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Incorporating functional priors improves polygenic
prediction accuracy in UK Biobank and 23andMe
data sets
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Adam Auton7, 23andMe Research Team* & Alkes L. Price 1,2,4✉

Polygenic risk prediction is a widely investigated topic because of its promising clinical

applications. Genetic variants in functional regions of the genome are enriched for complex

trait heritability. Here, we introduce a method for polygenic prediction, LDpred-funct, that

leverages trait-specific functional priors to increase prediction accuracy. We fit priors using

the recently developed baseline-LD model, including coding, conserved, regulatory, and LD-

related annotations. We analytically estimate posterior mean causal effect sizes and then use

cross-validation to regularize these estimates, improving prediction accuracy for sparse

architectures. We applied LDpred-funct to predict 21 highly heritable traits in the UK Biobank

(avg N = 373 K as training data). LDpred-funct attained a +4.6% relative improvement in

average prediction accuracy (avg prediction R2 = 0.144; highest R2 = 0.413 for height)

compared to SBayesR (the best method that does not incorporate functional information). For

height, meta-analyzing training data from UK Biobank and 23andMe cohorts (N = 1107 K)

increased prediction R2 to 0.431. Our results show that incorporating functional priors

improves polygenic prediction accuracy, consistent with the functional architecture of

complex traits.
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G
enetic variants in functional regions of the genome are
enriched for complex trait heritability1–6. In this study, we
aim to leverage functional priors to improve polygenic

prediction7,8. Several studies have shown that incorporating prior
distributions on causal effect sizes can improve prediction
accuracy9–16, compared to standard Best Linear Unbiased Pre-
diction (BLUP) or Pruning + Thresholding methods17–22. Recent
efforts to incorporate functional information have produced
promising results23,24 (see P + T-funct-LASSO and AnnoPred
results in all main figures below), but maybe limited by dichot-
omizing between functional and non-functional variants23 or
restricting their analyses to genotyped variants24.

Here, we introduce a method, LDpred-funct, for leveraging
trait-specific functional priors to increase polygenic prediction
accuracy. We fit functional priors using our recently developed
baseline-LD model25, which includes coding, conserved, reg-
ulatory, and LD-related annotations. LDpred-funct first analyti-
cally estimates posterior mean causal effect sizes, accounting for
functional priors and LD between variants. LDpred-funct then
uses cross-validation within validation samples to regularize
causal effect size estimates in bins of different magnitude,
improving prediction accuracy for sparse architectures. We show
that LDpred-funct attains higher polygenic prediction accuracy
than other methods in simulations with real genotypes, analyses
of 21 highly heritable UK Biobank traits, and meta-analyses of
height using training data from UK Biobank and 23andMe
cohorts.

Results
Simulations. We performed simulations using real genotypes
from the UK Biobank interim release and simulated phenotypes
(see Methods). We simulated quantitative phenotypes with SNP-

heritability h2g ¼ 0:5, using 476,613 imputed SNPs from chro-

mosome 1. We selected either 2000 or 5000 variants to be causal;
we refer to these as sparse and polygenic architectures, respec-
tively. We sampled normalized causal effect sizes from normal
distributions with variances based on expected causal per-SNP
heritabilities under the baseline-LD model25, fit using stratified
LD score regression (S-LDSC)5,25 applied to height summary
statistics from British-ancestry samples from the UK Biobank
interim release. We randomly selected 10,000, 20,000, or 50,000
unrelated British-ancestry samples as training samples, and we
used 7585 unrelated samples of non-British European ancestry as
validation samples. By restricting simulations to chromosome 1
(≈1/10 of SNPs), we can extrapolate results to larger sample sizes
(≈10× larger; see Application to 21 UK Biobank traits), analogous
to the previous work16.

We compared prediction accuracies (R2) for seven main
methods: P + T18,19, LDpred16, SBayesR9, P + T-funct-LASSO23,
AnnoPred24, LDpred-funct-inf and LDpred-funct (see Methods).
Results are reported in Fig. 1 (main simulations) and Supple-
mentary Fig. 1 (additional values of the number of causal
variants); numerical results are reported in Supplementary
Tables 1 and 2. Among methods that do not use functional
information, the prediction accuracy of LDpred was higher than
P + T (particularly for the polygenic architecture), consistent
with previous work8,16 (see Supplementary Tables 3 and 4 for
optimal tuning parameters; surprisingly, at = 50 K training
samples, LDpred is optimized by assuming that 100% of SNPs
are causal). SBayesR attained a substantial improvement vs.
LDpred at N= 10 K training samples (+19% relative improve-
ment for sparse architecture and +8.6% relative improvement for
polygenic architecture) but attained prediction R2 close to 0 at
larger sample sizes (N= 20 K and N= 50 K), perhaps because the

algorithm failed to converge (Supplementary Table 1; results not
included in Fig. 1).

Incorporating functional information via LDpred-funct-inf (a
method that does not model sparsity) produced improvements
that varied with sample size (+4.7% relative improvement for
sparse architecture and +4.8% relative improvement for poly-
genic architecture at N= 50 K training samples, compared to
LDpred; smaller improvements at smaller sample sizes). These
results are consistent with the fact that LDpred is known to be
sensitive to model assumptions at large sample sizes16. Account-
ing for sparsity using LDpred-funct further improved prediction
accuracy, particularly for the sparse architecture (+7.3% relative
improvement for sparse architecture and +5.4% relative
improvement for polygenic architecture at N= 50 K training
samples, compared to LDpred; smaller improvements at smaller
sample sizes). LDpred-funct attained substantially higher predic-
tion accuracy than P + T-funct-LASSO in most settings (+11%
relative improvement for sparse architecture and +18% relative
improvement for polygenic architecture at N= 50 K training
samples; smaller improvements at smaller sample sizes). LDpred-
funct also attained higher prediction accuracy than AnnoPred at
large sample sizes (+5.7% relative improvement for sparse
architecture and +3.7% relative improvement for polygenic
architecture at N= 50 K training samples; smaller differences at
smaller sample sizes) (see Supplementary Table 5 for optimal
tuning parameters; surprisingly, at N= 50 K training samples,
AnnoPred is optimized by assuming that 100% of SNPs are
causal, analogous to LDpred). The difference in prediction
accuracy between LDpred and each other method, as well as
the difference in prediction accuracy between LDpred-funct and
each other method, was statistically significant in most cases (see
Supplementary Table 2 e.g. vs. AnnoPred: P < 10−125 for sparse
architecture and P < 10−75 for polygenic architecture at N= 50 K
training samples). Simulations with 1000 or 10,000 causal
variants generally recapitulated these findings, although SBayesR,
P + T-funct-LASSO and AnnoPred performed better than
LDpred-funct for the very sparse architecture at N= 10 K
(Supplementary Table 1).

The average running time for all 7 methods is reported in
Supplementary Table 6. We separately report the time to estimate
posterior mean causal effect sizes, and the time to compute LD
matrices (not applicable for LDpred-funct-inf and LDpred-funct)
(we do not include the time to compute polygenic risk scores,
which is small in comparison and depends on the number of
validation samples). For the two methods with the highest
prediction R2 in analyses of real UK Biobank traits (LDpred-funct
and AnnoPred; see below), the average running time was 71 min
for LDpred-funct vs. 5249 min for AnnoPred, not including the
time to compute LD matrices.

We performed four secondary analyses. First, we assessed the
calibration of each method by checking whether regression of
true vs. predicted phenotype yielded a slope of 1. We determined
that LDpred-funct was well-calibrated (regression slope
0.98–0.99), LDpred and AnnoPred were fairly well-calibrated
(regression slope 0.85–1.00), and other methods were not well-
calibrated (Supplementary Table 7). Second, we assessed the
sensitivity of LDpred-funct to the choice of K= 40 posterior
mean causal effect size bins to regularize effect sizes in our main
simulations. We determined that results were not sensitive to this
parameter (Supplementary Table 8); slightly higher values of K
performed slightly better, but we did not finely optimize this
parameter. Third, we evaluated a cheating version of LDpred-
funct that utilized the true baseline-LD model parameters used to
simulate the data, instead of estimating these parameters from the
data (LDpred-funct-cheat). LDpred-funct-cheat performed only
slightly better than LDpred-funct, indicating that LDpred-funct is
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not sensitive to the imperfect estimation of functional enrichment
parameters (see Supplementary Table 9). Fourth, we simulated

traits with lower SNP-heritability (h2g ¼ 0:25) (see Supplementary

Table 10). We determined that the improvements attained by
LDpred-funct were smaller in these simulations (e.g. +6.9%
relative improvement vs. AnnoPred and −1.0% relative improve-
ment vs. LDpred for sparse architecture, +3.4% improvement vs.
AnnoPred and +0.6% relative improvement vs. LDpred for
polygenic architecture at N= 50 K training samples; smaller
improvements at smaller sample sizes).

Application to 21 UK Biobank traits. We applied P + T,
LDpred, SBayesR, P + T-funct-LASSO, AnnoPred, LDpred-
funct-inf, and LDpred-funct to 21 UK Biobank traits (14 quan-
titative traits and 7 binary traits; Supplementary Tables 11 and
12). We analyzed training samples of British-ancestry (avg
N= 373 K) and validation samples of non-British European
ancestry (avg N= 22 K). We included 6,334,603 imputed SNPs in
our analyses (see Methods). We computed summary statistics and

h2g estimates from training samples using BOLT-LMM v2.326 (see

Supplementary Table 13). We estimated trait-specific functional
enrichment parameters for the baseline-LD model25 by running
S-LDSC5,25 on these summary statistics. Results for quantitative
traits are reported in Fig. 2 and Supplementary Table 14, and
results for binary traits are reported in Fig. 3 and Supplementary
Table 15. Differences between each main prediction method and

either LDpred or LDpred-funct (and block-jackknife standard
errors on these differences) are reported in Supplementary
Table 16, and averages across all 21 traits for main and secondary
prediction methods are reported in Supplementary Table 17.

Among methods that do not use functional information,
LDpred outperformed P + T (+18% relative improvement in
average prediction R2), consistent with simulations under a
polygenic architecture (see Supplementary Tables 18 and 19 for
optimal tuning parameters) and with the previous work8,16.
LDpred also outperformed LDpred-inf, a method that does not
model sparsity (see Supplementary Table 17). The exclusion of
long-range LD regions (see Methods) was critical to LDpred
performance, as running LDpred without excluding long-range
LD regions (as implemented in a previous version of this paper27)
performed much worse (see Supplementary Table 17). SBayesR
outperformed LDpred (+5.3% relative improvement in average
prediction R2), with no convergence issues in the full UK Biobank
analysis (but see below for 113 K interim UK Biobank analysis);
we note that expanding the set of SNPs analyzed worsened the
performance of SBayesR (see below).

Incorporating functional information via LDpred-funct-inf (a
method that does not model sparsity) performed only slightly
better than LDpred (+0.9% improvement in average prediction
R2), but greatly outperformed LDpred-inf (+19% relative
improvement, P < 10−20 for the difference using two-sided z-test
based on the block-jackknife standard error in Supplementary
Table 20). Accounting for sparsity using LDpred-funct

Fig. 1 Accuracy of 6 polygenic prediction methods in simulations using UK Biobank genotypes.We report results for P + T, LDpred, P + T-funct-LASSO,

AnnoPred, LDpred-funct-inf, and LDpred-funct in chromosome 1 simulations with 2000 causal variants (sparse architecture) and 5000 causal variants

(polygenic architecture). Results are presented mean R2 values averaged across 100 simulations. Bottom dashed lines denote differences vs. LDpred; error

bars represent 95% confidence intervals. The top dashed line denotes simulated SNP-heritability of 0.5. Results for other values of the number of causal

variants are reported in Supplementary Fig. 1, and numerical results are reported in Supplementary Tables 1 and 2. Source data are provided as a Source

Data file.
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substantially improved prediction accuracy (+10%, +4.6%,
+7.4% relative improvements in average prediction R2 vs.
LDpred, SBayesR, LDpred-funct-inf; P < 2 × 10−4, P= 0.04, P <
2 × 10−4 for differences using two-sided z-test based on the
block-jackknife standard error in Supplementary Table 16;
average prediction R2= 0.144; highest R2= 0.413 for height),
consistent with simulations. The relative improvement in avg
prediction R2 for LDpred-funct vs. LDpred was +9.7% for
quantitative traits (higher prediction R2 for 14/14 traits), and
+11% for binary traits (higher prediction R2 for 5/7 traits). We
observed a positive but non-significant correlation across traits

between h2g and relative improvement (Supplementary Fig. 2),

perhaps due to the limited number of data points and/or
contribution of other factors (e.g. polygenicity). LDpred-funct
also performed substantially better than P + T-funct-LASSO
(+20% relative improvement in avg. prediction R2), consistent
with simulations under a polygenic architecture. AnnoPred
performed slightly but non-significantly worse than LDpred-
funct (−2.7% relative change in average prediction R2 for
AnnoPred vs. LDpred-funct, P= 0.35 for the difference using

two-sided z-test based on the block-jackknife standard error in
Supplementary Table 16; see Supplementary Table 21 for optimal
tuning parameters).

In the above experiments, LDpred-funct analyzed 373 K
training samples and 22 K validation samples and used 90% of
the validation samples to estimate regularization weights (and the
remaining validation samples to compute predictions) in each
cross-validation fold. It is possible that incorporating data from
an additional 20 K samples could confer an unfair advantage for
LDpred-funct compared to other methods. To assess this, we
performed three additional experiments. First, we repeated the
LDpred-funct analyses using smaller validation sample sizes (as
low as 1 K), again using 10-fold cross-validation. We determined
that results were little changed (Supplementary Table 22). Second,
we repeated the LDpred-funct analyses using only 1 K of the 22 K
validation samples to estimate regularization weights and the
remaining validation samples to compute predictions. Again, we
determined that results were little changed (Supplementary
Table 23). As the use of 1 K samples to estimate validation
weights is a trivial number of additional samples compared to
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Fig. 2 Accuracy of 7 polygenic prediction methods across 14 UK Biobank quantitative traits. We report results for P + T, LDpred, SBayesR, P + T-funct-

LASSO, AnnoPred, LDpred-funct-inf and LDpred-funct. Dashed lines denote estimates of SNP-heritability. Numerical results are reported in Supplementary

Table 14. Abbreviations: Red Blood Cell Distribution Width (RBD distribution width), forced expiratory volume in one second (FEV1), and forced vital

capacity (FVC). Data points represent the prediction accuracy values obtained via block-jacknife over 200 genomic blocks. Source data are provided as a

Source Data file.
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373 K training samples. Third, we repeated the analysis using 5 K
samples omitted from the set of training samples to estimate
regularization weights (we recomputed BOLT-LMM association
statistics using the reduced set of 404 K training samples) and the
full set of 22 K validation samples to compute predictions. Again,
we determined that results were little changed (Supplementary
Table 24). We conclude from these experiments that LDpred-
funct does not owe its advantage to incorporating data from a
substantial number of additional samples.

We performed 13 secondary analyses. First, we assessed the
calibration of each method by checking whether regression of
true vs. predicted phenotype yielded a slope of 1. As in our
simulations, we determined that LDpred-funct was well-
calibrated (average regression slope: 0.98), LDpred and AnnoPred
were fairly well-calibrated (average regression slope: 0.89 and
0.83, respectively), and other methods were not well-calibrated
(Supplementary Table 25). Second, we assessed the sensitivity of
LDpred-funct to the average value of K= 58 posterior mean
causal effect size bins to regularize effect sizes in these analyses
(see Eq. (6) and Supplementary Table 13). We determined that
results were not sensitive to the number of bins (Supplementary
Table 26). Third, we determined that functional enrichment
information is far less useful when restricting to genotyped
variants (e.g.−6.9% relative change in avg prediction R2 for
LDpred-funct vs. LDpred when both methods are restricted to
typed variants; Supplementary Table 17), likely because tagging
variants may not belong to enriched functional annotations.

Fourth, we repeated the SBayesR analysis using the 2.9 M SNP set
instead of the 1.1 M SNP set (see Methods), but determined that
this substantially worsened the performance of SBayesR (Supple-
mentary Table 17). Fifth, we evaluated a modification of P + T-
funct-LASSO in which different weights were allowed for the two
predictors (P + T-funct-LASSO-weighted; see Methods), but
results were little changed (+1.1% relative improvement in avg
prediction R2 vs. P + T-funct-LASSO; Supplementary Table 17).
Sixth, we obtained similar results for P + T-funct-LASSO when
defining the "high-prior” (HP) SNP set using the top 5% of SNPs
with the highest per-SNP heritability, instead of the top 10% (see
Supplementary Table 17). Seventh, we determined that incorpor-
ating baseline-LD model functional enrichments that were meta-
analyzed across traits (31 traits from ref. 25), instead of the trait-
specific functional enrichments used in our primary analyses,
slightly reduced the prediction accuracy of LDpred-funct-inf
(Supplementary Table 17). Eighth, to assess whether the
improvement of LDpred-funct is specific to the 75 functional
annotations of the baseline-LD model, we implemented an
analogous method that uses 75 random annotations (LDpred-
funct (random)). We determined that LDpred-funct attained a
13% relative improvement in average prediction R2 vs. LDpred-
funct (random), which performed similarly to LDpred (3.1%
decrease in average prediction R2 vs. LDpred) (Supplementary
Table 17). This implies that the improvement of LDpred-funct is
specific to the 75 functional annotations of the baseline-LD
model. We further note that a method that does not use
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Fig. 3 Accuracy of 7 polygenic prediction methods across 7 UK Biobank binary traits.We report results for P + T, LDpred, SBayesR, P + T-funct-LASSO,

AnnoPred, LDpred-funct-inf and LDpred-funct. Dashed lines denote estimates of SNP-heritability. Numerical results are reported in Supplementary

Table 15. Data points represent the prediction accuracy values obtained via block-jacknife over 200 genomic blocks. Source data are provided as a Source

Data file.
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functional priors but applies the regularization step of LDpred-
funct on top of LDpred-inf (LDpred-inf + sparsity) performed
similarly to LDpred-funct (random) (Supplementary Table 17).
Ninth, we determined that using our previous baseline model5,
instead of the baseline-LD model25, slightly reduced the
prediction accuracy of LDpred-funct-inf and LDpred-funct
(Supplementary Table 17). Tenth, we implemented a method
analogous to LDpred-funct that uses functional annotations to
restrict to the same set of SNPs with expected per-SNP
heritability σ2i > 0 (2981,166-4,306,498 SNPs depending on the
trait; see Methods) but then imposes a constant prior on causal
effect sizes (LDpred-funct (constant prior)). We determined that
LDpred-funct attained a 4.3% relative improvement in average
prediction R2 vs. LDpred-funct (constant prior) (Supplementary
Table 17), implying that including a prior informed by functional
annotations is better than not including a prior informed by
functional annotations. In addition, LDpred-funct (constant
prior) attained a 5.5% relative improvement in average prediction
R2 vs. LDpred and a 23% relative improvement in average
prediction R2 vs. LDpred-inf (Supplementary Table 17), con-
firming that regularizing causal effect size estimates in bins of
different magnitude increases prediction accuracy (also see the
comparison of LDpred-funct vs. LDpred-funct-inf above); in
addition, some of the improvement of LDpred-funct derives from
the removal of (relatively) uninformative SNPs (10% relative
improvement for LDpred-funct-inf (constant prior) vs. LDpred-
inf; Supplementary Table 17). Eleventh, we determined that
inferring functional enrichments using only the SNPs that passed

QC filters and were used for prediction had no impact on the
prediction accuracy of LDpred-funct-inf (Supplementary
Table 17). Twelveth, we determined that using UK10K (instead
of 1000 Genomes) as the LD reference panel had virtually no
impact on prediction accuracy (Supplementary Table 17).
Thirteenth, we determined that using UK10K (instead of 1000
Genomes) as the LD reference panel had virtually no impact on
prediction accuracy (Supplementary Table 17).

Application to height in meta-analysis of UK Biobank and
23andMe cohorts. We applied P + T, LDpred-inf, SBayesR, P +
T-funct-LASSO, AnnoPred, LDpred-funct-inf, and LDpred-funct
to predict height in a meta-analysis of UK Biobank and 23andMe
cohorts (see Methods). Training sample sizes were equal to
408,092 for UK Biobank and 698,430 for 23andMe, for a total of
1,106,522 training samples. For comparison purposes, we also
computed predictions using the UK Biobank and 23andMe
training data sets individually, as well as a training data set
consisting of 113,660 British-ancestry samples from the UK
Biobank interim release. (The analysis using the 408,092 UK
Biobank training samples was nearly identical to the analysis of
Fig. 2, except that we used a different set of 5,957,935 SNPs, for
consistency throughout this set of comparisons; see Methods.)
We used 24,351 UK Biobank samples of non-British European
ancestry as validation samples in all analyses.

Results are reported in Fig. 4 and Supplementary Table 27. The
relative improvements attained by LDpred-funct-inf and LDpred-
funct were broadly similar across all four training data sets (also
see Fig. 2), implying that these improvements are not specific to
the UK Biobank data set. Interestingly, compared to the full UK
Biobank training data set (R2= 0.415 for LDpred-funct; slightly
different from R2= 0.413 in Fig. 2 due to slightly different SNP
set), prediction accuracies were only slightly higher for the meta-
analysis training data set (R2= 0.431 for LDpred-funct), and were
lower for the 23andMe training data set (R2= 0.344 for LDpred-
funct), consistent with the ≈30% higher heritability in UK
Biobank as compared to 23andMe and other large cohorts25,26,28;
the higher heritability in UK Biobank could potentially be
explained by lower environmental heterogeneity. We note that in
the meta-analysis, we optimized the meta-analysis weights using
validation data (similar to ref. 29), instead of performing a fixed-
effect meta-analysis. This approach accounts for differences in
heritability as well as sample size, and attained a+ 3.3% relative
improvement in prediction R2 compared to fixed-effects meta-
analysis (see Supplementary Table 27). We note that SBayesR
performed similarly to LDpred in height analyses with ≥408 K
training samples (−10% to +0.2% change in average prediction
R2) but attained prediction R2 close to 0 in the height analysis
with 113 K training samples, perhaps because the algorithm failed
to converge (Supplementary Table 27; results not included in
Fig. 4).

Discussion
We have shown that leveraging trait-specific functional enrich-
ments inferred by S-LDSC with the baseline-LD model25 sub-
stantially improves polygenic prediction accuracy. Across 21 UK
Biobank traits, we attained substantial improvements in average
prediction R2 using a method that leverages functional enrich-
ment and performs an additional regularization step to account
for sparsity (LDpred-funct). LDpred-funct attained +10% (P <
2 × 10−4) and +4.6% (P= 0.04) relative improvements compared
to LDpred16 and SBayesR9, two state-of-the-art methods that do
not model functional enrichment. Thus incorporating functional
annotations improves polygenic prediction accuracy. We note
that our main analyses used baseline-LD model v1.1, but using

Fig. 4 Accuracy of 6 prediction methods in height meta-analysis of UK

Biobank and 23andMe cohorts. We report results for P + T, LDpred, P +

T-funct-LASSO, AnnoPred, LDpred-funct-inf, and LDpred-funct, for each of

4 training data sets: UK Biobank interim release (113,660 training samples),

UK Biobank (408,092 training samples), 23andMe (698,430 training

samples) and meta-analysis of UK Biobank and 23andMe (1,107,430

training samples). Nested training data sets are connected by solid lines

(e.g. UK Biobank (408 k) and 23andMe are both connected to Meta-

Analysis, but not to each other). The dashed line denotes the estimate of

SNP-heritability in the UK Biobank. Numerical results are reported in

Supplementary Table 27. Block-Jackknife standard errors over 200 genomic

jackknife blocks were < 0.028 across each method. Source data are

provided as a Source Data file.
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the updated baseline-LD model v2.1 yields slightly higher pre-
diction R2 for LDpred-funct-inf and LDpred-funct (Supplemen-
tary Table 17).

Two previous studies have highlighted the potential advantages of
leveraging functional enrichment to improve prediction
accuracy23,24. We included both of these methods in all of our
analyses. First, ref. 23 introduced a method (which we call P + T-
funct-LASSO) that corrects marginal effect sizes for winner’s curse
using LASSO and incorporates functional data to define high-prior
and low-prior SNP sets. LDpred-funct attained a +19% average
relative improvement vs. P + T-funct-LASSO across 21 UK Biobank
traits. Second, ref. 24 introduced AnnoPred, which uses a Bayesian
framework to incorporate functional annotations. AnnoPred models
sparsity differently than LDpred-funct, as it uses a point-normal prior
to estimating posterior mean effect sizes via Markov Chain Monte
Carlo (MCMC), whereas LDpred-funct performs a regularization
step to account for sparsity. We note that ref. 24 considered only
genotyped variants and binary annotations. As noted above, func-
tional enrichment information is far less useful when restricting to
genotyped variants (Supplementary Table 17), likely because tagging
variants may not belong to enriched functional annotations; thus, the
utility of AnnoPred in more general settings is currently unknown.
Here, we determined that AnnoPred performed slightly but non-
significantly worse than LDpred-funct(−2.3% relative change in
average prediction R2; P= 0.35 for difference) across 21 UK Biobank
traits, consistent with slightly worse results for AnnoPred in simu-
lations at large sample sizes. We emphasize that our work combines
binary and continuous-valued functional annotations to improve
polygenic risk prediction using imputed variants.

Our work has several limitations. First, LDpred-funct analyzes
summary statistic training data (which are publicly available for a
broad set of diseases and traits30), but methods that use raw
genotypes/phenotypes as training data have the potential to attain
higher accuracy26; incorporating functional enrichment informa-
tion into prediction methods that use raw genotypes/phenotypes as
training data remains a direction for future research. Second, the
regularization step employed by LDpred-funct to account for
sparsity relies on heuristic cross-validation instead of inferring
posterior mean causal effect sizes under a prior sparse functional
model; we made this choice because the appropriate choice of
sparse functional model is unclear, and because inference of pos-
terior means via MCMCmay be subject to convergence issues. As a
consequence, the improvement of LDpred-funct over LDpred-
funct-inf may be contingent on the number of validation samples
available for cross-validation; in particular, for very small valida-
tion samples, the number of cross-validation bins is equal to 1 (Eq.
(6)) and LDpred-funct is identical to LDpred-funct-inf. However,
we determined that results of LDpred-funct were little changed
when restricting to smaller validation sample sizes (as low as 1000;
see Supplementary Table 22) or using all 22 K validation samples
but using only 1 K samples to estimate validation weights ((Sup-
plementary Table 23); this implies that LDpred-funct does not owe
its advantage to incorporating data from a substantial number of
additional samples. Third, we have considered only single-trait
analyses, but leveraging genetic correlations among traits has
considerable potential to improve prediction accuracy31,32. Fourth,
we have not considered how to leverage functional enrichment for
polygenic prediction in related individuals33. Fifth, we have not
thoroughly investigated the application LDpred-funct to polygenic
prediction in diverse populations29,34–36 (for which very similar
functional enrichments have been reported37,38), as our simula-
tions focused exclusively on prediction in Europeans. However, we
evaluated the performance of LDpred-funct in predicting 21 UK
Biobank traits in diverse populations using European training data
(as in recent studies34,35). The results were promising, particularly
in Africans (+23% vs. LDpred (P < 10−5), +18% vs. SBayesR

(P= 0.001); see Supplementary Table 28), for which distinguishing
causal vs. non-causal variants is particularly important due to
differences in LD vs. Europeans39. A more thorough investigation,
e.g. incorporating non-European training data29, is an important
direction for future research. Sixth, we have not performed a
comprehensive assessment of how much different functional
annotation models contribute to improvements in prediction
accuracy, which remains an important future direction, particularly
as functional annotation models will improve as increasingly rich
functional data is generated. Specifically, the improvements in
prediction accuracy that we reported are a function of the baseline-
LD model25, but there are many possible ways to improve this
model, e.g. by incorporating tissue-specific enrichments1–6,40–43,
modeling MAF-dependent architectures44–46, and/or employing
alternative approaches to modeling LD-dependent effects47; we
anticipate that future improvements to the baseline-LD model will
yield even larger improvements in prediction accuracy. As an
initial step to explore alternative approaches to modeling LD-
dependent effects, we repeated our analyses using the baseline-LD
+ LDAK model (introduced in ref. 48), which consists of the
baseline-LD model plus one additional continuous annotation
constructed using LDAK weights47. (Recent work has shown that
incorporating LDAK weights increases polygenic prediction accu-
racy in analyses that do not include the baseline-LD model49.) We
determined that results were virtually unchanged (avg prediction
R2= 0.1350 for baseline-LD + LDAK vs. 0.1354 for baseline-LD
using LDpred-funct-inf with UK10K SNPs; see Supplementary
Tables 17 and 29). Despite these limitations and open directions
for future research, our work demonstrates that leveraging func-
tional enrichment using the baseline-LD model substantially
improves polygenic prediction accuracy.

Methods
Polygenic prediction methods. We compared 7 main prediction methods:
Pruning + Thresholding18,19 (P + T), LDpred16, SBayesR9, P + T with func-
tionally informed LASSO shrinkage23 (P + T-funct-LASSO), AnnoPred24, our
LDpred-funct-inf method, and our LDpred-funct method; we also included
LDpred-inf16, which is known to attain lower prediction accuracy than LDpred16,
in some of our secondary analyses. P + T, LDpred-inf, LDpred, and SBayesR are
polygenic prediction methods that do not use functional annotations; we did not
include RSS12 and SBLUP11 methods in our comparisons, because ref. 9 reported
that SBayesR performed as well or better than both RSS and SBLUP and was more
computationally efficient (Fig. 2 and Supplementary Fig. 18 of ref. 9). P + T-funct-
LASSO is a modification of P + T that corrects marginal effect sizes for winner’s
curse, accounting for functional annotations. AnnoPred is which uses a Bayesian
framework to incorporate functional annotations. LDpred-funct-inf is an
improvement of LDpred-inf that incorporates functionally informed priors on
causal effect sizes. LDpred-funct is an improvement of LDpred-funct-inf that uses
cross-validation to regularize posterior mean causal effect size estimates, improving
prediction accuracy for sparse architectures. Each method is described in greater
detail below. In both simulations and analyses of real traits, we used squared
correlation (R2) between predicted phenotype and true phenotype in a held-out set
of samples as our primary measure of prediction accuracy.

P + T. The P + T method builds a polygenic risk score (PRS) using a subset of
independent SNPs obtained via informed LD-pruning19 (also known as LD-
clumping) followed by P-value thresholding18. Specifically, the method has two
parameters, R2

LD and PT, and proceeds as follows. First, the method prunes SNPs

based on a pairwise threshold R2
LD , removing the less significant SNP in each pair.

Second, the method restricts to SNPs with an association P-value below the sig-
nificance threshold PT. Letting M be the number of SNPs remaining after LD-
clumping, polygenic risk scores (PRS) are computed as

PRS ðPT Þ ¼ ∑
M

i¼1
1fPi <PT g

~βig i; ð1Þ

where ~βi are normalized marginal effect size estimates and gi is a vector of nor-

malized genotypes for SNP i. The parameters R2
LD and PT are commonly tuned

using validation data to optimize prediction accuracy18,19. While in theory, this
procedure is susceptible to overfitting, in practice, validation sample sizes are
typically large, and R2

LD and PT are selected from a small discrete set of parameter
choices, so that overfitting is considered to have a negligible effect7,18,19,29.
Accordingly, in this work, we consider R2

LD 2 f0:1; 0:2; 0:5; 0:8g and PT∈ {1, 0.3,
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0.1, 0.03, 0.01, 0.003, 0.001, 3 ∗ 10−4, 10−4, 3 ∗ 10−5, 10−5, 10−6, 10−7, 10−8}, and
we always report results corresponding to the best choices of these parameters. The
P + T method is implemented in the PLINK software (see Code availability).

LDpred-inf. The LDpred-inf method estimates posterior mean causal effect sizes
under an infinitesimal model, accounting for LD16. The infinitesimal model
assumes that normalized causal effect sizes have prior distribution βi ~N(0, σ2),

where σ2 ¼ h2g=M; h2g is the SNP-heritability, and M is the number of SNPs. The

posterior mean causal effect sizes are

Eðβj~β;DÞ ¼ N

1� h2l
�Dþ 1

σ2
I

 !�1

N � ~β; ð2Þ

where D is the LD matrix between markers, I is the identity matrix, N is the

training sample size, ~β is the vector of marginal association statistics, and h2l �
kh2=M is the heritability of the k SNPs in the region of LD; following ref. 16 we use

the approximation 1� h2l � 1, which is appropriate when M > > k. D is typically
estimated using validation data, restricting to non-overlapping LD windows. We

used the default LD window size, which is M/3000. h2g can be estimated from raw

genotype/phenotype data26,28 (the approach that we use here; see below), or can be
estimated from summary statistics using the aggregate estimator as described in
ref. 16. To approximate the normalized marginal effect size ref. 16 uses the p-values
to obtain absolute Z scores and then multiplies absolute Z scores by the sign of the
estimated effect size. When sample sizes are very large, p-values may be rounded to

zero, in which case we approximate normalized marginal effect sizes bβi by
bbi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�pi�ð1�piÞ

p
ffiffiffiffi
σ2Y

p , where bbi is the per-allele marginal effect size estimate, pi is the minor

allele frequency of SNP i, and σ2Y is the phenotypic variance in the training data.
This applies to all the methods that use normalized effect sizes. Although the
published version of LDpred requires a matrix inversion (Eq. (2)), we have
implemented a computational speedup that computes the posterior mean causal
effect sizes by efficiently solving50 the system of linear equations

ð 1σ2 Iþ N �DÞEðβj~β;DÞ ¼ N~β.

LDpred. The LDpred method is an extension of LDpred-inf that uses a point-
normal prior to estimating posterior mean effect sizes via Markov Chain Monte

Carlo (MCMC)16. It assumes a Gaussian mixture prior: βi � Nð0; h2g=M � pÞ with
probability p, and βi ~ 0 with probability 1− p, where p is the proportion of causal
SNPs. The method is optimized by considering different values of p (1E−4, 3E−4,
1E−3, 3E−3, 0.01,0.03,0.1,0.3,1); in the special case where 100% of SNPs are
assumed to be causal, LDpred is roughly equivalent to LDpred-inf. We excluded
SNPs from long-range LD regions (reported in ref. 51), as our secondary analyses
showed that including these regions were suboptimal, consistent with ref. 9.

SBayesR. The SBayesR method infers posterior mean causal effect sizes from
GWAS summary statistics and an LD matrix9. It assumes a finite mixture of

normal distributions to account for sparsity, defined as: βi � Nð0; γch
2
g Þ with

probability πc, where c ranges from 1 to C, the total number of components in the
mixture model. We used as input the recommended parameters from ref. 9, with
C= 4 mixtures with parameters γc= (0, 0.01, 0.1, 1.0). The method requires a
shrunk LD matrix12. The authors of ref. 9 made available shrunk LD matrices
estimated from 50,000 randomly selected white British individuals from the UK
Biobank51 for two different SNPs sets. The 1.1M SNP set consists of 1,094,841
variants, constructed by restricting 1,365,446 SNPs from HapMap352 to MAF >
0.01 and removing strand ambiguous SNPs and long-range LD regions (as reported
in ref. 51). The 2.9M SNP set consists of 2,865,810 variants, constructed by applying
LD-pruning (R2 > 0.99) to a larger set of 8 million variants from the UK Biobank51

with MAF > 0.01, overlapped with a previous large GWAS53 and present in 1000
Genomes54. We note that we could not scale the SBayesR analysis to the full set of
6,334,603 variants used in other analyses due to computational constraints. We
used the 1.1M SNP set in our primary analyses as it achieved the highest average
prediction R2 in our real traits analyses (see Results section), but we also considered
the 2.9 M SNP set in secondary analyses. For analyses that use BOLT-LMM
summary statistics we used Neffective as reported in ref. 26.

P + T-funct-LASSO. Reference23 proposed an extension of P + T that corrects the
marginal effect sizes of SNPs for winner’s curse and incorporates external func-
tional annotation data (P + T-funct-LASSO). The winner’s curse correction is
performed by applying a LASSO shrinkage to the marginal association statistics of
the PRS:

PRSLASSOðPT Þ ¼ ∑
M

i¼1
signð~βiÞjj~βij � λðPT Þj1fPi <PT gg i;

ð3Þ

where λðPT Þ ¼ Φ�1ð1� PT

2
Þsdð~βiÞ, where Φ−1 is the inverse standard normal CDF.

Functional annotations are incorporated via two disjoint SNPs sets, representing "high-
prior” SNPs (HP) and "low-prior” SNPs (LP), respectively. We define the HP SNP set
for P + T-funct-LASSO as the set of SNPs in the top 10% of expected per-SNP

heritability under the baseline-LD model25, which includes coding, conserved,
regulatory, and LD-related annotations, whose enrichments are jointly estimated
using stratified LD score regression5,25 (see Baseline-LD model annotations section).
We also performed secondary analyses using the top 5% (P+ T-funct-LASSO-top5%).
We define PRSLASSO,HP(PHP) to be the PRS restricted to the HP SNP set, and
PRSLASSO, LP(PLP) to be the PRS restricted to the LP SNP set, where PHP and PLP are
the optimal significance thresholds for the HP and LP SNP sets, respectively. We
define PRSLASSO(PHP, PLP)= PRSLASSO,HP(PHP)+ PRSLASSO,LP(PLP). We also per-
formed secondary analyses where we allow an additional regularization to the two
PRS: PRSLASSO(PHP, PLP)= α1PRSLASSO,HP(PHP)+ α2PRSLASSO, LP(PLP); we refer to
this method as P + T-funct-LASSO-weighted.

AnnoPred. AnnoPred24 uses a Bayesian framework to incorporate functional
priors while accounting for LD, optimizing prediction R2 over different assumed
values of the proportion of causal SNPs. Reference24 proposed two different priors
for use with AnnoPred. The first prior assumes the same proportion of causal SNPs
but different causal effect size variance across functional annotations, and uses a
point-normal prior to estimating posterior mean effect sizes via Markov Chain
Monte Carlo (MCMC). In the special case where 100% of SNPs are assumed to be
causal, AnnoPred is roughly equivalent to LDpred-funct-inf (see below). The
second prior assumes different proportions of causal SNPs but the same causal
effect size variance across functional annotations. We only consider the first prior,
since the second prior cannot be extended to incorporate continuous-valued
annotations from the baseline-LD model. We excluded SNPs from long-range LD
regions (as reported in ref. 51) when running AnnoPred. We used the default LD
window size, which is M/3000.

LDpred-funct-inf. We modify LDpred-inf to incorporate functionally informed
priors on causal effect sizes using the baseline-LD model25, which includes coding,
conserved, regulatory, and LD-related annotations, whose enrichments are jointly
estimated using stratified LD score regression5,25. Specifically, we assume that
normalized causal effect sizes have prior distribution βi � Nð0; c � σ2i Þ, where σ2i is
the expected per-SNP heritability under the baseline-LD model (fit using training

data only) and c is a normalizing constant such that ∑M
i¼1 1fσ2i > 0gcσ

2
i ¼ h2g ; SNPs

with σ2i ≤ 0 are removed, which is equivalent to setting σ2i ¼ 0. The posterior mean
causal effect sizes are

E½βj~β;D; σ21; ¼ ; σ2Mþ
� ¼ W�1N � ~β ¼ N �Dþ 1

c

1
σ21

¼ 0

.

.

.
.
.

.
.
.
.

0 ¼

1
σ2
Mþ

0

BBB@

1

CCCA

2

6664

3

7775

�1

N � ~β;

ð4Þ

whereM+ is the number of SNPs with σ2i > 0. The posterior mean causal effect sizes
are computed by solving the system of linear equations

WE½βj~β;D; σ21; ¼ ; σ2M � ¼ N � ~β. h2g is estimated as described above (see LDpred-

inf). D is estimated using validation data, restricting to windows of size 0.15%M+.
In principle, it is possible to use banding to define the LD matrices, where LD
between distant pairs of SNPs (10 Mb or more) is rounded to zero55, but we elected
to use the simpler window-based approach (as in ref. 16).

LDpred-funct. We modify LDpred-funct-inf to regularize posterior mean causal
effect sizes using cross-validation. We rank the SNPs by their (absolute) posterior
mean causal effect sizes, partition the SNPs into K bins (analogous to ref. 56) where
each bin has roughly the same sum of squared posterior mean effect sizes, and
determine the relative weights of each bin based on the predictive value in the
validation data. Intuitively if a bin is dominated by non-causal SNPs, the inferred
relative weight will be lower than for a bin with a high proportion of causal SNPs.
This non-parametric shrinkage approach can optimize prediction accuracy

regardless of the genetic architecture. In detail, let S ¼ ∑iE½βij~βi�
2
. To define each

bin, we first rank the posterior mean effect sizes based on their squared values

E½βij~βi�
2
. We define bin b1 as the smallest set of top SNPs with ∑i2b1E½βij~βi�

2
≥

S
K
,

and iteratively define bin bk as the smallest set of additional top SNPs with

∑i2b1 ;¼ ;bk
E½βij~βi�

2
≥

kS
K
. Let PRS ðkÞ ¼ ∑i2bkE½βij~βi�g i . We define

PRSLDpred�funct ¼ ∑
K

k¼1
αkPRS ðkÞ; ð5Þ

where the bin-specific weights αk are optimized using validation data via 10-fold
cross-validation. For each held-out fold in turn, we split the data so we estimate the
weights αk using the samples from the other nine folds (90% of the validation) and
compute PRS on the held-out fold using these weights (10% of the validation); thus,
in each cross-validation fold, the validation samples used to estimate regularization
weights are disjoint from the validation samples used to compute predictions. We
then compute the average prediction R2 across the 10 held-out folds. To avoid
overfitting when K is very close to N, we set the number of bins (K) to be between 1

and 100, such that it is proportional to h2g and the number of samples used to
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estimate the K weights in each fold is at least 100 times larger than K:

K ¼ min 100;
0:9N � h2g

100

& ’ !
; ð6Þ

where N is the number of validation samples. For highly heritable traits (h2g � 0:5),

LDpred-funct reduces to the LDpred-funct-inf method if there are ~ 200 validation

samples or fewer; for less heritable traits (h2g � 0:1), LDpred-funct reduces to the

LDpred-funct-inf method if there are ~ 1000 validation samples or fewer. In
simulations, we set K to 40 (based on 7,585 validation samples; see below),
approximately concordant with Eq. (6). The value of 100 in the denominator of Eq.
(6) was coarsely optimized in simulations, but was not optimized using real trait
data. We note that functional annotations are not used in the cross-validation step
(although they do impact the posterior mean causal effect size provided as input to
this step). Thus, it is likely that SNPs from a given functional annotation will fall
into different bins (possibly all of the bins).

Standard errors. Standard errors for the prediction R2 of each method and the
difference in prediction R2 between two methods were computed via block-
jackknife using 200 genomic jackknife blocks5; this is more conservative than
computing standard errors based on the number of validation samples, which does
not account for variation across a finite number of SNPs. For each method, we first
optimized any relevant tuning parameters using the entire genome and then
analyzed each jackknife block using those tuning parameters.

Simulations. We simulated quantitative phenotypes using real genotypes from the
UK Biobank interim release (see below). We used up to 50,000 unrelated British-
ancestry samples as training samples, and 7,585 samples of other European
ancestries as validation samples (see below). We made these choices to minimize
confounding due to shared population stratification or cryptic relatedness between
training and validation samples (which, if present, could overstate the prediction
accuracy that could be obtained in independent samples57), while preserving a
large number of training samples. We restricted our simulations to 459,284
imputed SNPs on chromosome 1 (see below), fixed the number of causal SNPs at
2,000 or 5,000 (we also performed secondary simulations with 1000 or 10,000

causal variants), and fixed the SNP-heritability h2g at 0.5. We sampled normalized

causal effect sizes βi for causal SNPs from a normal distribution with variance equal

to
σ2i
p , where p is the proportion of causal SNPs and σ2i is the expected causal per-

SNP heritability under the baseline-LD model25, fit using stratified LD score
regression (S-LDSC)5,25 applied to height summary statistics computed from
unrelated British-ancestry samples from the UK Biobank interim release

(N= 113,660). We computed per-allele effect sizes bi as bi ¼
βiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pið1�piÞ
p , where pi is

the minor allele frequency for SNP i estimated using the validation genotypes. We

simulated phenotypes as Y j ¼ ∑
M
i big ij þ ϵj , where ϵj � Nð0; 1� h2g Þ. We set the

training sample size to either 10,000, 20,000, or 50,000. The motivation to perform
simulations using one chromosome is to be able to extrapolate performance at
larger sample sizes16 according to the ratio N/M, where N is the training sample
size. We compared each of the seven methods described above. For LDpred-funct-
inf and LDpred-funct, for each simulated trait we used S-LDSC (applied to training
data only) to estimate baseline-LD model parameters. For LDpred-funct, we report
R2 as the average prediction R2 across the 10 held-out folds.

Full UK Biobank data set. The full UK Biobank data set includes 459,327
European-ancestry samples and ~ 20 million imputed SNPs51 (after filtering as in
ref. 26, excluding indels and structural variants). We selected 21 UK Biobank traits
(14 quantitative traits and 7 binary traits) with phenotyping rate >80% (>80% of

females for age at menarche, >80% of males for balding), SNP-heritability h2g > 0:2

for quantitative traits, observed-scale SNP-heritability h2g > 0:1 for binary traits, and

low correlation between traits (as described in ref. 26). We restricted training
samples to 409,728 British-ancestry samples51, including related individuals (avg
N= 373 K phenotyped training samples; see Supplementary Table 11 for quanti-
tative traits and Supplementary Table 12 for binary traits). We computed asso-
ciation statistics from training samples using BOLT-LMM v2.326. We have made
these association statistics publicly available (see Data availability). We restricted
validation samples to 24,436 samples of non-British European ancestry, after
removing validation samples that were related ( >0.05) to training samples and/or
other validation samples (avg N= 22 K phenotyped validation samples; see Sup-
plementary Tables 11 and 12). As in our simulations, we made these choices to
minimize confounding due to shared population stratification or cryptic related-
ness between training and validation samples (which, if present, could overstate the
prediction accuracy that could be obtained in independent samples57), while
preserving a large number of training samples. We analyzed 6,334,603 genome-
wide imputed SNPs, after removing SNPs with minor allele frequency <1%,
removing SNPs with imputation accuracy <0.9, and removing A/T and C/G SNPs

to eliminate potential strand ambiguity. We used h2g estimates from BOLT-LMM

v2.326 as input to LDpred, AnnoPred, LDpred-funct-inf, and LDpred-funct.

UK Biobank interim release. The UK Biobank interim release includes 145,416
European-ancestry samples58. We used the UK Biobank interim release both in
simulations using real genotypes, and in a subset of analyses of height phenotypes
(to investigate how prediction accuracy varies with training sample size).

In our analyses of height phenotypes, we restricted training samples to 113,660
unrelated (≤0.05) British-ancestry samples for which height phenotypes were
available. We computed association statistics by adjusting for 10 PCs59, estimated
using FastPCA60 (see Code availability). For consistency, we used the same set of
24,351 validation samples of non-British European ancestry with height
phenotypes as defined above. We analyzed 5,957,957 genome-wide SNPs, after
removing SNPs with minor allele frequency <1%, removing SNPs with imputation
accuracy <0.9, removing SNPs that were not present in the 23andMe height data set
(see below), and removing A/T and C/G SNPs to eliminate potential strand
ambiguity.

In our simulations, we restricted training samples to up to 50,000 of the 113,660
unrelated British-ancestry samples, and restricted validation samples to
8441 samples of non-British European ancestry, after removing validation samples
that were related ( >0.05) to training samples and/or other validation samples. We
restricted the 5,957,957 genome-wide SNPs (see above) to chromosome 1, yielding
459,284 SNPs after QC.

23andMe height summary statistics. The 23andMe data set consists of summary
statistics computed from 698,430 European-ancestry samples (23andMe customers
who consented to participate in research) at 9,898,287 imputed SNPs, after
removing SNPs with minor allele frequency <1% and that passed QC filters (which
include filters on imputation quality, avg.rsq <0.5 or min.rsq <0.3 in any imputa-
tion batch, and imputation batch effects). Analyses were restricted to the set of
individuals with >97% European ancestry, as determined via an analysis of local
ancestry61. Summary association statistics were computed using linear regression
adjusting for age, gender, genotyping platform, and the top five principal com-
ponents to account for residual population structure. The summary association
statistics will be made available to qualified researchers (see Data availability).

We analyzed 5,808,258 genome-wide SNPs, after removing SNPs with minor
allele frequency <1%, removing SNPs with imputation accuracy <0.9, removing
SNPs that were not present in the full UK Biobank data set (see above), and
removing A/T and C/G SNPs to eliminate potential strand ambiguity.

Meta-analysis of full UK Biobank and 23andMe height data sets. We meta-
analyzed height summary statistics from the full UK Biobank and 23andMe data
sets. We define

PRSmeta ¼ γ1PRS1 þ γ2PRS2; ð7Þ

where PRSi is the PRS obtained using training data from cohort i. The PRS can be
obtained using P + T, P + T-funct-LASSO, LDpred-inf, or LDpred-funct. The
meta-analysis weights γi can either be specified via fixed-effect meta-analysis (e.g.

γi ¼
N i

∑N i
) or optimized using validation data29. We use the latter approach, which

can improve prediction accuracy (e.g. if the cohorts differ in their heritability as
well as their sample size). In our primary analyses, we fit the weights γi in-sample
and report prediction accuracy using adjusted R2 to account for in-sample fitting29.
We also report results using 10-fold cross-validation: for each held-out fold in turn,
we estimate the weights γi using the other nine folds and compute PRS on the held-
out fold using these weights. We then compute the average prediction R2 across the
10 held-out folds.

When using LDpred-funct as the prediction method, we perform the meta-
analysis as follows. First, we use LDpred-funct-inf to fit meta-analysis weights γi.
Then, we use γi to compute (meta-analysis) weighted posterior mean causal effect
sizes (PMCES) via PMCES= γ1PMCES1+ γ2PMCES2, which are binned into k
bins. Then, we estimate bin-specific weights αk (used to compute (meta-analysis +

bin-specific) weighted posterior mean causal effect sizes ∑K
k¼1 αk PMCES ðkÞ) using

validation data via 10-fold cross-validation.

Baseline-LD model annotations. The baseline-LD model (v1.1) contains a broad
set of 75 functional annotations (including coding, conserved, regulatory, and LD-
related annotations), whose enrichments are jointly estimated using stratified LD
score regression5,25. For each trait, we used the τc values estimated for that trait to
compute σ2i , the expected per-SNP heritability of SNP i under the baseline-LD
model, as

σ2i ¼ ∑
c
acðiÞτc; ð8Þ

where ac(i) is the value of annotation c at SNP i.
Joint effect sizes τc for each annotation c are estimated via

E½χ2i � ¼ N∑
c
τclði; cÞ þ 1; ð9Þ

where l(i, c) is the LD score of SNP i with respect to annotation ac and χ2i is the chi-
square statistic for SNP i. We note that τc quantifies effects that are unique to
annotation c. In all analyses of real phenotypes, τc and σ2i were estimated using
training samples only.
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In our primary analyses, we used 489 unrelated European samples from phase 3
of the 1000 Genomes Project54 as the reference data set to compute LD scores, as in
ref. 25.

To verify that our 1000 Genomes reference data set produces reliable LD
estimates, we repeated our LDpred-funct analyses using S-LDSC with 3,567
unrelated individuals from UK10K62 as the reference data set (as in ref. 48),
ensuring a closer ancestry match with British-ancestry UK Biobank samples. We
also repeated our LDpred-funct analyses using S-LDSC with the baseline-LD +
LDAK model (instead of the baseline-LD model), with UK10K as the reference
data set. The baseline-LD + LDAK model (introduced in ref. 48) consists of the
baseline-LD model plus one additional continuous annotation constructed using

LDAK weights47, which has values ðpjð1� pjÞÞ
1þαwj , where α=−0.25, pj is the

allele frequency of SNP j, and wj is the LDAK weight of SNP j computed using
UK10K data.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. We used BOLT-LMM v2.3 association

statistics: https://data.broadinstitute.org/alkesgroup/UKBB/UKBB_409K/. The baseline-

LD annotations (v.2.1) used to compute functional enrichments in the primary analysis

are available at https://alkesgroup.broadinstitute.org/LDSCORE/

1000G_Phase3_baseline_v1.2_ldscores.tgz. 1000 Genomes Project, http://

www.1000genomes.org/. Access to the UK10K data used in the secondary analysis is

available via application in https://www.uk10k.org/data_access.html. Access to the UK

Biobank resource is available via application in http://www.ukbiobank.ac.uk/. 23andMe

height association statistics: The full summary statistics for the 23andMe height GWAS

data will have restricted access, and will be made available through 23andMe to qualified

researchers under an agreement with 23andMe that protects the privacy of the 23andMe

participants. Please visit https://research.23andme.com/collaborate/#publicationfor more

information and to apply to access the data. SBayesR shrunk and sparse LD matrices can

be downloaded from Zenodo public repositoryhttps://zenodo.org/, for both 1.09 million

HapMap3 (https://doi.org/10.5281/zenodo.3350914) and 2.8 million pruned variants

(https://doi.org/10.5281/zenodo.3375373). Source data are provided with this paper.

Code availability
Software implementing the LDpred-funct-inf and LDpred-funct63: https://www.hsph.

harvard.edu/alkes-price/software (https://doi.org/10.5281/zenodo.4579879). LDscore

regression v1.0.1 software: https://github.com/bulik/ldsc. BOLT-LMM v2.3 software

http://data.broadinstitute.org/alkesgroup/BOLT-LMM/. FASTPCA is available in

EIGENSOFT(7.2.1) at https://github.com/DReichLab/EIG/archive/v7.2.1.tar.gz (more

details in https://www.hsph.harvard.edu/alkes-price/software). AnnoPred: https://github.

com/yiminghu/AnnoPred. SBayesR 2.0 software: http://cnsgenomics.com/software/gctb/.

LDAK version 5 is available at http://dougspeed.com/downloads/. Plink 2.0 is available

at: https://www.cog-genomics.org/plink/2.0/.
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