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Abstract—The process of preparing potentially large and complex data sets for further analysis or manual examination is often called

data wrangling. In classical warehousing environments, the steps in such a process are carried out using Extract-Transform-Load

platforms, with significant manual involvement in specifying, configuring or tuning many of them. In typical big data applications, we

need to ensure that all wrangling steps, including web extraction, selection, integration and cleaning, benefit from automation wherever

possible. Towards this goal, in the paper we: (i) introduce a notion of data context, which associates portions of a target schema with

extensional data of types that are commonly available; (ii) define a scalable methodology to bootstrap an end-to-end data wrangling

process based on data profiling; (iii) describe how data context is used to inform automation in several steps within wrangling,

specifically, matching, value format transformation, data repair, and mapping generation and selection to optimise the accuracy,

consistency and relevance of the result; and (iv) we evaluate the approach with real estate data and financial data, showing substantial

improvements in the results of automated wrangling.

Index Terms—Data wrangling, data matching, mapping generation, data transformation, data cleaning, source selection

Ç

1 INTRODUCTION

IN the past decade managing, processing and analysing
data has changed radically towards establishing data-

driven organisations. This shift from a world where most
data used by companies and organisations was regularly
structured, neatly organised in relational databases, and
treated as complete, towards data-driven organisations,
necessitates novel and principled methodologies for manag-
ing multi-modal and potentially uncertain data at scale[1].

Data wrangling is the process by which such potentially
large and complex data sets in data-driven organisations
are prepared for analysis or manual examination [2], [3]. In
the big data era[4], data wrangling must take place in the
context of the four Vs of big data that represent challenges
(volume, velocity, variety and veracity) if the fifth V that
represents the reward for overcoming the challenges (value)
is to be obtained. However, there may be quite a few steps
involved in data wrangling that necessitate principled

methods tackling the above challenges of big data. A com-
mon process involves discovering and selecting appropriate
data sources, extracting unstructured text and semi-struc-
tured data from the deep Web or Web tables, matching the
extracted data with a schema or ontology, generating data
transformations integrating data from several sources,
repairing and cleaning incomplete and inconsistent data,
transforming values for attributes from sources into a uni-
form format, and resolution and fusion of entities.

Such steps can be carried out using traditional Extract-
Transform-Load (ETL) or Big Data analytics platforms [5],
[6],[7], both requiring significant manual involvement in
specifying, configuring, programming or tuning many of
the steps [8], [9]. It is widely reported that intense manual
involvement in such processes is expensive (e.g., [10]), often
representing more than half the time of data scientists. As
the numbers of data sources within organisations and in the
public domain grows, there is an increasingly pressing need
for cost-effective, scalable and principled techniques for
addressing the variety and veracity of big data to increase
the value of the wrangling result.

We study the problem of cost-effectively automating an
end-to-end data wrangling process, that is, to integrate
(addressing variety), clean (addressing veracity), select
from a large set of input sources (addressing volume) and
create a data product that is suitable for downstream analy-
sis by optimising its quality (addressing value). In more
detail, we focus on how a wrangling process can be auto-
mated and improved by data context [11]: data from the
domain in which wrangling is taking place [12]. There
have been proposals tailored to a specific type of auxiliary
information and for automating individual steps in the
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wrangling process (e.g., [13], [14], [15], [16]), but there is a
need to be more systematic and holistic, ensuring that all
the steps can be automated, the process can be scaled [17],
and that all these steps make use of the available data con-
text. We observe that individual proposals for automating
steps within the wrangling process tend not to use many
types of auxiliary data. All of these proposals have merit,
but are tailored to a specific type of auxiliary information
and do not take into account end-to-end wrangling but
focus on individual steps in isolation.

Automating the end-to-end process supports the on-
demand population of the data product specified by the
user of the system, but potentially results in a data product
of limited quality. Data context, such as master data, refer-
ence data, or example entities from the domain of interest,
can serve as a guide to improve the results of many steps
within the wrangling process. Specifically, the claim is that
a small number of often readily available types of contextual
data can substantially improve the quality of the automati-
cally produced data product. An important claim of our
approach is that although data context types may incorpo-
rate more specific types of input provided by the user (e.g.,
data examples in [18]), data context mainly relates to auxil-
iary information that is already available, for instance in the
company or via open data portals. Thus, an implied note is
that we do not require auxiliary data to be correct or com-
plete, but present an approach that is capable of dealing
with potentially erroneous instances. Another claim of the
proposed approach is that diverse data context types are
capable of improving different dimensions of quality[19] of
the wrangling result. For instance, improving the accuracy,
the closeness of a value to the elements of the corresponding
domain, the consistency with respect to the given external
knowledge, and the relevance of the wrangling result with
respect to the user provided input, of the wrangling result
necessitates the establishment of a holistic methodology tak-
ing into account multiple data wrangling steps and data
context types.

Our solution adapts and extends a conference paper
[11] by refining the whole wrangling methodology, includ-
ing an additional wrangling stage and substantially
enhancing the evaluation. We build upon some of the lat-
est techniques from the data profiling, integration and
cleaning communities on dependency discovery [20], [21],
[22], user-driven multi-criteria source selection[23],
instance-based schema matching [15], [16], mapping gen-
eration and validation, value format transformations [24],
and rule-based repair [25]. We extend and refine these
approaches to use target instances in automation, to pro-
vide a comprehensive, end-to-end approach incorporating
instance-based evidence from multiple sources in the data
context that may be partial or spurious. Using this notion
we define a domain-independent methodology to apply
data context on a potentially large set of steps and specific
methods to inform a concrete set of individual steps, with
the objective of improving the quality of the wrangling
result.

In terms of return on investment, we argue that a modest
and fixed up-front cost in the provisioning of data context
can significantly improve the results of automation, and
thereby reduce the marginal cost involved in data scientists

manually refining the results of automated processes or
obtaining feedback.

Our contributions in this paper are as follows:

1) A definition of the notion of data context, and of its
specific types.

2) A methodology to fully and cost-effectively boot-
strap an end-to-end data wrangling process based
on data profiling that enables further tuning of con-
trol parameters for components.

3) A description of how data context can inform multi-
ple steps within an end-to-end wrangling process,
specifically matching, mapping validation, value for-
mat transformation, rule-based data cleaning and
mapping selection to generate and validate candi-
dates with the objective of improving the accuracy,
consistency, and relevance of the wrangling result.

4) An evaluation of the approach in two application
domains (real-estate and open government data)
that shows: (i) significant improvements in the
results of automated processes (e.g., the f-measure of
the result increased from 0.51 to 0.81 and from 0.59
to 0.8); (ii) the impact of data context on the individ-
ual steps; and (iii) the scalability of the process in
terms of number of sources (25k) and tuples (150M).

The paper is structured as follows: In Section 2 we define
the problem, outline the end-to-end data wrangling process
and define data context. Section 3 describes the methodol-
ogy to automate an end-to-end data wrangling process, and
details how the individual steps are automated in general
and informed by data context. The process is thoroughly
evaluated in Section 4. The paper concludes with related
work, conclusions and future work in Sections 5 and 6.

2 PROBLEM STATEMENT

Although data wrangling processes may include different
steps, in this paper we demonstrate its automation by apply-
ing data context using a specific domain-independent data
wrangling process consisting of a series of representative
steps. We assume that the end user is a data scientist, who is
familiar with the domain within which the data is to be wran-
gled, and thus who can provide a target schema TT consisting
of multiple tables t 2 TT without support of target constraints
that is to be populated by the wrangling process. Given some
data sourcesSS each possibly described by a source schema, it is
the role of the wrangling process to populate the target schema
with asmuch as possible accurate, consistent and relevant val-
ues. Thuswe have the following baseline problem statement:

Given a collection of data sources SS and a target schema
TT , automatically populate the target schema with data
from the source data sets that best “fits” the target.

In the process in Fig. 2, this involves matching the source
and target schemas, reformatting values that may be repre-
sented in different ways, completing or correcting inconsis-
tent values, generating mappings from the matches, and
selecting mappings and tuples. Carrying out all these tasks
automatically is not straightforward and the data that ulti-
mately populates the target schema is likely to be error-
prone. For automating the process we initially assume that
the sources SS are populated with instances (e.g., extracted
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from the deep Web, from Web tables or mapping tables),

but the target TT is defined by its schema only.1 Before defin-
ing data context in detail, we illustrate the process and the
problem description by way of a running example detailing
how a user might be using the wrangling process.

EXAMPLE 1. Consider the data wrangling scenario depi-
cted in Fig. 1. The data sources are extracted from the
deep Web and contain information about properties for
sale that have been advertised by various real-estate

agencies. Additional data sources holding information
about deprivation statistics, postcodes and districts, and
schools have been downloaded from an open government
portal or are available in the data lake. Note that the sour-
ces are assumed to be automatically extracted from the
Web and thus attribute headers might not be available or
are most likely to be uncertain and often not meaningful.

Suppose the user wants to gain information about
houses that are for sale, and specifies a target schema
including attributes that describe streets, post codes, pri-
ces, agencies, schools and their effectiveness and crime
statistics. We further assume that the user can associate
this target schema with data of relevance – the data con-
text. For example, in the UK, open data sets provide

Fig. 2. Data wrangling process: User annotates the target schema with data context and starts the wrangling process. The process involves several
stages including schema matching, format transformations, data repair, mapping generation and validation, and mapping selection. All stages can
be automated by means of data profiling and informed by data context.

Fig. 1. Data wrangling scenario: A collection of rawWeb extracted real-estate sources and deprivation data (left-hand side) is wrangled into the target
(right-hand side). Data context, i.e., reference data, master data and examples, informs the process of schema matching, value format transforma-
tion, data repair, and mapping generation, validation and selection.

1. It is a complementary problem to infer a possible target schema
for the collection of sources SS, that could be tackled by applying a clus-
tering technique such as in [26].
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complete lists of street names, post codes and company
registries (reference data), as well as details of historical
property sales (examples). Furthermore, the user might
have access to master data available in the company the
user is working for. Such data collections either define
the extent of certain attributes in the target, or provide
indicative values. The user can relate several attributes of
different data context categories with the target. For
instance, the attribute “price_paid” in examples can be
associated with the attribute price in the target, and the
attributes “postcode, street, city” can be aligned between
address reference data and the target. Note that not all
attributes need to be associated, and that some values in
the data context might be missing or erroneous.

A data wrangling process can infer schematic corre-
spondences between the sources and the target. In addi-
tion, a wrangling process can synthesise consistent value
formats for attributes in different sources and repair miss-
ing or erroneous values. For instance, street and agency
names can be transformed (“Whitfield St” ! “Whitfield
Street”, “Branch 1”! “Branch 1 LTD”) by means of mas-
ter or reference data, and missing “city” values can be
repaired. Transformed or repaired values in the target are
highlighted in Fig. 1. Furthermore, the process discovers
schema mappings, integrating potentially transformed
and repaired sources in different ways into the target.
The wrangling process maps the data context to the target
to better understand different quality dimensions, i.e.,
accuracy, consistency and relevance of the results of
different wrangling stages, and to inform all the steps in
the process. For instance, schematic correspondences and
schema mappings can be validated, and a subset of the
data that best fits the target can be selected.

2.1 Data Context Types

In this paper, we describe how automation can be informed
by the data context, which consists of data sources D that
can be aligned with the target schema, thereby providing
partial, potentially erroneous and contradicting instance-
based evidence about the target. Data context data can be:

Reference Data. A collection of values that stipulate the
valid domain of a set of specific attributes of the target TT :
correctly repaired and transformed instances It of TT are a
subset of instances Id of d 2 D, for the set of related attrib-
utes. Thus reference data is complete, in that there are no
missing values, and accurate, in that it provides correct val-
ues that may be expected to occur in the product. Reference
data can be utilised to estimate and improve the accuracy
(the closeness of a value, v, to the elements of the corre-
sponding definition domain [19]) of sources, intermediate
results or the wrangling result.

Master Data. Master data can be defined as constituting a
consistent view on the core entities in an organisation.
Thus, master data are correct and accurate values stipulat-
ing a set of target attributes. In contrast to reference data,
the set relation between the sets It of TT and Id of d 2 D is
not known a priori. As a result, for example, on their similar
attributes It and Id may overlap, be disjoint, or one may be
contained in the other. Master data supports the estimation
and improvement of the consistency of sources, intermediate
results and the wrangling result.

Example Data. A collection of data items that (partly)
express the domain of the target. Examples may include
empty and erroneous values and stipulate a set of target
attributes. Again, the relation between the sets It and Id is
not known a priori. Examples support the estimation and
improvement of the relevance of the sources, intermediate
results, and the wrangling result, i.e., how close they are to
the provided input.

The different data context types are illustrated in Fig. 1
for the running example.

2.2 Data Context Relationships

Data context sources ðDÞ can be related to the tables in the
target schema TT using data context relationships Rðd; t; cÞ,
where d 2 D, t 2 TT and c 2 freference;master; exampleg.
For expressing them we use the notion of a tuple generating
dependency (tgd) of the form 8xðfDðxÞ ! 9ycT ðx; yÞÞ where
fDðxÞ is a conjunction of atoms over the data context and
cT ðx; yÞ is a conjunction of atoms over the target schema.

The target is not directly populated from the data con-
text, but rather the data context is used to inform the steps
that populate the target. We assume the data scientist has
sufficient knowledge of the domain to identify suitable data
sets for the data context, and to envisage their precise rela-
tionship to the target schema (as exemplified by the tgd
above). Data context relationships might then be made
available as demonstrated via the VADA user interface [27].

2.3 Refined Problem Statement

We can now explicitly define the problem statement of how to
inform an end-to-end data wrangling process consisting of
multiple steps with data context and data profiling:

Given a set of sources SS, source instances Is for each
source s 2 SS, a target TT , data context sources D with
instances Id, and data context relationships Rðd; t; cÞ,
automatically populate the target TT with (potentially
transformed and repaired) instances that best ”fit” the
target, i.e., that optimise the accuracy, consistency and
relevance of the wrangling result.

3 DATA CONTEXT INFORMED WRANGLING

This section describes how data context is used to inform
the automation of the stages in the wrangling process to
improve the accuracy, consistency and relevance of the
wrangling result. Fig. 2 provides an overview of the wran-
gling process populating a target schema potentially con-
sisting of multiple tables, and acting on top of a set of semi-
structured data sources stored in different formats (e.g.,
CSV, XML, relational). The target schema is to be annotated
with data context and the wrangling process is invoked by
the user. The wrangling process includes five consecutive
stages, as described in Algorithm 1, namely schema match-
ing (line 2), value format transformation (line 3), rule-based
data repair (line 4), mapping generation and validation (line
5), and mapping selection (line 6) to be informed by data
context and data profiling that is executed upfront.

Selecting or discovering sources based on their relevance,
consistency, and accuracy could potentially be done early in
a wrangling pipeline, which would lower the computational
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costs because there would not be the need to execute repair,
transformation, matching and mapping generation for all
sources. In our approach, we show that the wrangling results
benefit from selecting sources late in the process, as the
results of repairs and transformations, as well as the integra-
bility of sources can be incorporated in the decision process.

Each wrangling step involves two types of functionality:
(i) a concrete technique that takes the form of one ormore calls
to the operations of an existing state-of-the-art approach to
that wrangling stage; and (ii) an abstract algorithm, building
on evidence that includes data profiling and data context, to
initialise the inputs required by the concrete technique, tune
configuration parameters or thresholds, and validate gener-
ated programs. In all cases, we have adopted state-of-the-art
methods for the concrete techniques, and we highlight
calls of existing techniques in italic in the abstract algorithms.
The presented algorithms are abstract in the sense that they
could make use of alternative concrete techniques. In gen-
eral, we utilise data context in a twofold manner to (1) gener-
ate program candidates (e.g., matches, repair rules or data
examples) and (2) to validate and select candidates (e.g.,
mappings, specific values and their format).

In what follows, the emphasis in this paper is on the
abstract algorithms that enable each wrangling step to make
use of data context, as it is these that enable the automation
of the complete wrangling process.

Algorithm 1. Data Context Informed Wrangling

Require: sources S and instances IS , target schema T , Set of
data context sources D and instances ID, Source and data
context profiling results PS ; PD, configuration C

Ensure: set of selected mappings and number of selected tuples
per mapping Gbest

1: procedure WRANGLING

2: M  matchingðS; IS ; T;D; ID; CÞ "M includes matches
from the sources S to the target T

3: S0; I 0S  transformðS; IS ; D; ID;M; PD; PS ; CÞ" S0 includes
sources S with transformed value formats according toD

4: S00; I 00S  repairðS0; I 0S ; D; ID;M; PD; CÞ" S00 includes
sources S with repaired values according toD

5: G; IG  mappingðS00; I 00S ; T;D; ID;M; PD; PS ; CÞ " G
includes the set of many-to-one mappings between
sources S and the target T

6: Gbest  mappingselectðG; I0G; T;D; ID; CÞ "Gbest includes
the set of selected mappings and number of selected tuples
per mapping

7: return Gbest

8: end procedure

3.1 Source and Data Context Profiling

Data profiling can be defined as the problem of efficiently
analysing a given data set[28] and is utilised in various
domains from data cleansing, through data integration to
data analytics. Data profiling algorithms give rise to a
means of informing data wrangling as a whole and of indi-
vidual wrangling stages. Tools such as Metanome2 support
a wide variety of profiling tasks including detection of
unique column combinations, partial inclusion dependen-
cies or functional dependencies. Herein, we convey the idea

that a data wrangling process can be cost-effectively boot-
strapped by means of the results of such data profiling
methods executed on top of the input sources as well as on
the data context (input to Algorithm 1). We detail the data
profiling information used to automate the data wrangling
process while describing the individual wrangling steps.

3.2 Schema Matching

Schema matching can be defined as the problem of detect-
ing schematic correspondences between schema elements
of data sources SS and the target TT . Schematic correspond-
ences identify potentially equivalent pairs of schema ele-
ments, along with a confidence measure that is most often
expressed as a similarity score. Especially in the context of
raw data sources extracted from the deep web or via (open
government) data portals, sources usually do not comply
with a single schema, and detecting schematic correspond-
ences remains an open research challenge. Correctly identi-
fying schematic correspondences is usually not possible in a
completely automated way.

3.2.1 Automating Schema Matching

We approach the challenge of automating schema matching
by applying the generate-and-test methodology. Generating
and testing candidate schematic correspondences involves
different types of evidence.

Metadata evidence captures characteristics of schema ele-
ments such as their names, data types, and structural prop-
erties, and supports comparison of the source and the target
schema for finding correspondences.

Target instances provide additional evidence on the val-
ues that are part of the target, which can be exploited by
instance-based matchers. String similarities and word fre-
quencies can be used to improve correctness of the gener-
ated candidates, for instance based on indexing or signature
based approaches [29].

Domain-specific evidence explains additive knowledge of
parts of a data source. Usually, domain evidence is created
and maintained by domain experts and can be exploited by
domain recognisers or gazetteers. Generic domain recognis-
ers can be used in a system to raise or lower similarity
scores of matches based on additional evidence[13].

3.2.2 Context Informed Automation

Algorithm 2 is used to automate schema matching, using
data context information when it is available. The algorithm
is invoked for each source SS and the target TT . It uses meta-
data and data context based evidence in the two phases,
generate, and test.

In the absence of data context, the abstract algorithm
applies schema-based matchers (line 2) to generate candi-
date schematic correspondences, if source schemas are
available. Our concrete implementation combines different
metadata-based match heuristics, i.e., column names, col-
umn name tokens, data types, statistics such as set averages,
schema paths, and parent and leaf relationships in the
schema, to calculate schematic correspondences between
the source and the target. Specifically, we execute the Coma
community edition,3 with the workflow configuration 7001.

2. Metanome: http://metanome.de 3. Coma CE: https://sourceforge.net/projects/coma-ce/
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When data context is provided in D, each such data set is
used as a partial extensional representation of the target to
carry out instance-based matching with the source (line 6).
Any instance-based matchers such as signature or index-
based approaches can be utilised. In our approach, the term
frequency inverse document frequency (tf-idf) is calculated
in addition to the schema-based matchers (Coma++ instance
matchers are used).

Algorithm 2.Matching

Require: source schema S and instances IS , target schema T ,
Set of data context schemasD and instances ID,
configuration C (including lower and upper bound lb; up)

Ensure: Set of matchesM
1: procedure MATCH

2: M  gen schema matchðS; T Þ
3: Md  fg
4: for all d 2 D do
5: Md  combine(M d; gen inst matchðS; d; CÞÞ
6: end for
7: M  combine_matchðM;MdÞ
8: for all d 2 D do
9: M  test_matchðS; T; d; CÞ
10: end for
11: returnM
12: end procedure

Match testing takes further advantage of data context
through utilisation of domain-specific validation (line 10).
In our system, we have implemented generic recognisers,
exploiting information gained from data context. The
generic recognisers combine inference of basic types, char-
acteristics such as the distribution and length of the values,
as well as string similarity measures. For type inference we
utilise a set of predefined patterns to match the extracted
data. Examples include numbers, dates, URLs, phone num-
bers and postcodes, similarly to [30]. We exploit regular
expressions defined in the regular expression library.4 An
example regular expression used for UK postcodes, exam-
ples of which are given in Fig. 1, is shown here:

^([A-PR-UWYZ0-9][A-HK-Y0-9]

[AEHMNPRTVXY0-9]?[ABEHMNPRVWXY0-9]?

{1,2}[0-9][ABD-HJLN-UW-Z]{2}|GIR 0AA)$

Recognisers are used to refine schematic correspond-
ences to target attributes aligned with data context by incre-
asing or decreasing their similarity scores, and to detect
new correspondences undetected by schema- and instance-
based matchers.

In general, we execute schema and instance-based match-
ers with a low threshold (0.2) to avoid missing correct
matches and we normalise match scores to hide differences
in the computed ranges (scores depend not only on source
and target instances, but also on the utilised similarity meas-
ures). In addition, we restrict the search space by choosing
max nmatches per target attribute. After testing correspond-
ences with domain recognisers, we generate all potentially
correct match sets between the sources and the target and
compute a normalised score for each match set supporting

the ranking of match sets. For execution of the next steps
(transformations, repair and mapping generation and vali-
dation), we restrict the search space to the top 10match sets.

3.3 Value Format Transformation

Value format transformation [24], [31] is defined as the prob-
lem of changing the textual representation of values for an
attribute from sources into a uniform format represented in
the target. This task is carried out by applying a range of syn-
tactic stringmanipulations on the source values, such as string
concatenation, sub-string extraction or sub-string permuta-
tion. For example, a source might abbreviate recurring parts
of an address (e.g., Canton St), when the full representation is
required (Canton Street). Correctly inferring and applying
transformation rules is a hard problem and usually involves
some form of user involvement [10], [31]. In our approach, we
seek to automatically identify data examples that can be used
to synthesise transformation rules using FlashFill [31].

3.3.1 Automating Value Format Transformations

We approach the challenge of automating value format
transformations by applying the generate and test method-
ology based on different types of evidence.

Metadata evidence describing schema elements combined
with schematic correspondences between the source and
the target are used to identify potentially equivalent attrib-
utes whose value representations have to be aligned.

Profiling evidence, such as functional dependencies, gives
rise to a means of generating data examples relating attrib-
utes from a data set with a target [24]. In this paper, data
context provides the extensional data that is required for
the target. More specifically, assume that we wish to trans-
form the values in source attribute SS:sn into the format used
in TT:tm. If functional dependencies (FD) in SS and in TT , i.e.,
fd1 : ½SS:si� ! ½SS:sn� and fd2 : ½TT:tj� ! ½TT:tm�, and schematic
correspondences exist between the determinants (SS:si; TT :tj)
and the dependents (SS:sn; TT :tm) of the functional dependen-
cies, and if the values in the determinants correspond, data
examples can be generated automatically. However, the
challenge of selecting the correct representation for specific
attributes, i.e., the direction of the transformation, remains
open and thus fully automating transformations needs to
stem from additional types of evidence such as data context.

3.3.2 Context Informed Automation

Algorithm 3 is used to automate value format transfor-
mations when data context is available. To automate value
format transformation, we make use of data context as
a partial representation of the target. The algorithm is
invoked for each source SS separately and returns a trans-
formed source S0S0. First, source and target data examples
between the source and each data context source d 2 D are
generated (line 4). Our concrete implementation of generat-
ing data examples is based on functional dependencies
within the source and all data context types. Transformation
rules are generated and validated based on the accumulated
data examples (line 5). The concrete algorithm used to syn-
thesise transformation rules from the identified source and
target data examples applies a programming-by-example
(PBE) approach. A full description of the operations used in4. Regular expression library: http://regexlib.com/
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transformation rules, e.g., string concatenation, sub-string
extraction or sub-string permutation, together with a deta-
iled description of the domain-specific language to perform
them, is available in [31].

Algorithm 3. Value Format Transformation

Require: source S and instances IS , Set of data context schemas
D and instances ID, set of matches M, set of source and
data context profiling PS ; PD, configuration C

Ensure: Transformed sources S0 and instances I 0S
1: procedure TRANSFORM

2: R fg " R are selected transformation rules
3: for all d 2 D do
4: Ed  generate examplesðs; d;M; PS ; PdÞ
5: Rd  generate test transform rulesðEÞ
6: R accumulate_validatedðRdÞ
7: end for
8: T 0  compute transformationsðS;RÞ
9: S0  fuse_transformationsðS; T 0Þ
10: return S0; I 0S
11: end procedure

We apply k-fold validation to select a set of transforma-
tion rules. In this process, the set of examples is randomly
partitioned into k equally sized subsets. Then, transforma-
tions are synthesised, in k rounds, using the examples from
the other k� 1 partitions, and the synthesised transforma-
tion is tested on the remaining partition.

Algorithm 3 uses different data context types consecu-
tively to generate and test data examples and transforma-
tion rules. If source columns can be transformed by means
of multiple data context items, we can improve the accu-
racy, consistency and relevance of the sources with respect
to the different data context sources.

Synthesizing transformation rules for a single source
attribute based on different possibly contradicting and dis-
joint sets of data examples, as well as applying different sets
of data examples/transformation rules consecutively could
lead to inconsistent transformation results, which results in
the problem of truth discovery[32]. Thus, we propose two
additional steps in the abstract algorithm generating the
candidate transformed values (line 9) and fusing the candi-
date values (line 10). There exist multiple approaches, e.g.,
majority voting, incorporating trustworthiness of sources,
or Bayesian methods, to address the data fusion problem,
often applied on a large set of Web sources. In [33] the
authors present a scalable and robust truth discovery
scheme for many sources. Herein, we have to decide the
true value for a large set of tuples, but for each, from a small
set of values generated by rules that have been learned from
data context. In our approach, we apply majority voting to
fuse potentially contradicting values that have been gener-
ated by means of different data context types (reference
data, master data, examples).

3.4 Rule-Based Data Repair

The data repair problem involves detecting and repairing
certain classes of data errors, e.g., violations of integrity con-
straints. Integrity constraints can be given in a range of lan-
guages, varying from user-defined functions to database
constraints like conditional functional dependencies or

inclusion dependencies [34]. Here we adopt conditional
functional dependencies (CFD). A CFD

f ¼ ðR : X ! Y; tpÞ;

where X and Y are disjoint subsets of the set of attributes,
extends standard functional dependencies (FDs) by enforc-
ing pattern tuples tp of semantically related constants [25].
To increase the consistency and accuracy of data, violations
have to be detected based on the given constraints, and suit-
able repairs have to be chosen for the detected violations.

3.4.1 Automating Rule Based Data Repair

We approach the challenge of automating rule-based data
repair by applying generate and test phases. Generating
and testing involves information gained from target instan-
ces and concepts known from applying master data.

Target instances can be used to underpin automatic discov-
ery of integrity constraints from data. For instance, the CFD
discovery algorithm [22] is capable of finding a canonical
cover of s-frequent minimal constant CFDs based on an
input relationR and a support size support. The support size
is the number of tuples matching the pattern of each CFD
learned by the algorithm.Master data can be used to generate
certain fixes based on editing rules [35]. Certain fixes can be
characterised as fixes that are known to be absolutely correct,
i.e., do not introduce new errors when repairing the data.
Intuitively, this method alignswith our approach.

Algorithm 4. Rule-Based Repair

Require: sources S and instances IS target schema T , set of
relationships L, Set of data context schemasD and
instances ID, data context profiling PD, configuration C

Ensure: Repaired sources S0 and instances I 0S
1: procedure REPAIR

2: R fg " Repair rules
3: for all d 2 D do
4: Rd  test_rulesðPd; d; Id; CÞ
5: R accumulate_rulesðR;RdÞ
6: end for
7: R rewrite_rulesðR; S; LÞ
8: V  generate violationsðS;RÞ
9: E0  generate repairðS; IS ; V Þ
10: E00  test repairðS; IS ; E

0Þ
11: S0  apply repairðS; IS ; E

00Þ
12: return S0; I 0S
13: end procedure

3.4.2 Context Informed Automation

Algorithm 4 is used to automate rule-based repair when data
context is available. The algorithm is invoked for each source
SS and the wrangling target TT . It takes source instances IS and
data context into account. First, the algorithm proposes a
method for automatically testing and validating available
repair rules, i.e., learned from data context (line 4). This vali-
dation step is executed for each data context type d 2 D.
Afterwards, the generated repair rule candidates are accumu-
lated and prepared for the specific source SS (line 5 and line 7).
After violations of the validated repair rules have been
detected in the source (line 8), a concrete repair algorithm is
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executed on the source and cleans the source according to the
automatically generated and validated rules (line 9 - 11).

In our concrete implementation, we use domain-indepen-
dent CFDs as repair rules and generalise an approach that
utilises master data to discover certain fixes [35] towards
selecting CFDs for all available data context sources D. This
relaxes the notion of certain fixes, as data context might pro-
vide spurious evidence. To fully automate the process, there
is a need to automatically validate the learned repair rules
(line 8). A strict validationmethod (seeAlgorithm 5) is neces-
sary as discovered CFDs might be erroneous (e.g., the
cfd1 : ð½town� ! ½street�; ðLondonjjKingsCrossÞ could be
read in the way that all tuples with the town London should
have the street Kings Cross or they are erroneous) or the data
context might provide spurious evidence (e.g., examples
might not include correct values).

The described CFD validation algorithm (Algorithm 5)
focuses on selecting a set of CFDs, CFDbest, maximising the
precision of the repair process, i.e., minimising the number
of incorrect repairs. We incrementally increase the support
size parameter used for discovering CFDs for each data con-
text type CFDd (line 4, 5, 11) and apply a validation step
(line 7) on the selected ones. The confidence of the CFDs is
used to calculate a score for each iteration (line 7) to select
the set of CFDs CFDbest to be applied in the repair process.
The score is the percentage of CFDs with confidence equal
to 1, i.e., CFDs not violating any tuple in the training data.
Finally, all CFDs violating tuples in the training data are fil-
tered out.

Algorithm 5. Cfd Validation

Require: CFDs CFDd learned from data context source d,
data context schema d and instances Id, configuration C
including (lower bound lb, initial support is, step size step)

Ensure: Validated CFDs CFDbest

1: procedure CFD VALIDATION

2: CFDbest  fg
3: scorebest ¼ lb
4: support is
5: while score > scorebest do
6: CFDd0  select_cfdðCFDd; d; supportÞ
7: score validateðCFDd0 ; d; IdÞ
8: if score > scorebest then
9: scorebest ¼ score
10: CFDbest  CFDd0

11: support ¼ supportþ step
12: end if
13: end while
14: return CFDbest

15: end procedure

To apply rule-based repair, we again use data context to
represent target instances. Thus, we assume that we can
apply the aggregated CFDs, discovered and validated using
different data context types for the target, to detect viola-
tions and generate repair operations for sources based on
the repair algorithm described in [25] (line 9,10,11). Repair
operations are based on attribute value modifications as
they are sufficient to resolve CFD violations. In short, and
following the notation in [25], if a tuple t violates a CFD
f ¼ ðR : X ! Y; tpÞ, composed of a FD plus a pattern tuple

tp, the algorithm either modifies the values of t for the attrib-
utes matching the right-hand side of the FD, according to
the pattern tuple, or modifies the values of some attributes
of t matching the left-hand side of the FD. In case of viola-
tions of t with another tuple t0, different attribute modifica-
tions will be applied. The repair algorithm produces a
repair that is as close as possible to the original dataset, by
choosing, at each step (testing), to repair the attribute of a
tuple t with minimum repair cost. Such a cost model
depends on a distance function, which in our case is based
on the Damerau-Levenshtein metric.

3.5 Schema Mapping Generation and Validation

Schema mapping generation and validation can be defined
as the problem of generating data transformations from
data sources SS into a target TT and validating the resulting
candidates for use. Schema mappings can be expressed
using source-to-target tuple generating dependencies (st-
tgds) of the form

s : 8xðfSðxÞ ! 9ycP ðx; yÞÞ;

where fSðxÞ is a conjunction of source atoms, and cP ðx; yÞ is
a conjunction of target atoms.

3.5.1 Automating Mapping Generation

We approach the challenge of automating schema mapping
generation and validation by applying generate and test
phases based on different types of evidence.

Metadata evidence describing schema elements, their stru-
cture and primary/foreign key relationships, combined
with schematic correspondences between the sources and
the target, supports the application of mapping generation
approaches such as ++Spicy [36], S4 [37] or [38].

Profiling Data profiling [20], [21] infers descriptive
information about sources that can be exploited by mapping
generation and selection, though automatically detected
candidate keys and partial inclusion dependencies can
provide misleading evidence.

Target instances can be exploited by mapping valida-
tion approaches using instance-based similarity measures
between mapping results and target instances. For example,
tree similarity measures taking into account the topology
and the information content support target instance evi-
dence [36]. In [37], row and column-based containment
scores are used to validate project-join queries, and in [39]
feedback on tuples is used to inform selection.

3.5.2 Context Informed Automation

Algorithm 6 is used to automate mapping generation and
validation without data context, and improves the result if
data context is available. The algorithm is invoked for the
set of input sources SS and the target TT and takes metadata,
profiling and data context evidence into account. In the
generation phase (line 2), we validate join opportunities
between the sources SS based on key candidates and partial
inclusion dependencies. In general, our approach supports
the use of the full set of detected partial inclusion dependen-
cies and allows relaxation of the assumptions on key
attributes.
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To enable the search for candidate mappings and to focus
on promising groups of source tables, we divide the search
space into smaller problems by applying a table union
search and cluster each unionable input source (e.g., real-
estate source) with all additional sources (e.g., schools or
deprivation statistics) to be integrated (line 3), and by exe-
cuting mapping generation and validation for each source
cluster. In addition, we restrict the search space by applying
a threshold of 0.5 on the overlap of detected inclusion
dependencies. To detect key candidates, a threshold of 0.9 is
applied to accommodate potential outliers, i.e., non-distinct,
null or empty values.

To generate candidate mappings, we search the space of
candidate mappings involving join operations based on val-
idated join opportunities for each source cluster (line 8) by
aligning possible source join paths with the target. We
generate mappings for the top-k match sets as described in
Section 3.2 (Schema Matching). Executing the mapping
generation algorithm results in a set of candidate mappings
to be validated by data context. Generated mappings are
expressed in VADALOG[40], a member of the Datalog�
family of logic languages whose core language contains
rules known as existential rules or source-to-target dependen-
cies. A simplified candidate mapping (see running example
depicted in Fig. 1) populating both target tables by joining
Agency 1 (A), Deprivation statistics (D) and Postcodes (P) as
well as selecting schools from Schools (S) is shown in (1).

s1 : 8x1; x2; x3; x4; x5; x6; x7; x8; x9; x10; x11ðAðx1; x2;

x3; x4; x5; x6Þ ^Dðx3; x7; x8; x9Þ ^ P ðx3; x10; x11ÞÞ !

9y1T1ðy1; x1; x2; x3; x4; x5; x8; x11ÞÞ

s2 : 8x12; x13; x14; x15ðSðx12; x13; x14; x15ÞÞ !

T2ðx12; x15; x14ÞÞ:

(1)

When data context is available, we test mapping candi-
dates G for each cluster by computing mapping validation
scores (line 13) for each available data context type. We cal-
culate the Jaccard set containment score, defined in Equa-
tion (2), as a measure for similarity between the instances
Igk of attribute k in the set of attributes domðgÞ of the map-
ping g and the instances Idj of each aligned attribute j in the
set of attributes domðDÞ in the data context typeD.

scoregdk ¼ max
j2domðdÞ

jIdj \ Igk j

jIdj j
: (2)

As the different attributes in the sources and the data con-
text might not be statistically independent and to detect cor-
rect join paths, we calculate a row-row similarity metric (see
Equation (3)). We adapt the metrics used in S4[37] according
to data context to estimate the accuracy (reference data), con-
sistency (master data) and relevance (examples) for eachmap-
ping candidate. The combined metric calculates the mean of
the validation scores for all alignedmapping attributes.

scoregd ¼

P
k2domðgÞ scoregdk

domðgÞj j
: (3)

Finally, we calculate a combined score for each candidate
mapping as defined in Equation (4) to rank the candidates
according to their similarity with the data context.

scoreg ¼

P
d2D scoregd

dj j
: (4)

The algorithm repeats the generate and test phases for
each cluster (line 5), retaining the candidate mappings with
the best scores (line 21). In the final experiments we esti-
mated the Jaccard containment scoreswith Locality Sensitive
Hashing Ensemble[41]. This enables us to scale the approach
without significantly reducing result quality. In general, the
algorithm is capable of ranking mappings according to their
accumulated scores. This enables a top-k approach and the
incorporation of user feedback to refine mappings which is
left open for future work. In the absence of data context, we
choose the mapping candidate satisfying the most schematic
correspondences for each group of sources.

Algorithm 6.Mapping Generation and Validation

Require: set of source schemas S and instances IS , target
schema T , Set of data context schemas D and instances ID,
set of relationships R, set of matches M, source profiling
PS , configuration F

Ensure: Set of mappings G
1: procedure MAPPING

2: PSV  validateðS; PSÞ
3: C  clusterðS;M; PSV Þ
4: Gbest  fg
5: for all c 2 C do
6: scorec  0

7: gc  fg
8: G gen schema mappingðc;M; PSV Þ
9: for all g 2 G do
10: for all d 2 D do
11: scoregd  calculateðg;D;R; IDÞ
12: end for
13: scoreg  accumulateðscoregdÞ
14: if scoreg > scorecÞ then
15: scorec  scoregÞ
16: gc  g
17: end if
18: end for
19: Gbest  g
20: end for
21: return Gbest; IG
22: end procedure

3.6 Multi-Criteria Mapping Selection

Source selection can be defined as the problem of identify-
ing a subset of sources (along with the quantities of data to
select from each) from a set of available data sources SS, that
are most valuable for the wrangling scenario and thus most
fit for purpose. Here, we do not apply source selection, but
mapping selection after matching, transformations, repairs
and structure transformations. This increases the integra-
tion costs but supports incorporation of the intermediate
results and the integrability of the sources in the selection
process. Different approaches to source selection map the
problem onto a single criterion for optimisation to rank
sources or tackle the problem as multi-criterial and calculate
a trade-off solution most aligned with a user’s preferences
regarding a set of criteria [23]. The objective of our approach
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to mapping selection is to select a collection of n tuples from
across the set of mappings with the number of tuples
selected per mapping potentially less than the size of the
mapping. The targeted size, n, is a user-provided input to
the selection algorithm.

3.6.1 Automating Mapping Selection

We approach the challenge of automating mapping selec-
tion by applying generation and test phases. Generating
and testing are based on different types of evidence.

Source instances can be exploited by mapping selection
approaches to calculate mapping-specific criteria and map-
ping overlap estimations. In general, mapping statistics such
as the number of nulls, the standard deviation of attributes
or the number of tuples in the mapping can be used as input
for multi-criteria based optimisation techniques[42],[23].

Target instances can be exploited by source or mapping
selection approaches to calculate quality criteria[43] to
improve the selection process. In [42], feedback instances
are used to estimate different quality dimensions such as
accuracy and freshness of sources. In general, these esti-
mates can be used as input to source or mapping selection
approaches. Further, different similarity measures[41] such
as the Jaccard set containment score and string similarity
measures can be used to calculate appropriate criteria show-
ing good performance over large data sets.

Algorithm 7.Multi-Criteria Mapping Selection

Require: set of mappings G, set of mapping extents IG, target
schema T , Set of data context schemasD and instances ID,
set of relationships R, configuration F including (set of
criteria weightsW , targeted size ts)

Ensure: Set of selected mappings and number of selected tuples
per mapping Gbest

1: procedure MAPPINGSELECT

2: C  fg " C is the set of all criteria
3: Gbest  fg
4: for all g 2 G do
5: Cg  calc_criteriaðg; IgÞ " Cg are criteria calculated

without data context
6: C  addðC;CgÞ
7: for all d 2 D do
8: Cgdc  calc_dc_criteriaðg; Ig; d; R; IdÞ " Cgdc are

criteria calculated with data context
9: C  addðC;CgdcÞ
10: end for
11: end for
12: W  calculate_weightsðWÞ
13: Gbest  optimiseðG;C;W; tsÞ
14: return Gbest

15: end procedure

3.6.2 Context Informed Automation

Algorithm 7 is used to automate mapping selection, exploit-
ing data context information when it is available. The algo-
rithm is invoked for the set of validated mappings G
generated in mapping generation and validation for each
source SS. It takes the mapping extents IG and data context-
based evidence D into account. The algorithm estimates the
quality for each mapping g 2 G by generating a set of

criteria Cg for when data context is not available (line 5) and
a set of criteria Cgdc if data context is available (line 8). Crite-
ria that are dependent on the mapping extent IG to be used
in the approach are the completeness of sources, i.e., the num-
ber of nulls and empty values, and the size, i.e., the number
of tuples in the sources.

When data context is available, the algorithm generates
criteria C for each available data context type estimating the
accuracy w.r.t. reference data, the consistency w.r.t. the given
master data, and the relevance of the mappings M w.r.t. to
the provided examples. In general, different types of simi-
larity measures between the mappings and the data context
could be exploited (e.g., [44]). In our approach, we utilise
Locality Sensitive Hashing (LSH) Ensemble[41] to estimate
the Jaccard set containment score (see mapping generation
and validation), defined in Equation (2), as a measure for
similarity between attribute k in the source SS and each
aligned attribute j in the data context D in the same way as
for mapping validation (see Section 3.5). Again we argue
that the different attributes in the sources and the data con-
text might not be statistically independent, and therefore
we calculate a combined metric for each data context type
to calculate the accuracy (reference data), consistency (mas-
ter data) and relevance (examples) of the mappings.

We apply a concrete multi-criteria optimisation approach
(line 13) for the problem of selecting a subset of valuable
mappings for the data wrangling process [23] based on data
context. The approach takes inspiration from Multi-Criteria
Decision Analysis (MCDA) and determines a trade-off solu-
tion that has high overall weighted utility. The optimisation
model is implemented using Multi-Objective Linear Pro-
gramming (MOLP) in LPSolve.5

The algorithm takes as input (configuration F ) a number
of tuples to be retrieved ts and a set of criteria weights W .
The algorithm calculates normalised criteria, the selection
utility SU , for the quantity of tuples selected from a map-
ping for each criterion (see [23]). Afterwards, the method
optimises the overall weighted utility (see Equation (5))
based on the selection utility (SU) of the possible solution
space and the provided weights W . The selection utility is
defined for each criterion C and is a normalised value with
respect to the range of possible values a criterion can take,
therefore allowing aggregation of different criteria values.
In addition, the approach is able to take into account the
range of values between the criteria ideal and negative ideal
solution for each criterion.

WU ¼

PC
i¼1 Wið

PS
j¼1ðSUji=tsÞÞ

jCj
: (5)

The result of executing mapping selection is an integer
vector of length jMj representing the quantity values of
tuples to choose from each mapping (where 0 denotes a
mapping that is not selected).

4 EXPERIMENTAL EVALUATION

We investigate the effectiveness of the data wrangling pro-
cess by measuring the gain in data quality in the target by

5. LPSolve: http://lpsolve.sourceforge.net/
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informing multiple data wrangling steps with different
types of data context in two real world scenarios. As there is
not, to the best of our knowledge, a direct competitor tack-
ling end-to-end data wrangling and considering different
types of context information, we evaluate the effect against
the base case where data context is not used. The efficiency
of the approach is evaluated by analysing the computational
complexity and by measuring the scalability and perfor-
mance of the approach.

4.1 Experiment Setup

4.1.1 Application Domain and Data

We perform our experiments on two real world data-
sets consisting of web-extracted data from the real-estate
domain and of the UK open government data portal. The
data of the primary scenario (Real-estate - RE) is an exten-
sion of the running scenario described in Section 2, and
consists of data from 1k real-estate agencies (54k tuples). All
datasets have been extracted with Diadem [13] according to
their representation on the web page to be as close as possi-
ble to a completely automated extraction.

In addition to the real-estate data, we include freely
available open government data sets providing statistical
information about the locations,6 and about schools7 situ-
ated nearby properties for sale and their effectiveness.8 The
objective of the scenario is to wrangle the diverse set of
sources representing real-estate properties with additional
information and to select the best fitting sources and tuples
for the specific target.

The second wrangling scenario (Financial data - FD) is
based on freely available data from from the UK open gov-
ernment data portal that is categorised into twelve areas. To
assume a realistic scenario we integrate all data on vendor
specific expenditures, related departments and their addresses
(91k tuples) and define the target schema Address, Director-
ate, Department, Vendor, Expenditure, Payment Date. These
sources are part of the governmental spending category with
12.5k sources in total.

4.1.2 Data Context

To evaluate the effect of data context we searched for avail-
able and representative data sets to be used as examples,
reference and master data. For reference data in the real-
estate domain we utilised a subset of the open address data
set for the UK for the area we are interested in (30k tuples)
that provides high quality address data. For examples we
used the freely available UK price paid data including 160k
tuples representing property sales information. To emulate
master data of a single agency (customer), we cleaned the
set of extracted records from a single real-estate agency.

For the second scenario we scraped the set of organisa-
tions and corresponding addresses from the open govern-
ment data portal, checked it by hand and used it as

reference data. As master data we used the cleaned expen-
diture data from a single organisation (500 tuples) and we
created a set of target examples (50 tuples) for the scenario.

4.1.3 Experimental Environment

The experiments have been conducted on an Amazon EC2
cluster consisting of 10 t2.medium instances (2 vCPUs, 4 GBs
each) and a shared nothing PostgreSQL database setup. The
runtime results have been obtained by averaging 10 runs.

4.1.4 Measuring Wrangling Quality

There is no benchmark available for measuring the quality
of a data wrangling process. While the methods used in
all stages of the wrangling process have been evaluated
separately (see [15], [23], [24], [25], [36]), the approach of
applying instance-based evidence to them, individually or
together, has not. Our focus is on measuring the effective-
ness of informing the complete wrangling process with data
context. However, to explain the effect of different evidence
types in more depth, we also drill down using separate
experiments on individual stages.

To measure the quality for single stages and for the
whole wrangling process we created a ground truth for
both test scenarios by hand. The ground truth provides cor-
rectly transformed, cleaned and integrated values and cor-
rect schematic correspondences for the set of sources to be
selected. We sorted the tuples of all sources according to
their quality with respect to the available evidence by using
approximate string distances and the number of nulls. We
checked the overall tuple sorting by hand and repaired
the corresponding values, matches and mappings (for these
specific sources) for the best fitting tuples (targeted size =
1000) by hand.

We report on the results obtained in both scenarios and
exemplify the gain with the real-estate example. We use the
following metrics:

� Precision: the fraction of correct items among the
retrieved items

PPV ¼
TP

TP þ FP
:

� Recall: the fraction of correct items that have been
retrieved

TPR ¼
TP

TP þ FN
:

� f-measure: the harmonic mean of precision and recall

F1 ¼ 2 �
PPV � TPR

PPV þ TPR
:

� Accuracy: the fraction of true items among all items

ACC ¼
TP þ TN

TP þ FP þ TN þ FN
:

� Negative predictive value: the fraction of negative
predictions that are correct

NPV ¼
TN

TN þ FN
:

6. English indices of deprivation: https://www.gov.uk/government/
statistics/english-indices-of-deprivation-2015

7. London Schools Atlas: https://data.london.gov.uk/dataset/
london-schools-atlas

8. School inspections: https://www.gov.uk/government/statistics/
maintained-schools-and-academies-inspections-and-outcomes-as-at-31-
march-2017
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As we evaluate different stages as well as the whole
wrangling process, the specific notions of true and false pos-
itives (TP, FP) and true and false negatives (TN, FN) are
given in the descriptions of the corresponding experiments.

4.2 Effect of Data Context on the Wrangling Result

The objective of the first experiment is to evaluate the effect
of different data context types on the end-to-end data wran-
gling process. The propositions to be tested are that: 1) the
wrangling process in total can benefit from being informed
by data context, 2) using multiple data context types
together is able to improve the overall wrangling result, 3)
each data context type can be used to improve the results of
at least a single step, 4) data context can be used to gain
combined effects on multiple wrangling stages, and 5) the
effect of data context can be achieved with an increasing
number of input sources.

To evaluate the results, we report on precision, recall, f-
measure, and accuracy according to the ground truth. To
calculate the metrics, we added a provenance id for each
tuple that is internally preserved through all wrangling
stages. We compare all values of the resulting tuples with
the ground truth by applying the following definitions: TP
a value in the result that corresponds to a value in the
ground truth; FP a value in the result that does not corre-
spond to a value in the ground truth; FN a value in the
ground truth that should be but is not in the result.

We conducted experiments informing all steps of data
wrangling with each type of evidence separately, and
applying all types at each stage. An overview of the results
is depicted in Figs. 3a (RE) and 3b (FD). In the case of No
data context the process executes Coma schema-based
matchers, and mappings are validated and selected based
on two criteria, i.e., the completeness (number of nulls) and
the size of the sources.

4.2.1 Effect of Multiple Data Context Types

The results in Figs. 3a (RE) and 3b (FD) show that applying
all data context types at once in the whole wrangling pro-
cess results in better target values than both not informing
the process and applying single ones. There is a gain of 0.29
(RE) and 0.20 (FD) in f-measure by applying all evidence
types at once, with precision improved by 0.27 (RE) and
0.14 (FD) and recall by 0.29 (RE) and 0.23 (FD) respectively.

The quality of the result is greatest when all the data con-
text types are available because each type holds different

information to be exploited. For instance, master data
and reference data enable the process to find different sche-
matic correspondences. Reference data also supports format
transformation of street attributes into their desired repre-
sentation. The format of the attribute type can only be trans-
formed by having examples at hand. Rule-based repair can
correct values for attribute agency based on master data,
while reference data corrects city and street values. All data
context types contribute to the selection of the best sources
and tuples.

4.2.2 Effect of Different Data Context Types

The results for individual data context types show that the f-
measure of the target improved by 0.23, 0.21 and 0.18 (RE)
and 0.12, 0.12 and 0.10 (FD) for master data, reference data
and examples, respectively. We report a gain in precision of
0.19, 0.15 and 0.11 (RE) and recall is increased by 0.25, 0.24
and 0.23 (RE). In the financial data scenario precision is
increased by 0.08, 0.08 and 0.07 and recall is increased by
0.14, 0.14 and 0.11. Summarising, this shows that each type
has had a positive effect, and that there is a combined effect
by applying them together. In addition, the improvements
do not sum as the gains in the result quality partly overlap,
e.g., the same match can be corrected with master data and
reference data.

4.2.3 Effect of Number of Input Sources

To evaluate the effectiveness of the approach if the number
of non-related sources is increased, we scale the financial
data scenario from the initial set of 180 sources up to all
sources in the category governmental spending (12.5k). In the
real-estate scenario, we scaled the number of sources from
1k to 12.5k to test the claim that the wrangling process is
capable of obtaining (almost) the same result quality if the
same value (input tuples) is available in a larger set of sour-
ces. To achieve this we randomly distributed the set of input
tuples to the sources created by reusing the source schemes
at random. The results (see Fig. 3c) show that informing
the data wrangling process with data context is robust if
(1) relevant data is available in many sources (RE - 0.81 to
0.79), and if (2) relevant data is wrangled from a large set
of diverse sources (FD - 0.79 to 0.7). The expected decrease
in the f-score is explained by the availability of more
similar data domains which increases the error rates in
schema matching and mapping selection (data context-
based criteria).

Fig. 3. Experimental results: Data wrangling process.
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4.3 Effect of Data Context on Wrangling Steps

The objective of the second experiment is to investigate
how, and to what extent, each wrangling step has benefited
from available data context. We report on the result
obtained from the real-estate scenario.

4.3.1 Schema Matching

We report on metrics of detected schematic correspond-
ences in Fig. 4a by using the following definitions relating
to one-to-one schematic correspondences: TP - the two ele-
ments represent the same concept; FP - the two elements do
not represent the same concept; FN - a correct correspon-
dence that is not returned; TN - an incorrect correspondence
that is not returned.

We compare the results of using Coma++with ametadata
match workflow with that of a match workflow informed by
evidence, i.e., instance-basedmatchers and domain recognis-
ers. In the first case Coma++ is executed with workflow type
7001. With evidence, workflow 7008 is used, including
instance-based matchers and domain recognisers (see Sec-
tion 3.2). In both cases, the workflow is configured to select
multiple matches and tomatch in both directions.

The results in Fig. 4a show that all metrics can be
improved by all data context types, but the effect is differ-
ent. The differences in the match process results are partly
cumulative as instances from different types can inform the
detection of different schematic correspondences, which is
reflected in the gain of 0.13 in the f-measure in the case of
applying all data context types.

Schema-based matchers result in a relatively high num-
ber of false positives and negatives. Applying master data
results in the highest improvement of precision and recall.
The reason is that master data is related to more attributes
of the target, which increases the potential gain. In general,
most improvements are achieved with domain recognisers
as they work well to reduce the similarity score for spurious

candidate correspondences with aligned data context and
to increase the score for correct ones.

The number of false negatives can be slightly decreased
using all kinds of evidence (see the gain in NPV). Examples
show the smallest increase in the result quality. The reason
is that values in the example set are less diverse than in ref-
erence data or master data. This makes it harder to make a
well informed decision regarding a correct or incorrect
match, as hits occur less often.

4.3.2 Value Format Transformations

We report on results for validated transformations in Fig. 4c
by using the following definitions: TP - the transformation
produces the correct output; FP - the transformation produ-
ces an incorrect output; FN - a source value that should be
transformed is not transformed; TN - a source value that
cannot be transformed is not transformed.

The value transformation algorithm detects columns that
can potentially be transformed and computes source-target
example pairs for them. In our experimental setting, the
algorithm finds partially overlapping sets of columns to be
transformed, when using reference data, master data and
examples showing their possible incremental effect.

We obtained high precision, recall and accuracy but low
negative predictive value for all data context types. The low
NPV in all cases shows that there are far more false nega-
tives than true negatives. However, high accuracy reports
on a low rate of (true and false) negatives compared to the
positive values in all cases which slightly diminishes this
result.

In case of master data, the results show precision and
recall of over 0.98. In this case, no TN occurred, resulting in
an NPV of zero. Applying reference data results in a preci-
sion of 0.98 and a recall of 0.92. The low NPV results from
null values and wrong values (e.g., a wrongly extracted city
name in a street attribute) in the sources. The worst case

Fig. 4. Experimental results: Effect of data context types on individual stages.
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with respect to the quality metrics (precision of 0.75, accu-
racy of 0.7) occurred when applying examples. It appears
that the combination of source and examples is, in some
cases, not expressive enough to enable the required trans-
formation to be synthesised.

4.3.3 Rule Based Data Repair

To evaluate rule-based data repair we report on precision,
recall, f-measure, accuracy, and NPV of repairs executed
(see Fig. 4d) and apply the same metrics as used for data
format transformations.

The system discovers CFDs from data context by auto-
matically finding the configuration settings and validating
the CFDs. For the experiments we configured a minimal
support size of 5 for CFDs. The CFD discovery algorithm
and validation steps (lines 6 to 15 in Algorithm 4) set sup-
port sizes of 17, 11, and 8 for examples, reference data and
master data. The CFDs covered 13 different repair rule
patterns with two being incorrect (79 rules) (e.g., cfd1 :
ð½street; city� ! ½postcode�; TpÞ). Experimental results show
that automatic CFD validation is able to configure CFD dis-
covery effectively with respect to correct and incorrect
CFDs.

We report high precision, accuracy, negative predictive
value and average recall for all data context types except
master data (recall). In the case of master data, all selected
repairs are correct and all potential repairs are found. We
report a precision of 0.95 for reference data. However, in
this case some opportunities have been missed, resulting in
a recall of 0.6. Results for examples are in a similar range:
precision of 0.93 and recall of 0.52. Negative predictive
value is in all cases above 0.87. Combined with the high
recall, this shows that our approach resulted in a low num-
ber of false negatives.

4.3.4 Schema Mapping Validation

We report on mapping validation according to the ground
truth (see Fig. 4b) by using the same notions of TP, FP, FN,
and TN as for target quality (see Section 4.2).

Schema mapping generation and validation uses as input
schema matches and profile data, such as candidate keys
and partial inclusion dependencies. We calculate data con-
text-based validation scores for each mapping and rank
them accordingly. The additional benefit is not as substan-
tial as in the other stages, but in our experimental setting
this process is often able to select a mapping with a good

result. In general, utilising data context for mapping valida-
tion leads to an increase of 0.05 to 0.06 in f-measure due to
an improvement in both precision and recall.

4.3.5 Mapping Selection

We report on precision, recall, f-measure, accuracy, and
NPV of the selected sources and tuples according to the
defined ground truth (see Section 4.1.4) for mapping selec-
tion in Fig. 4e. In general, we use the same ground truth as
for the overall wrangling result validation, but measure the
correctly selected tuples as follows: TP - the algorithm
selects a correct tuple; FP - a tuple that is selected but should
not be; FN - a tuple that should be selected but is not; TN - a
tuple that is not selected and should not be.

To calculate data context-based criteria for mappings, we
use the Jaccard containment score with the actual value as
the query and the data context as the source and we com-
bine the attribute metrics in a single criterion for each data
context type (see Section 3.6). The algorithm optimises the
consistency, accuracy, and relevance of the selected map-
pings and tuples.

The experiments show that utilising each single data con-
text type to inform mapping selection immediately
improves precision from 0.7 to approximately 0.93 and
recall from 0.83 to 0.94. In case where all data context items
are available, precision and recall can be improved to 0.98.
This rather good result can be achieved because the sources,
as many others, follow a power law distribution (as also
reported in [23] or [41]). Therefore, a small amount of infor-
mation is capable of correctly guiding the search.

4.4 Performance Evaluation

To study the efficiency of informing the wrangling process
with data context we report on the scalability of the approach
with respect to the number of tuples to be wrangled and the
number of sources used as input to the process.We report on
the effect of different evidence types and of the individual
wrangling stages. The performance of all described algo-
rithms for automating wrangling is linearly dependent on
the number of sources and/or the number of evidence types.
Our to-be-evaluated claim is that the wrangling process is
scalable, though the actual runtime depends on the chosen
concrete methods for individual wrangling stages that are
executedwithin the presented algorithms. The reported time
(see Fig. 5) is the response time of the algorithms executed on
the real-estate scenario, i.e., the time the user has to wait
before thewrangling results are available.

Fig. 5. Experimental results: Scalability of data wrangling process.
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The number of sources and the number of tuples per
source have been chosen according to three use cases. In the
real-estate scenario, there exist 1k sources with on average
57 tuples. From the UK Open Government Data (OGD) por-
tal we scraped 25k csv files with on average 4.4k tuples per
file (Business, Defence and Environment). In contrast, Data
Civilizer [45] reports on the MIT Data Warehouse with 3k
tables, in total 1TB of data. These tables can be assumed to
be larger in number of tuples (according to the average
tuple size, 2.5kb, in our sources, we estimate 140k tuples per
source). In our experiments, we chose to scale up to 25k
sources (in accordance to OGD) and we scale the number of
tuples in single sources from 54 (RE) on average up to 150k
(MIT) per source to emulate these differences.

4.4.1 Effect of Number of Sources

The scalability of the wrangling process has been evaluated
by increasing the number of input sources from 1k to 25k.
The input sources have been created on the basis of the real-
estate scenario by generating new input sources with the
same characteristics. The results (see Fig. 5a) show that the
process scales, according to the performance analysis, with
respect to the number of sources. The average runtime per
source increases from 3.6 minutes for 1k sources (all data
context) to 4.4 minutes with 25k sources and is executed on
10 multi-threaded virtual machines (see Section 4.1.3). The
whole process except mapping selection can be executed in
parallel for the available sources (by incorporating their clus-
ters). Our experiments show an average speedup of 9.12 and
18.27 for parallelising on 10 and 20 nodes (average over 1k to
25k input sources).

4.4.2 Effect of Data Source Size

The scalability of the wrangling process with respect to the
data size has been evaluated by increasing the number of
tuples in a scenario with 1k input sources from 54k to 150M
(54 to 150k per source) in total according to our three baseline
scenarios (Section 4.4). In addition, 0.03 percent of sources in
the OGDdataset havemore than 150k tuples, supporting our
claim of building a realistic scenario at scale. The empirical
results (see Fig. 5b) show that the process is scalable with
respect to the number of tuples, with and without using evi-
dence. The baseline run shows that execution time is domi-
nated by the workflow itself in the case of very small sources.
An important observation is that the type of evidence affects
the runtime. The difference in the effect of evidence types on
the runtime of the individual steps is explained in the infor-
mation gain achieved by the evidence type (e.g., number of
columns to be transformed, number of repair rules discov-
ered), and dependent on the concrete implementation of the
specific step. As expected, the runtime increases with bigger
source sizes but the effect of informing the process with evi-
dence is stable and relative to the input size. For instance, for
50M input tuples, the runtime increases from 18 minutes (no
data context) to 96, 41, 66, and 146 minutes if informed with
evidence (reference data, master data, examples, all).

4.4.3 Effect of Wrangling Steps

We report on the effect of the input size on the runtime of the
individual wrangling steps. Again, we increase the number

of tuples in the scenario with 1k sources from 54k to 150M.
As shown in Fig. 5c for reference data, the performance of
matching, mapping generation and mapping selection is
close to constant if the number of input tuples is increased.
This result is expected as in all three steps our approach sam-
ples a fixed amount of tuples from the sources and the pro-
vided data context. Value format transformation and repair
have to take all input and data context tuples into account
and thus their runtime is directly affected by the size as well
as by the concrete implementation of the wrangling method.
In general, we demonstrate that the wrangling process and
wrangling step algorithms scale with the number of tuples
and that the experimental results of the concrete method
implementations, that could be exchanged, are in line with
their performance analysis (see [24],[25]). For instance, mov-
ing to a less expressive (e.g., considering only FDs instead of
CFDs) but also less expensive repair algorithmwould signifi-
cantly improve repair performance.

5 RELATED WORK

In this section, we briefly discuss: (i) other proposals that
explicitly address data wrangling; (ii) other approaches to
automated data integration and cleaning that use auxiliary
evidence or address scale; (iii) other end-to-end proposals
of relevance to data wrangling in the context of Big data.
Additional proposals tackling individual steps have already
been discussed in Section 3.

Proposals that address data wrangling explicitly, often
focus on supporting the data scientist on specific tasks, such
as format transformation. For example, the Wrangler sys-
tem [10] proposes format transformation rules, which can
be selected or revised by the data scientist. In FlashFill [31]
and related proposals, users provide examples that under-
pin transformation program synthesis. Such human-in-the-
loop proposals complement this work, as they can be
applied for parts of a process where automation has not
produced a satisfactory result. In DataXFormer [14], identi-
fication of transformations is informed by the contents of
web tables, which can be seen as a form of data context.
Thus, DataXFormer provides an example of a single step in
the wrangling process being informed by data context,
whereas the contribution of this paper is to exploit such con-
textual information throughout the process.

In [38] the authors present an approach for optimising
complex queries against a diverse set of sources including
NoSQL and relational data sources. In common with this
approach, we utilise dynamic programming to optimise
integration plans based on an internal cost model. In con-
trast, we focus on integrating a large set of diverse sources
(up to 25k) while their focus seems to be more on large data
sets (up to 200 GB). The authors of [44] present an indexing
architecture for storing and searching media databases
characterised by high-dimensional feature vectors. While
this approach focuses on scaling with respect to the number
of dimensions, in mapping selection, we utilise a scalable
indexing approach to compare integration plans with the
data context that is tailored towards the power-law distribu-
tion of many large scale Web-extracted data sets [41].

A range of proposals have been made for data integration
and cleaning components that use auxiliary data (e.g., [13],
[14], [15], [16]). Additional evidence can also be obtained,
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though at further cost, through crowdsourcing [43]. We
describe an approach that can build upon and make more
effective use of such results, maximising the potential benefit
from contextual data by using the samedata inmultiple steps.

An end-to-end approach to data wrangling is often
obtained by data scientists hand crafting integration and
cleaning programs, in a manner that is analogous to the writ-
ing of ETL workflows for warehouses. Our objective is to
reduce the associated manual effort through increased use of
automation. This requirement has been recognised by others,
and the nearest proposal in terms of its goals is Data Civilizer
[46], which uses profiling information to inform join path
generation. However, Data Civilizer does not benefit from
the systematic use of data context that is described here; it
could be extended to do so. On the contrary, Big data analyt-
ics platforms such as [7] and [6] focus on optimising the exe-
cution of composable data anlytics workflows according to
data locality and data flow. Our platform focuses on the
design and implementation of a scalable and modularised
data wrangling workflow in a domain-independent manner.
The execution of this workflow could benefit from the fea-
tures provided by such underlying Big data analytics plat-
forms. The NIST Big Data Public Working Group presents a
big data interoperability framework [4] that includes use
cases and requirements for Big data systems and applica-
tions. The specification includes use cases (e.g., Web search
and text-based data) dealing with finding and integrating
relevant data, including data preprocessing to identify what
is for instance searchable. Our approach supports preparing
and selecting the relevant data entities from a vast amount of
semi-structured data that has been extracted from the deep
Web by exploiting instance-based evidence.

Different and complementary notions of data context
have been given in previous work on context aware systems
(e.g., [47]). In such proposals, the focus is to identify the sub-
set of an extent that is most appropriate for a user in a given
situation. In contrast, our notion of data context emphasises
data from the domain within which data wrangling occurs.
The term data context is also used in the proposal for the
Ground data context service [48], which is used to capture
metadata and annotations relating to diverse data sets. Our
notion of data context would seem to be suitable for captur-
ing and sharing using a platform such as Ground.

6 CONCLUSIONS

Data scientists spend as much as 80 percent of their time on

data wrangling,9 so cost-effective data wrangling tackling
integration (addressing variety), cleaning (addressing verac-
ity), and selection of sources (addressing volume) is crucial
to the successful use of big data. In this paper, using two rep-
resentative real world examples, we show an improvement
in f-score from 0.51 to 0.81 and from 0.59 to 0.8 by automating
and optimising a five stepwrangling process to use data con-
text throughout. As such this paper has presented a cost-
effective and scalablemethodology for enhanced automation
that provides a significant return on investment and sup-
ports automatic integration, repairing and selection of data
by optimising the accuracy, consistency and relevance of the

wrangling result. As illustrated in a demo paper, data scien-
tists can associate data context with a target schema with
modest effort via the VADAuser interface [27].

Experiments show that data context is able to inform all
stages of the wrangling process in different ways: in match-
ing by extending the collection of matchers that can be
applied from schema-based to instance-based matchers and
domain recognisers; in both format transformation and repair
by enabling rules to be learned and validated; in mapping
generation and validation by allowing mapping validation to
be informed by the results of instance-based similarity
measures; and in mapping selection by calculating data con-
text-specific criteria (i.e., Jaccard set containment scores)
corresponding to quality dimensions to guide the optimisa-
tion and selection process.

We show that applying multiple data context types on
several wrangling stages results in a combined gain in the
quality of the final wrangling result; first, by summing the
effect of different data context types within a stage, and sec-
ond, by accumulating results from different stages. For
instance, data format transformation and data repair can
benefit from additional correspondences detected by data
context-informed schema matchers.

We evaluate scalability of the wrangling process in terms
of number of sources, number of tuples and the effect of
individual stages. We report that the proposed wrangling
process is scalable from 1k to 25k input sources and from
54k to 150M tuples. Experiments show that overall runtime
depends on the efficiency of the concrete wrangling meth-
ods used and that it is affected by the type of data context.
In our approach, runtime is dominated by value format
transformations and rule-based repair.

Several extensions are targeted for future work. We will
investigate the effect of additional data context types on the
wrangling pipeline, and on other wrangling stages such as
Web data extraction[49]. To further address time-varying
variety and veracity problems in data wrangling, we will
investigate feedback-based learning and model refinement
techniques such as presented in [42] or [50]. Furthermore, we
are exploring how to combine evidence gained from data
context with user preferences, as shown in [23], to elaborate
the possibilities in tailoring a data product for users with
different requirements. Complementing our methodological
work, we aim towards a systematic architectural model [27]
supporting dynamic and incremental orchestration of dive-
rse data wranglingmethods and datasets as described.
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