:= Ab— (AA)z.
Note that z is feasible for d + A'd and hence ¢Tx < k(d + A'd). Thus
k(d + Ad) — k(d + A'd) < (Ac)' e < [|Aclloollz]l1

and hence

k(d+ Ad) — k(d) < ||Acljool2]l1 + [(d + A'd) — k(d)].

Noting that ||A'd|]ee < ||Ab]|oo + ||AAl|sol|Z]]1, the proof is now easily completed using
Proposition 2.1 and Lemma 2.4. O

Whenever we speak of a “dimension independent constant K”, we mean that the
constant does not depend on the dimensions of the LP instances being considered.

11

Corollary 2.6. There exist dimension independent constants K; > 0 and K2 > 0 with
the following property. If d and Ad satisfy

||Ad||oo < K1dis(d, Pri¢ U Dualg)
then

||| o max{||dl|oo, |F(d)[}

[k(d + Ad) = KD < KallAdlloo” 2 508 . Dualg)”

Proof. Follows immediately from Proposition 2.5, relying on the remark just after
the statement of that proposition, and relying on the relations dis(d, Prig) < ||d||oo,
dis(d, Dualg) < ||d||ee. O

3. TRIVIALITIES

In this section we consider the problem of deciding if Az < b,z > 0 is consistent
and, if so, of computing a solution. The form of the constraints makes this section
deceptively trivial; by contrast, see Vera [4] for other forms of constraints.

Let d = (A4, 5) denote approximate data and let § denote an upper bound or its error,
i.e., ||d — d||oo < & where d is the actual data.

The triviality of this section results from the fact that there are two elements in the
set of instances

Boo(d,8) := {d';||d' — d|leo < 6}
which determine the consistency or inconsistency of all instances in the set. The two
instances are

dy := (A + beeT,b—¢)
dy := (A — beeT b +e).
Defining
Soln(d') := {z; A’z < ¥,z > 0}
where d' = (A',b'), it is easily proven that
d' € Boo(d,§) = Soln(dy) C Soln(d') C Soln(ds). (3.1)

The fully efficient algorithms alluded to in Sections 1.2 and 1.3 follow from this impli-
cation. For example, the one alluded to in Section 1.3 is as follows:

Input: d = (4,b),6.
(1) Check consistency of dy. If inconsistent then reply “Inconsistent” and STOP.
(2) Check consistency of di. If inconsistent then reply “Decision Deferred” and
STOP.
(3) Compute a feasible point Z for dy. Let €= 0. Reply “Consistent. Approximate
Solution: Z. Error bound: € and STOP.

Assuming that one uses a polynomial-time algorithm for checking the consistency in
steps 1 and 2, and for computing Z in step 3, the claims of Section 1.1 and 1.2 follow
trivially.

12

4. LINEAR PROGRAMMING PROPER

4.1 In this section we construct and analyze the fully efficient algorithm mentioned
in Section 1.4, for LP’s of the form

T

max c'zx
st. Az <b
z > 0.

The construction of the algorithm, and the proofs of correctness and computational
efficiency, are all simple. The interesting aspect is the proof that the algorithm is data
efficient in approximating optimal solutions.

The “lo.-radius” of a closed set S is defined to be the smallest value r for which there
exists 7 satisfying S C Boo(Z,r) := {2;|lz — Z||ec < r}; a corresponding Z is called a
“mid-point” of S; the {o-radius may be oo.

If S is specified as the feasible region for a system of linear inequalities with rational
coefficients, then its £oo-radius and a mid-point can be computed in time polynomial in
the bit-length of the coefficients, as the reader can easily verify.

Letting d = (A, b,¢) and § denote input, define

dy = (A 4+ beeT b —e,c—€)
dy = (A — Seel,b+e,c+e).

The algorithm is as follows:
Input: d = (A,b,¢),6
(1) Check primal feasibility of da. If infeasible then reply “Infeasible” and STOP.
(2) Check primal feasibility of dy. If infeasible then reply “All decisions deferred”
and STOP.
(3) Check dual feasibility of d;. If infeasible then reply “Unbounded optimal solu-
tion” and STOP.
(4) Check dual feasibility of dz. If infeasible then reply “Feasible, but decision on
the existence of an optimal solution is deferred” and STOP.
(5) Compute the £s-radius € and a mid-point Z for the feasible region of the fol-
lowing system:

AQZL' S b2
Iz > k(dy)
z>0 (4.1)

where d; = (A2, bz, c2). Reply “There is an optimal solution. Approximation:
Z. Error bound: &” STOP.

13

Assuming polynomial-time LP algorithms are used as subroutines, the computational
efficiency of the above algorithm is immediate. _

Correctness of the algorithm follows from the easily proven fact that if d' € Boo(d,6)
then

Feas(d;) C Feas(d') C Feas(dz) (4.2)
DualFeas(d;) C DualFeas(d') C DualFeas(d1) (4.3)
K(d) < k) < Fa(d) (4.4)

where z(d') denotes any optimal solution of d' (assuming one exists). We leave verifi-
cation of correctness as a simple exercise.

We discussed in Section 1.4 that, regarding data efficiency, there are three layers of
tasks, each with an appropriate condition measure: Cp(d),C pp(d) and C(d,e). The
definition of “data efficiency” in that section addresses the task layers consecutively.

For the first task layer, that of deciding primal feasibility, the data efficiency of our
algorithm is an immediate consequence of (4.2); in fact, it follows immediately that E;
and p;(m,n) in (1.10) can be taken as the constants 1 and 2, respectively. Similarly for
the second task layer, that of deciding dual feasibility, 1.e., (1.11).

Finally, we come to something interesting, proving data efficiency of the algorithm in
approximating an optimal solution. Fixing e > 0, we wish to establish (1.12). In doing
so, we may assume the input d, § satisfies § < 1/2C(d, ¢); it follows we may assume that
upon input d,§ the algorithm does not terminate until step 5.

In what follows # and € refer to the approximate optimal solution and error bound
computed by the algorithm upon input d,§. As always, d refers to the actual instance,
i.e., the one d is considered to approximate.

Most of the remainder of this section is devoted to proving the following two propo-
sitions, the first of which is largely a consequence of the second. The first proposition is
appropriate for the more stringent definition of data efficient relying on (1.12). Either
proposition is appropriate for the less stringent definition relying on (1.14), although
the second proposition provides better bounds.

Recall that Cpp(d) < C(d,¢).

Proposition 4.1. There is a dimension independent constant K3 > 0 with the follow-
ing property: For all € > 0,

6 . K3
< € < e
s = nCro(@rPCldep <= ¢

Proposition 4.2. There is a dimension independent constant K4 > 0 with the follow-
ing property: For all € > 0 and p satisfying 0 < p <1,
5 < K4p
[l = nCro(dPCTd e

= e<(1+pe
Before proving the propositions we use them.

14

Theorem 4.3. The preceding algorithm is fully efficient.

Proof. Follows immediately from Proposition 4.1, (1.12) and the preceding
discussion. U

Remark. Note that in the notation of (1.12), E3 = 6 and p(m,n) = n/Kjs; moreover,
if C(d,e) is large relative to Cpp(d) then, in a sense, Es = 3. If one instead uses
the weaker definition of data efficiency relying on (1.14), then Proposition 4.2 provides
better values.

Before proceeding to the proofs, we introduce simplifying notation:

spp(d) := dis(di Pri¢ U Dualg)

i.e., the £ -distance from d to the set of LP instances which are either primal or dual
infeasible. Also, for all € > 0,

s(d,€) :=sup{6;3% 3 ||d — dllec <6 = 32’ € Opt(d") 3 ||z’ — &||oo < €}
Note that
s(d,€) = |ld]|oo/C(d, €) (4.5)

and

spp(d) > 0= spp(d) = |ld||s/CrD(d) (4.6)

4.2 In this subsection we derive Proposition 4.1 from Proposition 4.2. The next sub-
section is devoted to proving Proposition 4.2.

We begin with two lemmas, the first of which is only an intermediate step to the
second.

Lemma 4.4. If0 < ¢ < € then
€ €
s(d,9) < (5) sde)+ (5 -1) e

Proof. We may assume s(d, €') < s(d,)
Let &', 6 satisfy 0 < s(d,¢') < §' < 6 < s(d,e). We first show it suffices to prove that

§' < s(d,/p) (4.7)
where HdH s
oo +
- : 4.8
dle £ 6 (4.8)

To see that this suffices, observe that (4.7), (4.8) and s(d, ') < §' imply

¢ |ldlloo +8
o™ Tldlloe +0

!

€ <

15

and hence .
§ < () § + (g _ 1) lld]|oo-
Taking the limit as §' | s(d,€'), 6 1 s(d, €) gives the lemma.
Now to prove (4.7). Consider the set of instances

S:={dd=(A"pb,c),(4",V,c) € Boo(d,)}

It is easily proven that S C Beo(d,6) and hence, since § < s(d,e€), there exists & such
that R R
deS=3zeO0pt(d)>||T—%lh <e

Noting that if d = (4, pb',c"),d' = (A',¥,c') then
7 € Opt(d) & (%) % € Opt(d')
it follows that

d' € Boo(d,8') =3z’ € Opt(d") 3 ||z’ — (%) Z| £ %
Hence (4.7). O
Lemma 4.5. Assume € > 0 and define

, €

€ lImm e
@0
1+ 3l

(4.9)

Then s(d,€) < 3s(d,€') .

Proof. We may assume € > 0. Since € < ¢ Lemma 4.4 is applicable. Substituting (4.9)
for € in that lemma, and rearranging yields

s(d,e) <2 (1 + ;l(lfl”o)o> s(d,€).

Finally, note that s(d,€) < ||d||oo. O

Proof of Proposition 4.1 from Proposition 4.2.
We assume § satisfies the assumed upper bound, that is,

_L K s(d,€) spp(d) 3
e = n [Hd“oo} [HdHoo] : (4.10)
Let
R 8(d7 E) . €
AT R vy (411)

Lemma 4.5 shows
s(d,€) < 3s(d,€). (4.12)

Together, (4.10), (4.11) and (4.12) imply we may assume (by requiring K3 to be suffi-
ciently small)

5§ _ Kup [s(d,e')r [SPD(d)r
ldllc = n Llldlleo lld]loo
where K is as in Proposition 4.2; thus, from that proposition,

E<(1+p) =e

O

4.3 In this subsection we prove Proposition 4.2.

We begin with a proposition which in effect asserts that for slightly worse data error
than § one cannot hope for much better solution accuracy than € if sp p(d) is not small
(i.e., if Cpp(d) is not large).

Proposition 4.6. There exist dimension-independent positive constants Ks, K¢ with
the following property: If § and A§ are positive numbers satisfying

8+ A6 < Ksspp(d)

then for all e > 0,

e<e— Ks (%) [8—‘1%%]3 = 26 + A§ > s(d,€). (4.13)

We begin the proof of Proposition 4.6 with a lemma. The instances dy and d, referred
to are those of the algorithm.

Lemma 4.7. Assume A§ is a real number satisfying
0 < A§ and &+ Aé < spp(d)- (4.14)

Then there exist instances d' and d'' satisfying

ld' — dllec < 8+ A6 (4.15)
[|d" — dl|leo <6+ AS (4.16)
_ k(d2) — k(d1)

dis(Opt(d'), Opt(d")) > 2 |€ (4.17)

Aé
(Note: (4.14) and (4.15) imply Opt (d') + ¢; similarly, Opt (d") # ¢.)
Proof. Recall that € is the £oo-radius of the feasible region for (4.1), so the projection

of that feasible region onto some coordinate axis is an interval of length 2€; assume

17

this is so for the first coordinate axis. Let z' denote a feasible point for (4.1) whose
projection is least, and let 2" denote a feasible point whose projection is greatest. So
ef(z" —a') = 2€ where e; is the first unit vector.

Let

d = (A, V) = (A2, b2, c2 — (Ab)er)
d":= (A27b2,62 + (A&)el)

where dy = (Az, b2, c2). Since Feas(d') = Feas(d;) we have
z € Feas(d') = (¢)Tz < k(d) — (Ab)elz. (4.18)
Since 2! is feasible for (4.1) we have cTa’ > k(d1) and hence
()T’ > k(di) — (A6)ef o' (4.19)
Noting that z' € Feas(d'), together (4.18) and (4.19) yield

z € Opt(d') = k(dz) — (A6)eTz > k(dr) — (A8)ef ',

that is,

z € Opt(d) = efx <efz' + W@ (4.20)
Similarly,

z € Opt(d") = eF'z > e 2" — M (4.21)

Aé
;From (4.20), (4.21) and ef (2" — z') = 2€ we obtain (4.17). O

Proof of Proposition 4.6. Since spp(d) < spp(d) + 6, we may assume (by appropri-
ate choice of K5) that Aé satisfies the assumptions of Lemma 4.7. Hence there exist
instances d' and d" satisfying

&' d" € Buoo(d, 25 + A) (4.22)
dis(Opt(d'), Opt(d")) > 2 [e— ’“(dﬂA‘; k(d) _ k(d) - (S’“(dl)] (4.23)

We may assume d and Ad := dy —d satisfy the assumption of Corollary 2.6; similarly
for d and dy — d. Substituting the implied bounds on k(dz) — k(d) and k(d) — k(d1) into
(4.23), then substituting the bound |k(d)| < ||d||%/spp(d) implied by Proposition 2.3,
one obtains (using spp(d) < ||d||eo)

dis(Opt(d'), Opt(d")) > 2 (z— Ks (&) [sll‘i‘(";)}) (4.24)

18

where K¢ is a dimension-independent constant. Together, (4.22) and (4.24)
give (4.13). O

The fact that the non-negativity constraints z > 0 are unaffected by data pertur-
bations forces special attention be given the zero vector as an optimal solution; it is
optimal for some open neighborhoods of instances. With this in mind we define

so(d) := sup{§; ||d' — dl|eo < § => 0 € Opt(d")}.

If 0 ¢ Opt(d) then so(d) = 0.

It is easily seen that
so(d) = sup{&; ||d’ — d||eo < 6 = Opt(d') = {0}}.

Lemma 4.8. If 6 < so(d)/2 then T = 0, e=0.

Proof. If § < so(d)/2 then Opt(dy) = Opt(dz) = {0} and hence k(d;) = k(d2) = O.
Lemma 4.7 then implies € = 0; for the lemma implies, by choosing A§ < so(d) — 26,
that if € > 0 then there exists d' and d", both of distance less than so(d) from d, and
such that either Opt(d') # {0} or Opt(d") # {0}, contradicting the relation for so(d)
noted just prior to the statement of Lemma 4.8.

If € = 0, the correctness of the algorithm implies Z is optimal for all instances in the
open set {d';||d' — d||eo < &)}; from this it is easily argued that T = 0. O

One should keep in mind the relations
s0(d) < 5(d,€) < spp(d).

Lemma 4.9. For all € > 0, s(d, ¢) < so(d) + 4enl|d||co-

Proof. We may assume so(d) < s(d, €) and hence so(d) < spp(d). Then it is easily seen
that for each p > 0 there exists an instance d' = (A', b, ') satistying

|d' — dlleo < p + s0(d)

and such that Opt(d') consists of a single point z' # 0.
Consider the instance

dll - (A’,b, + (_2_6__:_*—_8_) A’ZZ',C,).

']l

Note Opt(d") = {z"} where

Hence,

dis(Opt(d'), Opt(d")) = llz' — 2"[|cc = 2¢ + p-
Consequently,

s(d, €) < max{||d' — dl|eo, [1d" = dlloc}
< |ld' = dlloo + lld" = d'lloo
< |ld' = dlloo + (26 + pInlld |l
< [s0(d) + o] + (2¢ + p)nllldlloo + s0(d) + pl-
Noting so(d) < ||d||cc, the lemma follows since p > 0 is arbitrary. O
Proof of Proposition 4.2.

We assume 8 satisfies the assumed upper bound, that is,

s S [u(jnﬂ [i’fﬂfi)} |

We may assume € > 0 and hence, by Lemma 4.8,

So(d)
2

6>
Since
s(d,€) < spp(d) < [ld]le
it follows from (4.25), (4.26) and p <1 that we may assume

s(d, €) e)

so(d) < 232

Thus, by Lemma 4.9,
s(d, €) < 8en||d||co-

Also note (4.25) and § > 0 imply
s(d,e) > 0.

Define)
Ab = min{—z-,K5} s(d,e) —

where Kj is as in Proposition 4.6. Note that (4.29) and (4.30) imply
26 + Aé < s(d,€).
Also note that (4.25), (4.27), (4.30) and p < 1 imply we may assume

Ab > %min{%,](s} s(d, €).

20

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

i From (4.29) and (4.32)
Aé > 0. (4.33)

Moreover, (4.27), (4.29) and (4.30) imply
§ + Aé < Kzspp(d). (4.34)

;From (4.33) and (4.34) we find that Proposition 4.6 is applicable; consideration of
the proposition in conjunction with (4.31) gives

e>e—Ke (-A‘%) L‘I‘ﬂ‘(‘z)]s . (4.35)

Substituting (4.25) and (4.32) into (4.35) we find

_ EKiK'p [s(d, e)]

€

B n ld]loo
where ol
IX’, = -——-—‘1—6—‘—‘“
mm{g,K5}
Hence we may assume
__p [sld, 6)}
EZE— —p [.
8n' | [ld]|eo
Then, by (4.28)
€ > € — pe,

completing the proof. [

5. MORE SIMPLE STUFF

In this section we consider the problem of computing a feasible point whose objective
value is nearly optimal assuming, as always, constraints are of the form Az < b, z = 0.

The algorithm is identical with that of the previous section except we replace step 5
with the following.

5. Compute an optimal solution Z for dy, compute k(dy) and k(dz). Let € :=
k(dz)—k(d1). Reply “There is an optimal solution. Feasible point Z. Bound on
the difference between the optimal value and the objective value of the feasible
point: €.”

Assuming polynomial-time LP algorithms are used as subroutines, the computational
efficiency of the algorithm is immediate: it terminates within time polynomial in the
bit length of the input d,é.

Correctness of the algorithm is a simple exercise relying on relations (4.2), (4.3) and
(4.4).

21

It only remains to prove the algorithm is “data efficient”, a phrase which we have
yet to define in this context but which the reader no doubt can infer from the previous
development. The definition is the same as (1.10), (1.11) and (1.12) except for two
changes. First, statement A in the algorithm referred to there should be replaced with
the statement replied in step 5 above. Second, C(d, €) must be redefined:

C(d,¢€) := ||d||oo/ sup{8; Ik > l|d' — dl|leo < 6 = |k(d") — k| < €}

This value indicates the data accuracy necessary to approximate the optimal value to
within error €, but does not seem to indicate the accuracy needed to compute a feasible
point whose objective value is within e of the optimal value. The fact that it does so
follows from the relations (4.2) and (4.4) which are very particular to constraints of the
form Az < b, z > 0. In fact

C(d,€) = ||d||eo/ sup{é; 3% > ||d —d|loc <6 =>[% € Feas(d') A |k(d') — c'Z| < €]}

where ¢ refers to the objective of d'.

Relying on the relations (4.2), (4.3) and (4.4) the reader should have no difficulty
verifying that the algorithm is data efficient. Once again constraints of the form Az <
b, z > 0 result in a deceptively simple proof, unlike that of the previous section.

REFERENCES

[1] H.L. Bodlaender, P. Gritzmann, V. Klee and J. Van Leeuwen, The computational complexity of
norm-mazimization, Combinatorica 10 (1990), 203-225.

[2] O.L. Mangasarian, A condition number for linear inequalities and linear programs, Proc. 6th Sym-
pos. Oper. Res., Augsburg 7-9 September 1981, G. Bamberg and O. Opitz, eds. Verlagsgroppe
Athenaum/Hain/Scriptor/Hanstein, Konigstein, 3-15.

[3] J. Renegar, Perturbations of linear programs in reflexive spaces, working paper.

] J. Vera, Ill-Posedness in Mathematical Programming and Problem Solving with Approzimate Data,

Ph.D. Thesis, Cornell University, 1992 (Note: the relevant sections are available as technical reports

which are being submitted for publication; contact Renegar if you are interested)..

MATHEMATICAL SCIENCES DEPARTMENT, IBM T. J. WATsoN RESEARCH CENTER, YORKTOWN
HeigaTs, NY 10598

SoHOOL OF OPERATIONS RESEARCH AND INDUSTRIAL ENGINEERING, CORNELL UNIVERSITY, I'THACA,

NY 14853

E-mail: renegar @ orie.cornell.edu

22

