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Abstract

The genome-wide association (GWA) study is an increasingly popular way to attempt to iden-
tify the causal variants in human disease. Duplicate genotyping (or re-genotyping) a portion of
the samples in a GWA study is common, though it is typical for these data to be ignored in sub-
sequent tests of genetic association. We demonstrate a method for including duplicate genotype
data in linear trend tests of genetic association which yields increased power. We also consider
the cost-effectiveness of collecting duplicate genotype data and find that when the relative cost of
genotyping to phenotyping and sample acquisition costs is less than or equal to the genotyping
error rate it is more powerful to duplicate genotype the entire sample instead of spending the same
money to increase the sample size. Duplicate genotyping is particularly cost-effective when SNP
minor allele frequencies are low. Practical advice for the implementation of duplicate genotyp-
ing is provided. Free software is provided to compute asymptotic and permutation based tests
of association using duplicate genotype data as well as to aid in the duplicate genotyping design
decision.
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Introduction 
 
Genetic tests of association often utilize case-control study designs in order to 
identify possible genetic factors contributing to the etiology of a complex disease 
(Amos 2007, Sasieni 1997). Examining the whole genome simultaneously 
through genome-wide association (GWA) studies has become an increasingly 
popular and effective method of determining genetic association.  While high 
costs of GWA studies are still a limiting factor, they continue to become more 
economically plausible with advances in technology that identify single 
nucleotide polymorphism (SNP) genotypes at decreasing costs (Amos 2007).  

Despite these technological advances, the misclassification of genotypes 
by SNP technology (genotyping errors) remains a persistent issue.  Genotyping 
error rates are low in many instances (~0.1-0.2% or lower; Saunders et al. 2007, 
Tintle et al. 2005, Fridley et al. 2008, Heid et al. 2008, Pompanon et al. 2005).  
However, these error rates are not uniform across all SNPs and some SNPs have 
measurably larger genotyping error rates (Pompanon et al. 2005).  The impact of 
genotyping errors on case-control tests of genotype-phenotype association is well 
known.  Specifically, non-differential errors (genotyping error rates are the same 
regardless of phenotype) have no effect on type I error, but do cause inflated type 
II error (i.e. reduce power) (Gordon & Ott 2001, Gordon et al. 2002, Ahn et al. 
2007). Genotyping errors are particularly detrimental to power when the minor 
SNP allele frequency is low (Gordon et al. 2002, Ahn et al. 2007, Kang et al. 
2004, Gordon & Finch 2005). 

In addition to laboratory and technology-based approaches to reducing 
genotyping errors, which seek to address errors at their source, some have 
proposed the consideration of genotyping errors when designing the study.  For 
example, double sampling (Gordon et al. 2004, Gordon et al. 2007) uses a perfect 
genotype mechanism (like gene sequencing) on a subset of the sample.  Another 
recent paper discusses how to incorporate genotyping errors when optimizing a 
two-stage design (Zuo et al. 2008).  A third approach involves replicate 
genotyping (Fridley et al. 2008, Rice & Holmans 2003, Tintle et al. 2007, Lai et 
al. 2007, Bonin et al. 2004), which means genotyping a random subset of 
individuals in the sample two or more times, instead of only once. 

Duplicate genotyping has been proposed by many for quality control 
reasons (e.g. Rice & Holmans 2003, Bonin et al. 2004) and it is now a fairly 
common practice (Tintle et al. 2005, Fridley et al. 2008).  Traditionally, duplicate 
genotype data were ignored in the subsequent statistical analyses.  The data were 
simply used as an initial assessment of data quality.  Recently, however, a method 
was proposed to incorporate duplicate genotype data in standard 2

2χ  tests of 
genotype-phenotype association on 2x3 tables (Tintle et al. 2007).   
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Subsequently, Tintle et al. (to appear) demonstrated the cost-effectiveness 
of duplicate genotyping (i.e. more power) for use in 2

2χ  tests when genotyping 
costs are low relative to phenotyping and sample acquisition costs.  It was found 
that, as a general rule, duplicate genotyping the entire sample increases power 
when relative genotype to phenotype/sample acquisition costs don’t exceed the 
genotyping error rate.  Additionally, when the minor SNP allele frequency is low, 
duplicate genotyping the entire sample can be cost-effective even when relative 
costs are greater than the genotyping error rate.   

The linear trend test of association (LTT), first proposed by Cochran 
(1954) and Armitage (1955), has been suggested by many  (Sasieni 1997, Slager 
& Schaid 2001, Freidlin et al. 2002, Zheng et al. 2003, Zheng & Gastwirth 2006) 
as a method for analyzing SNP genotype data since it can incorporate information 
about the disease mode of inheritance, and thus increase statistical power by 
narrowing the focus of the alternative hypothesis.  Recently, Ahn et al. (2007) 
demonstrated the impact of genotyping errors on the LTT.  Also, Gordon et al. 
(2007) demonstrated how to use the LTT when double sample data are collected.  
In this paper, we demonstrate how to include duplicate genotype data in a LTT.  
We also explore the utility of including duplicate genotype data in subsequent 
tests of association if they have been collected for quality control reasons.  Lastly, 
we evaluate the cost-effectiveness of designing a study to collect duplicate 
genotype data for analysis with the LTT. 
 
Methods 
 
Sampling Strategy 
 
We consider a sampling strategy where a fraction of the entire sample, r 
( ]1,0[∈r ), is randomly selected to be genotyped exactly twice, while the 
remaining fraction of the sample, (1-r), is genotyped exactly once.  We assume 
that all samples have been phenotyped as either a “case” or a “control.” 
 
Genotyping Error Assumptions 
 

1. Let εi,j be the probability of an individual of genotype i being classified as 
genotype j. Following the error model of Douglas et al. (2002), we assume 
that ε1,2 = ε2,1 = ε2,3 = ε3,2 and ε1,3 = ε3,1 = 0. 

 
2. We assume non-differential genotyping errors, meaning that the 

probability of genotyping errors is the same for each individual in the 
sample, regardless of case or control status.   
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3. We assume that genotyping error probabilities are independent and remain 
constant from the first to second genotyping. Specifically, we mean that 
the probability of a genotyping error does not change for an individual’s 
second genotyping, and is not dependent upon whether they were 
incorrectly genotyped the first time. 

 
Notation 
 

=mδ the frequency of allele m at the SNP marker.  In this paper we assume the 
SNP is bi-allelic, and, thus, m=U,V.  We also assume that the SNP marker 
allele associated with the disease is allele 2. 

 
=nζ  the frequency of risk allele n at the disease locus. In this paper we assume 

the disease locus is bi-allelic and we denote the risk allele as B and the non-
risk allele as A.  Thus, n=A,B. 

 
=mnh  the frequency of the mn haplotype; that is, the frequency of having both the 

m allele at the SNP marker and risk allele n at the disease locus. Thus, 

∑ ∑
= =

=
VUm BAn

mnh
, ,

1. 

 
=D  the unstandardized measure of linkage disequilibrium between the SNP 

marker, V, and the disease risk allele, B.  Thus,  
 BVVBhD ζδ−= . 
 

=2r  the measure of the correlation between the SNP marker and the disease risk 
allele ( )BAVUD ζζδδ2= . 

 
( ) == 22 max rrρ  a measure of the correlation of SNP allele V and disease risk 

allele B as a fraction of their maximum possible correlation. As pointed out 
by Amos (2007), max(r2)<1 unless BV ζδ = . We also note that for any 
values of Vδ  and Bζ , max(r2) is attained when 1'=D , where 

( )AVBUDD ζδζδ ,min'= . 
 
φ = the disease prevalence in the population. 
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=
21 jjf  the penetrance of the disease given genotype j1j2 at the disease locus. 

Thus, BBf  is the probability someone who is BB at the disease locus 
(homozygote for the risk allele) has the disease, ABf  is the probability 
someone who is AB at the disease locus (heterozygote for the risk allele) has 
the disease, and AAf  is the probability someone who is AA at the disease 
locus (homozygote for the non-risk allele) has the disease. 

 
=γ  a general relative risk of disease parameter which is used to compute 

genotype specific relative risks ( ABBB γγ  and ) in ways that are dependent 
upon the mode of inheritance of the disease (dominant, additive, recessive).  

 
=ip the probability of genotype i in the cases, i=1,2,3 

 
=iq the probability of genotype i in the controls, i=1,2,3 

 
=*

ip the probability of observing genotype i in the cases assuming there are 
genotyping errors, and the sample is genotyped exactly once i=1,2,3 

 
=*

iq the probability of observing genotype i in the controls assuming there are 
genotyping errors, and the sample is genotyped exactly once i=1,2,3 

 
=*

ijp the probability of observing genotype i once and genotype j once in the 
cases assuming there are genotyping errors, and the sample is genotyped 
exactly twice i=1,2,3, j=1,2,3 and i ≤ j. 

 
=*

ijq the probability of observing genotype i once and genotype j once in the 
controls assuming there are genotyping errors, and the sample is genotyped 
exactly twice i=1,2, 3, j=1,2,3 and i ≤ j. 

 
T = the total number of cases 
 
S = the total number of controls 
 
N = T + S = the total sample size 
 
k = S/T = ratio of controls to cases 
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c = the relative cost of genotyping to phenotyping/sample acquisition 
 
Contingency Tables for a Study with Duplicate Genotype Data 
 
When a fraction (r) of the sample has been duplicate genotyped, and the SNP 
marker under consideration has three possible genotypes (1=UU, 2=UV and 
3=VV), data can be summarized into two tables, as shown in Tables 1a and 1b.  
We assume that an equal fraction of both cases and controls has been duplicate 
genotyped. 
 
Table 1a. Single genotyped data 
Genotype 1 2 3 Total 
Cases t1 t2 t3 T(1-r) 
Controls s1 s2 s3 S(1-r) 
Total n1 n2 n3 N(1-r) 

 
Table 1b. Duplicate genotyped data 
Genotype (11) (12) (13) (22) (23) (33) Total 

Cases t11 t12 t13 t22 t23 t33 Tr 
Controls s11 s12 s13 s22 s23 s33 Sr 
Total n11 n12 n13 n22 n23 n33 Nr 

 
 Using a weighting strategy for duplicate genotype data presented by Tintle 
et al. (2007), Tables 1a and 1b can be combined into a single table (Table 1c) as 
follows:   

)(5.0)(5.0' ikijiiii ttttt +++=       (1) 
where ji ≠  and ki ≠ , with a similar equation for the controls.  As in shown in 
Tintle et al. (2007), using equal weights (0.5) for the inconsistently identified 
individuals is optimal. 
 
Table 1c. Combined data contingency table 
Genotype 1 2 3 Total 
Cases t'1 t'2 t'3 T 
Controls s'1 s'2 s'3 S 
Total n'1 n'2 n'3 N 
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Disease Modes of Inheritance 
 
We consider three disease modes of inheritance (MOI): Dominant 
( )γγγ == ABBB , Additive ( )12  , −== γγγγ BBAB , and Recessive ( γγ =BB , 

1=ABγ ), where BBγ = the relative risk of disease for a participant with two copies 
of the risk allele ( AABB ff ) and ABγ  = the relative risk of disease for a participant 
with one copy of the risk allele ( AAAB ff ). Note that when 1== ABBB γγ then the 
null hypothesis of no association between genotype and disease is true. 
 
Linear Trend Test 
 
As noted earlier, the linear trend test (LTT) is a powerful choice for the analysis 
of case-control studies of genetic association because of the ability to include 
information about the disease mode of inheritance (Sasieni 1997, Slager & Schaid 
2001, Zheng & Gastwirth 2006).  The traditional LTT statistic is 

U

U
σ where U is 

a statistic based on the disease mode of inheritance and the observed cell counts in 
the 2x3 contingency table (e.g. Table 1a), and Uσ is estimated based on the 
observed cell counts in the same table.  In this paper, we extend the traditional 
version of the test to be able to include duplicate genotype data, proposing the 
LTTd (see Results:Finding the LTT statistic).  In short, the LTTd uses the strategy 
proposed by Tintle et al. (2007) to place individuals who have been inconsistently 
duplicate genotyped to each of the two genotypes to which they have been 
genotyped (see Equation (1)).  This strategy, however, means that the resulting 
contingency table of phenotype-genotype (Table 1c) no longer has a multinomial 
distribution due to increased covariance between cells, requiring the introduction 
of the LTTd.  

In developing the LTTd, we also address the issue of bias in the Uσ  
estimate.  Freidlin et al. (2002) demonstrated that the method of estimating Uσ  as 
considered by Slager and Schaid (2001) was biased and thus provided invalid 
results.  Zheng and Gastwirth (2006) consider two alternatives to the Slager and 
Schaid approach which they call “case-control” (cc) and “control” (c).   The 
Slager and Schaid method estimates Uσ  assuming that the null hypothesis of no 
genotype-phenotype association is true.  The cc method estimates Uσ without the 
restriction of the null hypothesis being true, whereas the c method is similar but 
only uses the sample of controls.  Zheng and Gastwirth find, and we confirmed in 
our own attempts to implement the method, that the c method increases the type I 
error in some cases (results not shown).  Thus, we choose to base our results only 
on the cc method.  
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Simulation Study 
 
To confirm that the empirical distribution of the LTTd (Derived later, see Results: 
Finding the LTTd statistic) follows the theoretical asymptotic distribution ( 2

1χ ) for 
practical sample sizes we conducted a simulation study (see Table 2 for 
parameters and values used). 
 
Table 2. Parameter values for the simulation study 

Parameter Values 
Vδ  0.05, 0.20, 0.50 

Bζ  0.05, 0.20, 0.50 
ρ  0.80, 1.0 
φ  0.025, 0.10 
ε  0.001, 0.01, 0.03 
γ 1.00, 1.25, 2.00 
r 0, 0.5, 1.0 
N 1000, 5000 
k 1.5, 2/3, 1.0 
Disease MOI Dominant, Additive, Recessive 

 
 We examined all possible combinations of parameter values and so a total 
of 17,496 settings were evaluated.  The simulation study was conducted as 
follows: 
 
Step 1.  For given values of Vδ , Bζ , ρ, φ, γ, and the disease MOI the true 
genotype probabilities (pi and qi, i=1,2,3) were computed.  See Ahn et al. (2007) 
for details. 
 
Step 2.  The true genotype probabilities (pi and qi, i=1,2,3)  were then adjusted to 
reflect the genotype error rate (ε), yielding *

ijp , *
ijq , *

ip  and *
iq .  See Tintle et al. 

(2007) for details. 
 
Step 3.  For given values of k, r, and n, and the observed single and duplicate 
genotyping probabilities ( *

ijp , *
ijq , *

ip  and *
iq ) found in step 2, entries into Tables 

1a and 1b were randomly simulated.  For each combination of parameter values in 
Table 2, 2,000 random tables were simulated.  In cases where γ=1 (null 
hypothesis is true), the type I error rate was analyzed by comparing the nominal 
significant level α (we examined 0.05, 0.005, and 0.0002) with the empirical α 
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level.  In cases where γ=1.25 or γ=2.00 (i.e. the alternative hypothesis is true), the 
empirical power was compared to the theoretical power (see equation (A3) in the 
Appendix). 
 
Cost-effectiveness Computational Study 
 
We completed a computational study comparing theoretical power values for 
different values of r (duplicate genotyping percentage), c (relative genotyping 
costs) and other parameters.  Table 3 shows the settings used for this study.  We 
examined all 10,368 possible combinations of parameter values based on Table 3.   
 
Table 3.  Parameters and values for the computational study 
Parameter Values 

Vδ  0.05, 0.20, 0.50 

Bζ  0.05, 0.20, 0.50 
ρ  0.80, 1.0 
φ  0.025, 0.10 
ε  0.001, 0.01, 0.03 
γ  1.25, 2.00 
r 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 
c 0, 0.001,0.005,0.01,0.02,0.05,0.10,0.50 
Power if there were no 
genotyping errors and no 
duplicates were collected 

0.80, 0.95 

k 1.5, 2/3, 1.0 
Disease MOI Dominant, Additive, Recessive 

 
 The computational study was carried out as follows: 
 
Step 1.  Assuming there are no genotyping errors, for given values of Vδ , Bζ , ρ, 
φ, γ and the disease type, the genotype probabilities were computed as if no 
duplicates were obtained.  These values were then used to find the sample size 
needed (N0) to yield the specified power level (80% or 95%). 
 
Step 2.  Find the budget (B) needed to conduct the study if no duplicates as: 
B=(1+c)N0, where c is the genotyping cost per person relative to 
phenotyping/acquisition cost. 
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Step 3.  Assuming there is duplicate genotyping (r>0), the sample size that can be 

obtained for the same budget, B, is found as 
)1(1 rc

BNr ++
= .  Nr can then be 

used in the power computation formula (A3) in the Appendix, to find the power 
using duplicate genotyping for that sample size.  Then we find the optimal value 
of r that yields the largest power of the test.  All computations used α=0.0002. 
 
Results 
 
Finding the LTTd Statistic 
 

Zheng and Gastwirth (2006) present a test statistic for the LTT as
V

UZ = , where 

∑ ⎟
⎠
⎞

⎜
⎝
⎛ −=

i
iii s

N
Tt

N
SxU  and V is an estimate of the variance of U.  Tintle et al. 

(2007) showed that by using the allocation strategy (Equation (1)) Tables 1a and 
1c estimate the same quantities.  Thus, the numerator of the Zheng and Gastwirth 
Z statistic becomes: 

∑ ⎟
⎠
⎞

⎜
⎝
⎛ −=

i
iiid s

N
Tt

N
SxU ''      (2) 

According to the Central Limit Theorem, Table 1c has an approximately 
multivariate normal distribution (see also Tintle et al. 2007).  The expected value 
of Ud under the null hypothesis (p*

i=q*
i for all i) is zero (see Equation (A1) in the 

Appendix).  Thus,  

)( d

d
d UVar

U
LTT =       (3) 

has a standard normal distribution and, therefore, (LTTd)2 has a 2
1χ distribution.  

Following the results of Zheng and Gastwirth (2006) the expression for Var(Ud) 

follows from (A2; Appendix), using 
s

i
i

s

i
i S

s
q

R
r

p == ** ,  and 
d

ij
ij

d

ij
ij S

s
q

R
r

p == ** , .  

Equation (A2) also accounts for additional covariance between cells in Table 1c 
from using the allocation strategy.   
 
Simulation Results for LTTd  
 
As described earlier (Methods: Simulation study), a simulation study was 
conducted to ensure that nominal type I and type II error rates obtained using the 
asymptotic theory of the LTTd were maintained in practice.  First we consider the 
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distribution of LTTd if the null hypothesis is true ( 1=γ ) and then the distribution 
of LTTd if the alternative hypothesis is true ( 1≠γ ). 
 
Simulation Results for LTTd under the Null Hypothesis  
 
For each combination of parameter values, a 99% confidence interval was found 
for the empirical α.  For both the dominant and additive models, nominal type I 
error rates were maintained empirically regardless of sample size since an 
expected number of simulation settings had a 99% confidence interval on the 
empirical α that did not contain the nominal α (1.2% and 1.2% for dominant and 
additive, respectively, for α=0.05, 1.2% and 1.3% for the α=0.005 level and 1.1% 
and 0.7% for the α=0.0002 level). Nominal type I error rates were maintained 
empirically for the recessive model as long as the minimum cell count in Table 1c 
was at least 5 (detailed results not shown). 
 
Simulation Results for LTTd under the Alternative Hypothesis  
 
The LTTd statistic generally gives comparable theoretical and empirical power 
values across all simulation settings for the additive and dominant models as long 
as expected cell counts in Table 1c are at least 5.  For each combination of 
parameter values, a 99% confidence interval was placed on the empirical power.  
For both the dominant and additive models when the minimum cell count in Table 
3 was at least 5, an expected number of simulation settings had a 99% confidence 
interval on the empirical power that did not contain the theoretical power (0.9% 
and 1.2% for dominant and additive, respectively, for α=0.05, 1.3% and 0.9% for 
α=0.005 level and 1.7% and 1.3% for the α=0.0002 level).  When the minimum 
cell count was less than 5 in the dominant and additive models, the empirical 
power was often still very close to theoretical power (results not shown).  The 
recessive model with small Vδ  showed significant differences between theoretical 
and empirical power (detailed results not shown), though theoretical power and 
empirical power were similar for larger values of Vδ . 
 
Recommendations for Use of a Permutation Test 
 
Based on the simulation study, differences in theoretical and empirical type I and 
type II errors are possible when the recessive disease model is used, in cases 
where at least one cell count in the grouped table is less than 5, or in cases where 
the total sample is less than 1,000 individuals.  In these cases we recommend 
estimating p-values for the LTTd by permuting phenotype status instead of using 
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the asymptotic theory provided above.  A permutation based p-value is available 
in our software (see Results: Software). 
 
Example 
 
In Tintle et al. (2007), duplicate genotype data from a case-control study on bi-
polar disorder was presented for a SNP with inconsistently genotyped individuals 
where all individuals were duplicate genotyped.  We present this data here (Table 
4) in the form of Table 1b using a linear trend test for analysis to demonstrate the 
utility of the methods just developed.   
 
Table 4. Duplicate genotype data from a study of bi-polar disorder 
Genotype (11) (12) (13) (22) (23) (33) Total 

Cases 271 2 0 371 0 104 748 
Controls 306 0 0 333 0 86 725 
Total 577 2 0 704 0 190 1473 

 
 Tintle et al. (2007) report a p-value of 0.061 from the 2

2χ  test ignoring 
inconsistently identified individuals and 0.064 from the test including 
inconsistencies.  Using our software and assuming an additive mode of 
inheritance, the linear trend test just presented yields a p-value is 0.0230 ignoring 
inconsistents, 0.0241 including inconsistents using the method shown above and 
0.0245 using a permutation test with 2000 permutations. 
 
Cost-effectiveness of Duplicate Genotyping Using Previously Collected Data 
 
Initially, we consider an instance of including previously collected quality control 
data in the test of association.  In every case examined, the power of the LTTd is 
higher when the duplicate genotype data is included as compared to when it is 
not.  In other words, it is better to include the duplicate genotype data in 
subsequent tests of association then to ignore inconsistencies and treat the data as 
missing.  This result is consistent with the results of Tintle et al. (2007) for the 2

2χ  
test of association.   
 
Evaluating the Cost-effectiveness of Collecting Duplicate Genotype Data 
 
The most important case, however, is when c>0.  That is, when we view the 
collection of duplicate genotype data as an a priori design decision, and thus must 
account for the cost of collecting the duplicates for a fraction, r, of the sample.   
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Given a fixed budget, in 49.2% of cases examined (see Table 3) where 
c>0, duplicate genotyping the entire sample (r=1) was found to be the most cost-
effective design strategy (yields the highest power).  In all remaining cases, r=0 
provided the highest power.  Thus, the optimal strategy is always “all or nothing.” 

In order to characterize situations where duplicate genotyping will be cost-
effective, logistic regression models were used with all parameters predicting 
whether or not duplicate genotyping the entire sample was the most cost-effective 
design.  Three parameters ( Vδ , c and ε) had the strongest relationship with cost-
effectiveness.  Relative cost, c, had the strongest relationship (Wald χ2=1424.2, 
p<0.0001),   genotyping error rate ε also had a very strong relationship (Wald 
χ2=1259.2, p<0.0001) and minor allele frequency ( Vδ ) was also strongly related 
(Wald χ2=465.6, p<0.0001).  As minor allele frequency ( Vδ ) declined, costs (c) 
declined, or genotyping error rate (ε) increased, duplicate genotyping the entire 
sample was more likely to be the optimal design decision.   

Table 5 shows the percentage of cases examined in the computational 
study where duplicate genotyping the entire sample is the most effective design 
decision for different values of c (relative genotyping costs) and ε (genotyping 
error rate). 
 
Table 5 Percent of cases where genotyping is cost-effective 
 Genotyping error rate (ε) 
Relative cost (c) 0.001 0.01 0.03 
0.001 100% 100% 100% 
0.005 20% 100% 100% 
0.01 0% 100% 100% 
0.02 0% 76% 100% 
0.05 0% 21% 87% 
0.10 0% 0% 29% 
0.50 0% 0% 0% 

 
Table 5 demonstrates a general rule of thumb: duplicate genotyping the 

entire sample will always be cost-effective (regardless of Vδ ) if c ≤ ε.  Table 5 
also demonstrates that duplicate genotyping is sometimes cost-effective when 
c>ε.  While details are not shown in the table, when Vδ  is small, duplicate 
genotyping can be cost-effective even when c>ε. 
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Example Power Values 
 
Table 6 provides power values for a specific example.  Specifically, we present 
power under different values of Vδ , ε, r and c for a disease with a prevalence of 
2.5%, disease allele frequency of 5%, equal number of cases and controls (k=1), 
and a SNP marker and disease allele that are in perfect linkage disequilibrium 
( ρ =1). 
 
Table 6. Example of comparative power values 

Power if entire sample is duplicate 
genotyped (r=1) 

Marker 
Frequency 

( Vδ ) 

Genotyping 
error rate (ε) 

Power if no 
duplicates 

(r=0) c=0.001 c=0.01 c=0.1 c=0.5 
Column I Column II Column III Column IV Column 

V 
Column 

VI 
Column 

VII 
0.001 79.8 79.8 79.3 74.0 59.0 
0.01 78.0 79.0 78.4 73.1 58.0 

0.50 

0.03 73.9 76.9 76.3 70.8 55.6 
       

0.001 79.7 79.8 79.2 74.0 59.0 
0.01 77.3 78.6 78.0 72.7 57.6 

0.20 

0.03 71.7 75.8 75.2 69.6 54.4 
       

0.001 79.3 79.6 79.0 73.8 58.7 
0.01 73.1 76.5 75.9 70.4 55.1 

0.05 

0.03 59.4 69.4 68.7 62.9 47.7 
Bold indicates that duplicate genotyping is cost-effective (power with r=1 has 
larger power than with r=0).  Note that in all cases, if there were no 
misclassification errors and there was no duplicate genotyping (r=0), power 
would be 80%.  The computations are based on disease allele frequency of 5%, 
additive mode of inheritance, a SNP marker and disease allele in perfect LD, 
1.25x increased risk of disease if you have the disease allele, 2.5% of the 
population with the disease, an equal number of cases and controls (k=1) and 
α=0.0002. 
 

The sample size needed to yield 80% power was calculated assuming 
there was no genotyping error.  Column III shows the power for that sample size, 
after taking the genotyping error into account.  When the marker frequency is low 
and/or the genotyping error rate is larger Column III demonstrates that power can 
be significantly impacted by genotyping errors.  Columns IV-VII then reduce the 
sample size to maintain the budget reflecting the additional cost of collecting 
duplicate genotype data on all samples at different genotype costs (c).  As c 
decreases, ε increases and Vδ  decreases, Columns IV-VIII demonstrate that 
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duplicate genotyping becomes more cost-effective.  We note that in all cases 
duplicate genotyping does not meet or exceed the error-free power of 80% 
(detailed results not shown) however duplicate genotyping can successfully 
mediate some of the power loss due to genotyping errors.  

Note that the power values in Table 6 are from a specific example.  Please 
use our software (Results: Software) to investigate power at values specific to 
your research situation while keeping in mind the rule of thumb presented in 
Table 5. 
 
Recommendations for Use 
 
In practice, duplicate genotyping should be considered when relative genotype to 
phenotype/sample acquisition costs do not exceed the expected SNP genotyping 
error rate.  A more detailed treatment of practical considerations when using 
duplicate genotyping is provided in Tintle et al. (to appear).  We summarize three 
main considerations here. 

First, calculations provided in this manuscript consider only a single SNP.  
However, in practice, the decision to duplicate genotype will need to be made for 
an entire set of SNPs (e.g. all of the SNPs on a chip).  In these cases using the 
same rule of thumb (duplicate genotype if c ≤ ε) is appropriate where the ε used is 
the minimum error rate expected for any single SNP. 

Second, if there is concern that some samples may be of low quality and, 
thus, have higher genotyping error rates than other samples (a violation of 
genotyping error assumption #2), the error rate, ε, used in the c ≤ ε rule of thumb 
should be the minimum expected ε for the high quality samples.  Note, however, 
that we are still assuming non-differential errors in this case.  Differential errors 
may increase the type I error rate, and are not considered in this manuscript. 

Third, GWA studies are typically conducted in two-stages where all 
markers are genotyped on a sample of individuals, and then a subset of the 
markers is genotyped on a sample of additional individuals.  When considering 
the use of duplicate genotyping in two-stage studies, the decision on the use of 
duplicate genotyping should be made separately at each stage since the relative 
cost of genotyping to phenotyping will be different at each stage. 
 
Software 
 
To facilitate the utilization of the methods discussed in this paper, we provide two 
companion pieces of software for this work.  The first computes the LTTd statistic 
and provides an asymptotic and permutation p-value. The second provides power 
computations for different genotyping costs, allele frequencies and error rates to 
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assist in the duplicate genotyping design decision.  Software is available at 
http://math.hope.edu/tintle/duplicate.html (source code written in R). 
 
Conclusions 
 
This work demonstrates how duplicate genotype data can be included in a linear 
trend test (LTT) of genetic association.  Duplicate genotype data are included in 
the LTT through a weighting strategy and a subsequent adjustment of the variance 
of the LTT statistic yielding the LTTd.  We demonstrate via simulation that the 
asymptotic null and alternative distributions of the LTTd statistic are obtained with 
reasonably small sample sizes in most cases.  Both asymptotic and permutation 
test p-values are available in the free companion software.  

We demonstrate that in the case of no duplicate genotyping costs (e.g. the 
data has already been collected) including the duplicate data in the LTTd always 
increases statistical power.  This confirms a similar result in Tintle et al. (2007).    

We also consider the cost-effectiveness of designing a study to collect 
duplicate genotype data, and find that when the relative cost of genotyping to 
phenotype/sample acquisition costs (c) is less than or equal to the genotyping 
error rate (ε), collecting duplicate genotype data on the entire sample is cost-
effective.  Further, we find that the optimal amount of duplicate genotyping, in 
these cases, will always involve duplicate genotyping the entire sample.  In a two-
stage GWA study for a complex disease, if a relatively small set of SNPs are 
being followed up at stage 2 and it will be costly to enroll more subjects, duplicate 
genotyping may be cost-effective since relative genotyping to 
phenotyping/acquisition costs c will be low.   

Since the rule-of-thumb just described is conservative it is important to 
note that duplicate genotyping will be cost-effective in many situations when c>ε.  
This rule was provided to allow researchers to quickly assess the cost-
effectiveness of duplicate genotyping on a large scale. It is quite likely that, even 
if c>ε, duplicate genotyping may provide moderate power gains for SNPs with 
low minor SNP allele frequency.  Our software should be used to determine cost-
effectiveness of duplicate genotyping for specific experimental conditions. 

We assume that genotyping errors are independent from the first to second 
genotyping (genotyping error assumption #3) and that genotyping error rates are 
non-differential (genotyping error assumption #2).  Future work is needed to 
extend results to consider differential genotyping errors when duplicate 
genotyping.  Further reading on sources of genotyping error and their impact on 
analyses can be found in Bonin et al. (2004) and Gordon and Finch (2005). We 
also assume that duplicate genotyping is applied to a random subsample of size 
nr.  Further work is necessary to explore optimizing the value of r depending 
upon phenotype or initial genotype classification. 
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When collected, duplicate genotype data should always be included in the 
subsequent test of association and in many realistic cases duplicate genotype data 
should be collected on the entire sample.  
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Below we show how to find )'( 1tVar  and )','( 21 ttCov , other terms can be found 
similarly.
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Where we make the following substitutions in [ ]21 '' ttE  as appropriate: 
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Power of the LTTd 
 
Following the results of Zheng and Gastwirth (Zheng & Gastwirth 2006), 
asymptotic power for the LTTd can be computed using the following formula 
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Where σd= )( dUVar and μd=E(Ud). 
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