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Abstract

In many real world applications, active se-
lection of training examples can significantly
reduce the number of labelled training exam-
ples to learn a classification function. Dif-
ferent strategies in the field of support vector
machines have been proposed that iteratively
select a single new example from a set of un-
labelled examples, query the corresponding
class label and then perform retraining of the
current classifier. However, to reduce compu-
tational time for training, it might be neces-
sary to select batches of new training exam-
ples instead of single examples. Strategies
for single examples can be extended straight-
forwardly to select batches by choosing the
h > 1 examples that get the highest values for
the individual selection criterion. We present
a new approach that is especially designed to
construct batches and incorporates a diver-
sity measure. It has low computational re-
quirements making it feasible for large scale
problems with several thousands of examples.
Experimental results indicate that this ap-
proach provides a faster method to attain a
level of generalization accuracy in terms of
the number of labelled examples.

1. Introduction

The standard setting in classification learning assumes
that a previously labelled set of examples is available.
While this assumption holds for a large number of
real world applications, there are some applications
in which we have only access to an initially unlabelled
set of examples. Since labelling these examples can be
expensive in terms of both time and money, we natu-
rally try to minimize the number of labelled examples

that are necessary to learn a classification function at
a certain accuracy level. Actively selecting new train-
ing examples from the set of unlabelled examples, then
querying their class labels and incrementally learning a
classification function is an efficient strategy to control
the labelling effort and accelerate the learning process.

Support vector machines (Vapnik, 1998) have received
ample treatment being both theoretically well founded
and showing excellent generalization performance in
practice. Several publications discuss active learn-
ing strategies for support vector machines that select
training examples from a finite set of unlabelled exam-
ples. It has been shown empirically that active selec-
tion outperforms learning by randomly adding training
examples in the field of character recognition (Camp-
bell et al., 2000), document classification (Schohn &
Cohn, 2000; Tong & Koller, 2000) and computational
chemistry (Warmuth et al., 2002). Since it is time con-
suming to retrain the classifier whenever a new exam-
ple is added to the training set, it is more efficient from
a computational point of view to select and label a set
of examples before repeatedly running the training al-
gorithm. Furthermore, if a parallel labelling instance
is available, e.g. a number of labels can be determined
at the same time by an experimental test procedure,
we want to take advantage of it. Previously studied
strategies for single examples have been extended to
select batches in a straightforward manner by choos-
ing the h > 1 examples that get the highest values for
the individual selection criterion.

We present an approach that is especially designed to
construct batches of new training examples and en-
forces selected examples to be diverse with respect to
their angles. Our approach has low computational re-
quirements making it feasible for large scale problems
with several thousands of examples. Compared to pre-
vious approaches, the experimental results presented
in section 5 indicate that this approach provides a
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faster method to attain a level of generalization ac-
curacy in terms of the number of labelled examples.

The remainder of this paper is structured as follows:
In the subsequent section, we recapitulate fundamental
properties of support vector machines that are relevant
in the field of active learning. In the first part of sec-
tion 3, we discuss previous approaches to active learn-
ing with support vector machines, while the second
part introduces our new selection strategy. Section 5
shows experimental results supporting the efficiency
of our strategy. Finally, we summarize our results and
discuss open research topics.

2. Support Vector Machines

We consider a standard binary classification
problem consisting of n training examples
{(x1, y1), . . . , (xn, yn)} ⊂ (X × {−1,+1})n with
X denoting a nonempty input space. Support vector
machines constitute kernel classifiers which can be
expanded in terms of the training examples (Schölkopf
& Smola, 2002):

f(x) = sign
( ∑n

i=1
αi k(xi, x)︸ ︷︷ ︸

=:g(x)

)
(1)

with α = (α1, . . . , αn) ∈ Rn and k being a kernel
function.1 If the kernel k satisfies Mercer’s condi-
tion, there exists a (nonunique) feature space F and
a map φ from the input space X to the feature space
F such that k corresponds to a dot product in F by
k(x, x′) = 〈φ(x), φ(x′)〉. Therefore, the classification
function can be rewritten as

f(x) = sign
(〈∑n

i=1
αiφ(xi)︸ ︷︷ ︸

=:wsvm

, φ(x)
〉)

= sign
(
〈wsvm, φ(x)〉

)
.

Thus, the classification boundary is a hyperplane in
feature space F with normal vector wsvm.

If we assume that the training set is linearly sepa-
rable in feature space, (hard margin) support vec-
tor machines calculate the coefficient vector α such
that the classifier is consistent with the training set
and that the margin between training examples and
the classification boundary in feature space is maxi-
mized. Since scaling with a positive constant does not

1Although we have omitted a bias term in (1) and,
therefore, consider only hyperplanes passing through the
origin in feature space F , we can nevertheless express clas-
sification functions that do not pass through the origin in
input space X by using appropriate kernel functions such
as inhomogeneous polynomial kernels.

have an effect on the classification outcome, we can
normalize wsvm by requiring that the closest exam-
ple has unit functional distance to the classification
hyperplane: mini=1,...,n |〈wsvm, φ(xi)〉| = 1 (which is
called the canonical form of the hyperplane with re-
spect to x1, . . . , xn). Calculating the coefficient vector
α amounts to solving a quadratic programming prob-
lem. Highly efficient algorithms have been developed
to accomplish this task in the special case of support
vector machines (Platt, 1999).

If the training set is not linearly separable in feature
space (e.g. noisy data), we can modify any kernel by
adding some constant ν > 0 to the diagonal elements
of the kernel matrix, k(xi, xj) + δij ν, such that the
training set becomes linearly separable (Shawe-Taylor
& Cristianini, 1999).

3. Active Learning

3.1. Selection Strategy for Single Examples

Let us consider a linearly separable problem in feature
space, i.e. we assume that there exists a linear classifier
f̃(x) = sign(〈w̃, φ(x)〉) satisfying f̃(xi) = yi for each
training example xi. The nonempty set

V := {w ∈ F | yi〈w, φ(xi)〉 > 0 for i = 1, . . . , n

and ‖w‖ = 1}

is called version space (Mitchell, 1982). V consists
of all (normalized2) weight vectors corresponding to
linear classifiers in feature space which separate the
training set without errors. We can view learning as
a search problem with the version space V containing
the solution we are looking for. Each training example
limits the volume of the version space because consis-
tent solutions can only lie on one side of the hyperplane
with normal vector φ(xi), depending on the class yi.
Therefore, V is the intersection of n halfspaces (a con-
vex polyhedral cone) with the unit sphere in feature
space F .

If all support vectors have the same length in feature
space, wsvm/||wsvm|| is a reasonable approximation of
the center of mass of V. Furthermore, the center of
mass approximates the Bayes point which is the cen-
ter of the region of intersection of all hyperplanes bi-
secting the version space into two halves of equal vol-
ume (Ruján & Marchand, 2000; Herbrich et al., 2001).
Therefore, if we select a new training example with
minimal distance to the classification hyperplane, the

2In this section we use the data-independent normaliza-
tion to unit length for theoretical analysis, while in the rest
of this paper we assume normal vectors to be in canonical
form with respect to the training set.
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Figure 1. φ(xi) is perpendicular to wsvm, in other words,
its distance to the classification hyperplane in feature space
is zero. The corresponding hyperplane hi approximately
bisects the version space into two halves of equal volume.

corresponding hyperplane with normal vector yi φ(xi)
approximately bisects the version space into two halves
of equal volume (see figure 1). Thus reducing the ini-
tial search problem to a space of half the volume. We
can approximate the new center of mass by training a
support vector machine based on the augmented train-
ing set and repeat these steps as often as necessary.
Apart from the version space model which has been
considered in (Tong & Koller, 2000) there are other
theoretical justifications for this approach (Campbell
et al., 2000; Schohn & Cohn, 2000). We refer to this
selection strategy as the distance strategy.

3.2. Selection Strategy for Batches

Consecutively selecting that unlabelled example which
is closest to the classification boundary can theoreti-
cally be well motivated for batch size h = 1 in the
version space model as stated above. This strategy
can be extended for batch sizes h > 1 in a straightfor-
ward manner by selecting those h unlabelled examples
whose functional distances to the classification hyper-
plane in feature space F are minimal (Warmuth et al.,
2002; Schohn & Cohn, 2000). However, the theoretical
motivation for each selected example to approximately
bisect the version space into two halves of equal vol-
ume does not hold in this case. Adding a batch of new
examples to the training set that is selected exclusively
based on the distances to the classification hyperplane
does not necessarily yield a much greater reduction of
the volume of the version space than simply adding
one such example in general. As illustrated in figure
2, where the enclosed angles between selected exam-
ples are small, there might only be a small additional
reduction of volume induced by the second and third

wsvm hi3

hi2

hi1

Figure 2. The angles between the hyperplanes that are in-
duced by the three examples are small. Therefore, the ad-
ditional reduction of version space resulting from examples
two and three can be rather small, despite the fact that their
distances to the classification hyperplane are zero.

example.

A straightforward approach to deal with this potential
problem is to select batches yielding minimum worst-
case version space volume (as an extension of (Tong &
Koller, 2000)). However, this method requires an ex-
haustive search in the space of all possible label assign-
ments for all batches of size h and expensive volume
estimation techniques making it unfeasible in practice.
Our new heuristic selection strategy tries to overcome
this problem by incorporating a diversity measure that
considers the angles between the induced hyperplanes.
Calculation of the (undirected) angle between two hy-
perplanes hi and hj which correspond to examples xi

and xj (with normal vectors φ(xi) and φ(xj)) can be
written in terms of the kernel function:

| cos(∠(hi, hj))| =
|〈φ(xi), φ(xj)〉|
‖φ(xi)‖‖φ(xj)‖

=
|k(xi, xj)|√

k(xi, xi)k(xj , xj)
.

To maximize the angles within a set of hyperplanes,
we employ the following incremental strategy: Let I
denote the set of indices of unlabelled examples that
have not been selected for training yet. Starting with
an initial hyperplane hi1 , we add that unlabelled ex-
ample xi2 to our set S = {xi1} ∪ {xi2} whose corre-
sponding hyperplane hi2 maximizes the angle to hi1 .
We continue by adding further examples xij

that min-
imize

max
l∈{1,...,j−1}

|k(xil
, xij )|√

k(xil
, xil

)k(xij
, kij

)︸ ︷︷ ︸
=:k∗(xil

,xij
)

. (2)

Figure 3 illustrates this strategy for the three-
dimensional case by projecting the version space,
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Figure 3. We assume that there exist unlabelled examples
hi1 , . . . , hi4 that take the global minimum of (2). There-
fore, each newly chosen example corresponds to a hyper-
plane which maximizes the minimum angle to previous hy-
perplanes.

which is a subset of the unit sphere, to the plane.
From a more abstract point of view, this strategy en-
sures that the chosen unlabelled examples are diverse
in terms of their angles to each other in feature space.

Finally, in order to combine both requirements, viz.
minimal distance to the classification hyperplane and
diversity of angles, we build the convex combination
of both measures and proceed in the following way to
construct a new training batch: Let I∗ denote the set
of indices of unlabelled examples that have not yet
been selected for training and which have a distance
to the classification hyperplane that is less than one.
The additional distance restriction ensures that hy-
perplanes corresponding to (normalized) examples in
I∗ intersect with the version space. We incrementally
construct a new training batch S:
1: S = ∅
2: repeat
3: t = argmin

i∈I∗\S

(
λ |g(xi)|+ (1− λ) max

j∈S
k∗(xi, xj)

)
4: S = S ∪ {xt}
5: until card(S) = h

(With g denoting the real-valued output of the classi-
fier f before thresholding as defined in section 2.)

The individual influence of each requirement can be
adjusted by the trade-off parameter λ. Setting λ = 1
restores the distance strategy, whereas for λ = 0 the
algorithm focuses exclusively on maximizing the angle
diversity.

This combined strategy can be implemented very effi-
ciently and is almost as fast as the distance strategy

(see next section for details). Reevaluating the second
part of the sum in line 3 in a naive way for every single
example that is added to the training batch results in
a quadratic dependence of computational time on the
size of the new batch h. It is more efficient to cache
the values of the second part for all card(I\S) unla-
belled examples and perform an update if the cosine of
the angle between an unlabelled example and a newly
added example is greater than the stored maximum.
For each newly added example, this requires three ker-
nel evaluations for all card(I\S) unlabelled examples.

To distinguish between previously labelled and still
unlabelled examples, we store a permutation I =
(i1, . . . , in) of {1, . . . , n}. The first part (i1, . . . , is−1)
denotes the indices of previously labelled examples,
while (is, . . . , in) denotes the indices of unlabelled ex-
amples. The complete pseudo code of an efficient im-
plementation of the combined strategy is given below.

4. Computational Complexity

Experimental results indicate that support vector ma-
chines typically require O(m2) time for training, where
m denotes the number of examples (Platt, 1999).
Therefore, actively learning m examples by adding h
(with 1 ≤ h < m and h|m for notational convenience)
examples to the training set before performing retrain-
ing requires an accumulated computational time of or-
der O(m3

h ), excluding the selection steps.

To select new examples, we need to calculate the dis-
tances of all unlabelled examples to the classification
hyperplane once within each iteration, i.e. for every h
examples. Denoting the initial number of unlabelled
examples by n, we obtain a total time for distance cal-
culations of order O(n m2

h ) taking into account that
the computational time for one distance calculation is
proportional to the number of labelled examples. In
addition, for each newly added example, three kernel
evaluations for all unlabelled examples are necessary
to update the angle values. This amounts to O(n m)
time in total.

Summing up training time and selection time, actively
learning m examples from a pool of n examples and
batch size h with the combined strategy requires com-
putational time of order

O
( m3

h︸︷︷︸
training

+ n
m2

h︸ ︷︷ ︸
distance

calculations

+ n m︸︷︷︸
angle

calculations

)
.

In comparison to the distance strategy, the combined
strategy requires additional computational time of or-
der O(n m).



Algorithm 1 Select training examples
input:
λ (trade-off between distance and diversity)
h (batch size)
s (start position)
I = (i1, . . . , in) (permutation of {1,. . . ,n})
g : X → R (unthresholded classification function)

output:
I (permutation of {1,. . . ,n})

distance = array[n− s + 1] of double
maxCos = array[n− s + 1] of double

for j = 0 to n− s do
distance(j) = g(xis+j )
maxCos(j) = 0

end for

for k = 0 to h− 1 do
minIndex = k
minValue = +∞
for all j = k to n− s do

if distance(j) < 1 then
value = λ distance(j) + (1− λ) maxCos(j)
if value < minValue then

minIndex = j
minValue = value

end if
end if

end for

swap(is+minIndex, is+k)

for all j = k + 1 to n− s do
cos = k∗(xis+k

, xis+j
)

if cos > maxCos(j) then
maxCos(j) = cos

end if
end for

end for

5. Experiments

5.1. Experimental Setting

To evaluate the combined selection strategy we have
conducted several experimental studies on data sets
that are publicly available from the UCI repository
of machine learning databases (Blake & Merz, 1998)
and from the Statlog collection (Michie et al., 1994).
Our experiments include the distance and the combined
strategy. Additionally, we compare both strategies to
random selection of new training batches which serves
as a base line.

Each of the data sets was randomly split 100 times
into a training set and a test set of equal size. Ac-
tive selection was restricted to the training set. The
initial training batches always consist of 8 examples
which are randomly drawn from the entire training
set and contain at least one example from class −1
and class +1. The generalization accuracy is evalu-
ated on the test set after each iteration (selection and
training) and the results are averaged over all 100 runs.
In our experiments, we have used a modified version
of bsvm (Hsu & Lin, 2002) that trains support vector
machines without bias to stay consistent with our the-
oretical motivation. All experiments were performed
on a single processor pentium 4 with 1.8 ghz and 1 gb
of memory.

h 1 2 4 8 16 32 64
time 565s 367s 210s 135s 73s 54s 34s

Figure 4. Running times (selection+training) for the com-
bined strategy on the shuttle data set for different choices
of h. The final number of training examples was 456 from
a pool of size 21750.

We chose the shuttle data set from Statlog as our
first experimental problem. It contains 43500 exam-
ples3 with 9 continuous attributes. Approximately
80% of the examples belong to class 1 of the 7 classes.
We tested all strategies on the binary classification
problem class 1 against the rest and used an RBF ker-
nel with σ = 2.

Our second data set is the waveform-5000 problem
from UCI which contains 5000 examples with 21 con-
tinuous attributes and 3 classes. The class distribution
is 1

3 for each of the 3 classes. We carried out our test
runs on the class 0 against the rest problem using an
inhomogeneous polynomial kernel of degree 5.

3The original data set contains 58000 examples that are
usually split into 43500 training and 14500 test examples.
For computational reasons, we only used the first 43500
examples.
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Figure 5. Learning curves for the distance, combined and
random selection strategy on the shuttle data set. The gen-
eralization accuracy was averaged over 100 random splits
into training and test sets. Error bars indicate one stan-
dard error of the mean. Within each iteration h = 8 new
examples are added to the training set. The combined strat-
egy outperforms both the distance and the random selection
strategy.

The krkpa7 data set from UCI contains 3196 exam-
ples with 36 discrete attributes taking either 2 or 3
different values. There are 2 different classes to pre-
dict with approximately 52% belonging to class 1 and
48% belonging to class 2. On the krkpa7 problem we
used an inhomogeneous polynomial kernel of degree 3.

The first part of our experiments has been set up to
explore the influence of the batch size on the efficiency
of the selection strategies. For all data sets described
above we fixed λ = 0.5, 1.0 and tested batch sizes
h = 8, 16, 32, 64. For λ = 1.00 the combined strategy
corresponds to the distance strategy. In the second
part, we focused on the influence of the parameter λ.
Therefore we fixed the batch size h = 16 and compared
the combined strategy for λ = 0, 0.25, 0.50, 0.75, 1.00 to
the random strategy.

5.2. Experimental Results

With fixed λ = 0.5, the estimated generalization ac-
curacy of the combined strategy is consistently supe-
rior to the distance strategy (λ = 1.00), independent
of the batch size (see figure 5 for a typical learning
curve for batch size h = 8 on the shuttle data set
and figure 6 for batch size h = 16 on the waveform-
5000 data set). Furthermore, the efficiency of both the
combined and the distance decreases if the batch size
h increases (figure 7 and figure 8 show learning curves
for the krkpa7 data set and waveform-5000 data set
for different batch sizes). With the number of training
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Figure 6. Learning curves for the distance, combined and
random selection strategy on the waveform-5000 data set.
The generalization accuracy was averaged over 100 random
splits into training and test sets. Error bars indicate one
standard error of the mean. Within each iteration h = 16
new examples are added to the training set. The combined
strategy outperforms both the distance and the random se-
lection strategy.

examples increasing we observed higher generalization
accuracy for the combined and the distance strategy
compared to the random strategy in all our experi-
ments. However, at the beginning the random strategy
tends to perform better with the turning point increas-
ing with the batch size h. For batch size h = 8, 16, the
turning point is typically reached after less than 50
training examples, whereas for h = 64 it can take sev-
eral hundred examples. Therefore, our experiments
suggest that with respect to generalization accuracy
it is preferable to choose h as small as possible, while
from a computational point of view increasing h al-
lows to control computational time. Hence, h has to
be chosen carefully as a trade-off between accuracy and
computational complexity.

In our experiments the learning curves for λ =
0.25, 0.50, 0.75 were very similar (see figure 9 for the
shuttle data set and figure 10 for the waveform-5000
data set) and consistently superior to the distance
strategy (λ = 1.00). Contrary to this, the behavior of
the combined strategy for λ = 0.00 is rather unstable
ranging from the best (for the shuttle data set) to the
worst strategy (for the waveform-5000 data set) apart
from the random strategy. Thus, except for the ex-
treme choice of λ = 0.00, the combined strategy seems
to be fairly robust with respect to λ.
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Figure 7. Learning curves for the combined selection strat-
egy (λ = 0.50) and for the random strategy on the krkpa7
data set. The generalization accuracy was averaged over
100 random splits into training and test sets. Error bars
indicate one standard error of the mean. Within each iter-
ation h = 8, 16, 32, 64 new examples are added to the train-
ing set. For smaller batch sizes h the combined strategy is
more efficient.
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Figure 8. Learning curves for the combined selection strat-
egy (λ = 0.50) and for the random strategy on the
waveform-5000 data set. The generalization accuracy was
averaged over 100 random splits into training and test sets.
Error bars indicate one standard error of the mean. Within
each iteration h = 8, 16, 32, 64 new examples are added to
the training set. For smaller batch sizes h the combined
strategy is more efficient.
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Figure 9. Learning curves for the distance and combined se-
lection strategy for λ = 0.25, 0.50, 0.75 on the shuttle data
set. The generalization accuracy was averaged over 100
random splits into training and test sets. Error bars indi-
cate one standard error of the mean. Within each iteration
h = 16 new examples are added to the training set. For all
choices of λ the combined strategy outperforms the distance
selection strategy.
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Figure 10. Learning curves for the distance and combined
selection strategy for λ = 0.25, 0.50, 0.75 on the waveform
data set. The generalization accuracy was averaged over
100 random splits into training and test sets. Error bars
indicate one standard error of the mean. Within each iter-
ation h = 16 new examples are added to the training set.
For all choices of λ the combined strategy outperforms the
distance selection strategy.



6. Conclusions and Future Research

Our experiments indicate that the combined selection
strategy is an efficient method to construct batches
of new training examples outperforming previous ap-
proaches in active learning with support vector ma-
chines. Involving only a small amount of additional
computational time, this approach provides a faster
method to attain a level of generalization accuracy
in terms of the number of labelled examples. This
makes our approach feasible for data sets with thou-
sands of examples. Although the combined selection
strategy is fairly robust with respect to the trade-off
parameter λ, the question of how to choose an opti-
mal value for λ which may depend on the progress of
the training process is yet unanswered. Beyond active
learning with support vector machines, the proposed
batch selection technique can be adapted to other base
strategies which aim at selecting examples halving the
volume of version space such as query-by-committee
(Seung et al., 1992). Particularly, it is possible to ap-
ply our combined selection strategy without modifica-
tions to Bayes point machines, which are able to more
accurately approximate the center of mass if the ver-
sion space is not symmetrical (Herbrich et al., 2001).
Preliminary experiments show very promising results.
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Büning and the anonymous reviewers for fruitful sug-
gestions. Additionally, we have to thank Chih-Len Lin
for helpful comments on the implementation.
This work was supported by the International Gradu-
ate School of Dynamic Intelligent Systems, University
of Paderborn.

References

Blake, C. L., & Merz, C. J. (1998). UCI repository
of machine learning databases. Data available at
http://www.ics.uci.edu/
∼mlearn/MLRepository.html.

Campbell, C., Cristianini, N., & Smola, A. (2000).
Query learning with large margin classifiers. Pro-
ceedings of the Seventeenth International Confer-
ence on Machine Learning, 111–118.

Herbrich, R., Graepel, T., & Campbell, C. (2001).
Bayes point machines. Journal of Machine Learning
Research, 1, 245–279.

Hsu, C.-W., & Lin, C.-J. (2002). A simple decomposi-
tion method for support vector machines. Machine

Learning, 46, 291–314. Implementation available at
http://www.csie.ntu.edu.tw/∼cjlin/bsvm/.

Michie, D., Spiegelhalter, D. J., & Taylor, C. C.
(1994). Machine learning, neural and statistical
classification. Ellis Horwood. Data available at
ftp.ncc.up.pt/pub/statlog/.

Mitchell, T. M. (1982). Generalization as search. Ar-
tificial Intelligence, 18, 203–226.

Platt, J. (1999). Fast training of support vector ma-
chines using sequential minimal optimization. Ad-
vances in Kernel Methods — Support Vector Learn-
ing (pp. 185–208). Cambridge, MA: MIT Press.

Ruján, P., & Marchand, M. (2000). Computing the
bayes kernel classifier. Advances in Large Margin
Classifiers (pp. 329–348). Cambridge, MA: MIT
Press.

Schohn, G., & Cohn, D. (2000). Less is more: Active
learning with support vector machines. Proceedings
of the Seventeenth International Conference on Ma-
chine Learning (pp. 839–846). Morgan Kaufmann,
San Francisco, CA.

Schölkopf, B., & Smola, A. J. (2002). Learning with
kernels: Support vector machines, regularization,
optimization, and beyond. Cambridge, MA: MIT
Press.

Seung, H. S., Opper, M., & Sompolinsky, H. (1992).
Query by committee. Proceedings of the Fifth Work-
shop on Computaional Learning Theory (pp. 287–
294). San Mateo, CA: Morgan Kaufmann.

Shawe-Taylor, J., & Cristianini, N. (1999). Further re-
sults on the margin distribution. Proceedings of the
twelfth annual conference on Computational learn-
ing theory (pp. 278–285). Santa Cruz, CA: ACM
Press.

Tong, S., & Koller, D. (2000). Support vector machine
active learning with applications to text classifica-
tion. Proceedings of the Seventeenth International
Conference on Machine Learning (pp. 999–1006).
Morgan Kaufmann, San Francisco, CA.

Vapnik, V. (1998). Statistical learning theory. N.Y.:
John Wiley.
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