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Incorporating geologic information into reflection tomography

Robert G. Clapp∗, Biondo Biondi∗, and Jon F. Claerbout∗

ABSTRACT

In areas of complex geology, prestack depth migra-
tion is often necessary if we are to produce an accu-
rate image of the subsurface. Prestack depth migration
requires an accurate interval velocity model. With few
exceptions, the subsurface velocities are not known be-
forehand and should be estimated. When the velocity
structure is complex, with significant lateral variations,
reflection-tomography methods are often an effective
tool for improving the velocity estimate. Unfortunately,
reflection tomography often converges slowly, to a model
that is geologically unreasonable, or it does not converge
at all. The large null space of reflection-tomography
problems often forces us to add a sparse parameteri-
zation of the model and/or regularization criteria to the
estimation. Standard tomography schemes tend to cre-
ate isotropic features in velocity models that are incon-
sistent with geology. These isotropic features result, in
large part, from using symmetric regularization opera-
tors or from choosing a poor model parameterization. If
we replace the symmetric operators with nonstationary
operators that tend to spread information along struc-
tural dips, the tomography will produce velocity models
that are geologically more reasonable. In addition, by
forming the operators in helical 1D space and perform-
ing polynomial division, we apply the inverse of these
space-varying anisotropic operators. The inverse opera-
tors can be used as a preconditioner to a standard to-
mography problem, thereby significantly improving the
speed of convergence compared with the typical regular-
ized inversion problem. Results from 2D synthetic and
2D field data are shown. In each case, the velocity ob-
tained improves the focusing of the migrated image.

INTRODUCTION

Obtaining an accurate velocity model is an essential part
of imaging complex strucutures. In complex environments,
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reflection tomography is often an effective tool for improving
the velocity estimate. The challenge is that reflection tomogra-
phy is generally an underdetermined problem (Stork and Clay-
ton, 1992). To obtain a pleasing result, the general solution is
to impose some type of regularization criteria, thereby limiting
inversion solutions to large singular values (Rowbatham and
Pratt, 1997) or characterizing the model through a limited num-
ber of coefficients (Ji, 1997). These methods all create velocity
models that can correctly model the recorded travel times but
are often geologically unrealistic.

To create more geologically feasible velocity models and to
speed up convergence of the tomography problem, Michelena
and Harris (1991) suggested using varying-size grid cells. Un-
fortunately, such a parameterization is prone to error when
the wrong-size blocks are chosen (Delprat-Jannaud and Lailly,
1992). Other authors have suggested locally clustering grid cells
(Carrion, 1991) or characterizing the velocity model as a series
of layers (Kosloff et al., 1996). These methods are also suscep-
tible to errors when the wrong parameterization is chosen.

An attractive alternative approach is to add a model-
regularization term to the objective function (van Trier, 1990).
In theory, this regularization term should be the inverse model
covariance matrix (Tarantola, 1987) obtained from some a pri-
ori information sources. For tomography, a geologist’s struc-
tural model of the area, well-log information, or preliminary
stack or migration results all could provide useful information.
Incorporating these varied information sources into the objec-
tive function is problematic. Geostatisticians have successfully
combined these mixed types of information (Hirsche et al.,
1997). However, geostatistics solves many local least-squares
problems, whereas tomography involves finding a global solu-
tion. Therefore, standard geostatistical methods are ill-suited
for velocity estimation. More-promising approaches were pre-
sented by Delprat-Jannaud and Lailly (1992) and Kaipio et al.
(1999). Delprat-Jannaud and Lailly (1992) incorporated into
the objective function a term encouraging the velocity gradi-
ent to follow reflector dip. Kaipio et al., (1999) suggested using
a priori structural information to create conditional covariance
matrices.

In this paper, we take a different approach to adding geo-
logic dip information to velocity estimation. We start from the
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same basic assumption that Delprat-Jannaud and Lailly (1992)
used, that velocity follows structural dip or some other known
trend. Rather than minimizing the velocity gradient directly in
the objective function, we approximate a single dip by creat-
ing a small plane-wave annihilation filter (Claerbout, 1992a).
By adjusting the shape and coefficients within this filter (which
we refer to as a dip-penalty filter), we can approximate a wide
range of covariance responses. By building a space-varying reg-
ularization operator out of these filters (a steering filter), we can
approximate a model covariance that is space-variant. To speed
up convergence, we reformulate the regularization problem as
a preconditioned problem (Claerbout, 1998a), using the helix
transform and polynomial division (Claerbout, 1998b).

To demonstrate the effect of the steering filter, we begin by
introducing a simple missing-data problem. We show how the
geophysicist and geostatistician find different ways to charac-
terize and incorporate the model covariance function into an
inverse problem. We then introduce another way to character-
ize the model covariance function—dip-penalty filters—that
combine the geostatistician’s ability to use disparate and ir-
regular information sources and the geophysicist’s ability to
solve complex inversion problems. We go on to describe how
to find dip-penalty-filter directions and how to build a steer-
ing filter. We show how to speed up convergence by reformu-
lating problems in terms of preconditioning rather than reg-
ularization. We show that a steering filter improves the to-
mography estimate on a simple-anticline synthetic model. We
conclude by applying the technique on a marine North Sea
data set.

WHY REGULARIZE?

Many geophysical inverse problems are ill-posed. A classic
example of this is the missing-data problem (Claerbout, 1998a;
Isaaks and Srivastava, 1989). The goal of the missing-data prob-
lem is to interpolate intelligently between a sparse set of known
points. For example, let us take a synthetic velocity model with
an upper horizontal reflector, an anticline between two uncon-
formities, and an updipping layer at the bottom of the model,
as shown in the left panel of Figure 1. Suppose we have veloc-
ity measurements at several wells and would like to interpolate
them onto a regular 2D mesh (right panel of Figure 1).

Figure 1. Left panel shows a synthetic velocity model, right panel shows a subset of those data chosen to simulate
well-log data.

The geophysicist might follow the approach described by
Claerbout (1998a). First, interpolate the irregular data, d, onto
a regular mesh by applying some type of binning operator; B,
then define a fitting goal that requires the model, m, to fit the
data exactly at the known points, J. We can then define an
objective function Q as

Q(m) = ‖JBd− Jm‖2. (1)

In this objective function we are trying to minimize the resid-
ual r,

minimize{r= JBd− Jm}. (2)

A shorthand form of equation (2) is

JBd ≈ Jm. (3)

In equation (4), 0 is an array of zeros. In this shorthand form,
the ≈ indicates that after minimization, the left-hand side
is approximately equal to the right-hand side. Equation (3)
is referred to as a fitting goal and makes representing com-
plex objective functions more intuitive. We will use this short-
hand form throughout the rest of the paper. At model loca-
tions where there are no data values, we want the model to
be “smooth”; therefore, we will use Tikhonov regularization
(Tikhonov and Arsenin, 1997) to minimize the output of a
roughening operator A applied to the model,

0 ≈ Am. (4)

In equation (4), 0 is an array of zeros. For the remainder of
the paper we will refer to equation (4) as the model styling
goal. The issue of determining the appropriate relative weights
between the fitting goal and the model styling goal is complex
and therefore beyond the scope of this paper.

Having no additional knowledge about the model, we might
logically choose an isotropic operator like the Laplacian for A.
If we apply the fitting goals implied by equations (3) and (4)
for 200 iterations using the Laplacian for A, we get the model
depicted in Figure 2. By spreading information isotropically,
the model goes smoothly from the known points to some local
average. We see little to no continuation of layers, which is
generally an unsatisfactory result.
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APPROXIMATING THE COVARIANCE MATRIX

Can we do better than the Laplacian operator? Bayes theory
indicates that we should be using the inverse model covariance
for the regularization operator (Tarantola, 1987). Unfortu-
nately, we usually have no way to estimate the model covari-
ance matrix. If the model covariance matrix is unreasonable to
estimate and use, what is a more reasonable goal?

All statistical measures have an underlying assumption of
repetition. Generally, we deal with data from a single experi-
ment, so we have a single value at each location. As a result,
common practice is to use nearby points to simulate repeti-
tion. By using multiple points, we are making an assumption of
stationarity; in other words, we assume that the statistics in a
region do not change. Mathematically, stationarity means that
the joint distribution of any two points does not depend on
their location, just on the vector distance x between them.

If we accept the stationarity assumption, there are several re-
lated ways that we can characterize the relationship between
nearby points. The covariance C(x) is simply the autocorrela-
tion with the mean subtracted,

C(x) = 〈mi − m̂i 〉 − 〈mj − m̂j 〉, (5)

where 〈 〉 is an ensemble average, mi and mj are points sepa-
rated by the vector distance x, and m̂i and m̂j are the average
values of the points.

Figure 3 shows covariance, calculated using equation (5),
of the left panel of Figure 1. It is dominated by the dip from
beneath the lowest unconformity, but other dips are also seen.
In the next subsections, we will show how geophysicists and
geostatisticians use these relative measurements to solve the
missing-data problem.

Geophysical approach

One method to characterize the model covariance is through
a Prediction Error Filter (PEF) (Claerbout, 1998a). The geo-

Figure 2. Interpolation result after 200 iterations using an in-
verse Laplacian regularization operator. Note the edge effects
at the top and bottom of the model, resulting from using an
internal convolution operator.

physicist notes that if we solve

Ma ≈ 0, (6)

where M is convolution with a field that has the same proper-
ties as the model, and a is a multidimensional PEF (Figure 4);
the output of this convolution is white [Claerbout, 1992a; see
Claerbout and Robinson (1964) for discussion of this estima-
tion procedure]. Therefore, a must have the inverse spectrum
of the model. This is only true if we have chosen a sufficient
shape and size for a. For example, in a 2D prediction prob-
lem, a must be of sufficient length that it can describe all of
the dips in the model. The width of a should correspond to the
number of dips in the model. If we construct a to find dips at all

Figure 3. Spatial covariance matrix for the velocity model in
Figure 1. Note that the dip below the lower unconformity
dominates the covariance calculation.

Figure 4. A sample 2D PEF. Coefficients a1–a10 are estimated
by convolving the PEF with a known model. The number of
columns in the PEF determine the number of dips that can be
estimated; the number of rows determine the range of dips that
the filter is sensitive to (Claerbout, 1998a).
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possible angles and then apply equation (6), we get the impulse
response of the filter (Figure 5).

The PEF captured the prominant dip going up at approxi-
mately 15◦ and also a minor dip going down at approximately
30◦. The right panel of Figure 5 shows the result of applying
the PEF to the missing-data problem. We have done a substan-
tially better job of filling in the missing data, compared with the
Laplacian result (Figure 2), but it is still far from ideal. The fil-
ter has introduced both dips at every location, and, as a result,
we have a model that is unreasonable.

Geostatistical approach

The geostatistician takes another approach to characteriz-
ing the model covariance, called kriging (Deutsch and Journel,
1992). Instead of solving a global optimization problem, the
geostatistician solves a series of small inversion problems. He
assumes that the model point m is a linear combination of n
nearby data points d1 . . .dn. The data and model exist in the
same vector space. We can define the model’s location as u0

and the data-point locations as u1 . . .un. The model is a linear
combination of the data points,

m=
n∑
α=1

λαdα. (7)

Figure 5. The left panel shows the impulse response of the PEF found from the velocity field (left panel of
Figure 1). The right panel shows the result of applying the PEF to the missing-data problem (the input being the
right side of Figure 1).

The weights λα are calculated to minimize the error variance
and result in the set of equations,
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whereµ is the Lagrange parameter that makes equation (8) an
unconstrained minimization problem (Isaaks and Srivastava,
1989). Each C(x), where x is a vector distance, is taken from
a predefined covariance estimate. An example of this can be
seen in Figure 6. Here, the left side shows four points ar-
ranged in space. The right side shows which C(x) will be used
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in equation (8). To guarantee that the matrix in equation (8)
is positive definite, the geostatistician approximates the co-
variance function through a linear combination of a limited
set of functions. Each function is described by range, the dis-
tance at which the covariance function has essentially gone to
0, anisotropy, the amount the covariance function depends on
radial angle, and orientation, the major orientation axis of the
covariance function. These parameters are used to describe a
spherical, exponential, Gaussian, or power model that is guar-
anteed to produce a positive definite covariance matrix.

The left panel of Figure 7 shows the geostatistical approxima-
tion of the model covariance for the missing-data problem. This
approximation does a good job of characterizing the primary
dip of the covariance function but does not accurately describe
the range of the covariance function. The right panel of Figure 7
shows the result of applying kriging to the same missing-data
problem. The result is comparable to the geophysical result. In-
stead of adding a second dip at every location, we have imposed
the primary dip. Because this approximation adds insufficient

Figure 6. Definition of the terms in equation (8). A vector is
drawn between two points. The covariance at the angle and
distance describing the vector is then selected.

Figure 7. Left panel shows the approximated covariance matrix; right panel is the result of solving equation (8)
at every unknown model point.

range for the covariance function, the answer returns to the
local average between the two wells with the greatest separa-
tion. Overall, the result is as unsatisfactory as the geophysical
approach to the problem.

STATIONARITY

Both the geostatistical and geophysical approaches give poor
results because the field we are characterizing is nonstationary,
whereas both methods are built on a stationarity assumption.
If we look at the covariance of four different regions in the
data, as shown in Figure 8, we can see that covariance changes
dramatically throughout the model. The top left panel shows
the covariance taken from the flat structure at the top of the
model and shows a strong horizontal trend. The top right panel
represents the covariance along the upper portion of the an-
ticline and has a slight dip down to the right. The bottom left
panel is the covariance from the lower portion of the anticline
and captures the sharper dip down to the right in the region.
The final panel represents the area below the unconformity
and captures the updipping structure.

Patching

A common solution to nonstationarity is to break the prob-
lem into patches (geophysics terminology) (Claerbout, 1992b)
or “distinct subzones” (geostatistics terminology). We define
regions where the assumption of stationarity is valid and ap-
ply the given technique in the region. We then recombine the
subregions into the final model. Figure 9 shows the result of
dividing the model space into the four different regions of
Figure 8 and then applying the geophysical and geostatistical
approaches. Note that the image is significantly improved over
the single-covariance-function approach. The range descrip-
tion for the geostatistical approach is poor, and the images are
still of significantly lower frequency than in the known model.
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Figure 8. The covariance at four different regions of the model (left panel of Figure 1). The top left is above the
upper unconformity; top right, the upper portion of the anticline; bottom left, lower portion of the anticline; and
bottom right, below the lower anticline. In each covariance display, a line is drawn through zero offset.

Figure 9. The result of breaking the problem into four patches and solving them independently. Left panel is the
result of applying the geophysical method, the right panel is the result of applying geostatistics.
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STEERING FILTER

It is apparent that the covariance function varies within at
least two of the four patches (we can also see this in the co-
variance functions of patches 2 and 4 of Figure 8). Therefore, it
follows that we should get a better image by making smaller and
smaller patches. Crawley (1998) showed that this is true when
one is solving a data-interpolation problem. Unfortunately, a
patch size large enough to generate sufficient statistics to find
the PEF or solve the kriging equations may still contain differ-
ent covariance functions. In addition, the geophysical solution
relies on having a field with the same statistical properties as
does the model, which is often not the case. Often, what we
have is what geostatisticians refer to as “soft data.” Soft data
have generally the same properties as does the variable of inter-
est, but they are often in incompatible form. A classic example
of this is tying well measurements to flow simulation results.
Geostatistics is generally better suited for combining mixed
and limited data. Kriging requires us to provide only a covari-
ance function for each subzone/region. On the other hand, the
geostatistical approach is not well suited for fitting into an it-
erative optimization problem. Kriging wants the physics of the
problem to be describable by a known function that would then
form the basis for a space-varying mean for the kriging problem
(Isaaks and Srivastava, 1989). For problems like tomography,
this is an unacceptable requirement.

In geophysics, attempts to combine different information
sources (Stork, 1994) have met with limited success. Gener-
ally, the inversion problems are too large to use classical hard-
constraint mechanisms (Polak, 1997). We need a method to
construct a space-varying filter that does a good job of describ-
ing the model covariance but that can be obtained from limited
and disparate information sources.

If we look at regions 1 and 4 in Figure 8, we can see that
when the stationary assumption is valid, the covariance matrix
is fairly simple. We have (1) a primary trend oriented along the
dip of the velocity field that slowly dies out and (2) a ringing
effect resulting from the sinusoidal nature of the model. We
would like to come up with a way to emulate the primary trend
of the covariance matrix through minimal information.

To do this, it is important to remember that the regularization
operator should have the inverse spectrum of the covariance
matrix. Therefore, if the covariance function is primarily a dip-
ping event, the regularization operator should be destroying
that dip. Claerbout (1990, 1992a) showed how to estimate the
primary dip in a region and how to construct a filter that could
destroy that dip. These small filters, which we refer to as dip-
penalty filters, can be as simple as a two- or three-point filter,
as in Figure 10. A dip-penalty filter consists of a fixed “1” and
one or more coefficients in the next column. The location of the
filter coefficients in the second column determines the dip that
the filter will destroy. Figure 11 is the inverse impulse response
of Figure 10. Note how the general orientation of the impulse
response is approximately the same as the covariance function
below the lower unconformity, but the anisotropy and range
are not correct. In the next section, we will discuss how we can
also control these parameters with dip-penalty filters.

Constructing a filter

When building a steering filter, we want to create a filter that
destroys a given slope p. Further, we would like to control the

bandwidth response of filters oriented at different slopes. We
can achieve both of these goals by constructing a simple filter.
The filter will have a 1 at the zero-lag location and the rest of
its values one column away. For determining the non-zero-lag
values, imagine constructing a triangle with an apex located on
the zero-lag location. The center of the triangle will be located
so that a line connecting it to the zero-lag apex has the desired
slope p. The width w of the triangle determines the size of
the filter (only coefficients within the triangle will be used)
and the filter’s level of anisotropy. The height of the triangle a
determines the range over which the filter will operate.

For example, let’s return to the missing-data problem. When
we limit the a priori information to the assumption that ve-
locity follows structure, and we have some guesses at reflector
position, we can use this information to build a complex oper-
ator (which we refer to as a steering filter) composed of dip-
penalty filters. For this problem, we will assume that we have
the location of four reflectors: one above the top unconformity,
two between the unconformities, and one below the lower un-
conformity (left panel of Figure 12). If we interpolate these
dips to the entire model space, we have all we need to con-
struct a steering-filter operator. If we use this operator as the
regularizer, we get Figure 13 as the interpolation result. The
steering filter did a significantly better job than did the patch-
ing approach. With more information about the model (more
reflectors, an approximation of the level of anisotropy in dif-
ferent portions of the model, etc.), we could do even better by

Figure 10. A dip-penalty filter designed to annihilate dips of
approximately 22.5◦.

Figure 11. The result of applying 1
AA′ , where A is the filter

in Figure 10.
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using some of the other adjustable parameters available when
constructing the steering-filter operator.

The three adjustable parameters in the filter construction—
possibly different at every model point—can seem daunting,
but they are what enables almost any covariance function to
be described by steering filters. In certain regions of the model,
one might feel that the covariance function is much more
isotropic. In these regions, one could consider making the tri-
angle bigger to smooth the filter coefficients over a wider angle
range, while keeping it small in areas where the covariance is
much more anisotropic.

REGULARIZING VS. PRECONDITIONING

An important consideration in many geophysical problems,
including tomography, is speed of convergence. Tomography,
even when it is ray based, is computationally intensive, so we
should minimize the number of steps it takes to get to a reason-
able solution. One reason for slow convergence is that the reg-
ularization operators, including steering filters, only respond
to low frequencies. As a result, the condition number of the
matrix we are attempting to invert is large. A classic solution
is to reformulate the regularized inversion problem into a pre-
conditioned problem in terms of some new variable p (Polak,
1997) as used in tomography by Harlan (1995). The goal is to
replace the regularization operator A with a preconditioning

Figure 12. Left panel are four reflectors chosen to represent the a priori information. The right panel is the
interpolated slope calculated from the reflectors that will form the basis of the dip-penalty filter.

operator B that smooths long distances with each iteration.
Any smoother could be an effective preconditioning operator,
but the ideal choice for B would be A−1, because if B=A−1, the
shorthand regularized fitting goals (3) and (4) would be equiva-
lent to the new preconditioned fitting goals (Fomel et al., 1997;

Figure 13. The result of using the steering filter operator as
regularizer to the missing-data problem.
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Fomel, 2001), where L is a linear operator,

d ≈ LA−1p

0 ≈ Am = AA−1p = Ip. (9)

Recall that in this shorthand form, the ≈ means that after
minimization, the left-hand side is approximately equal to the
right-hand side. The speed up is the result not only of the pre-
conditioner spreading information long distances with every
iteration but also of the regularization operator now being the
identity matrix, I. The identity matrix is its own inverse, thereby
reducing the condition number of the matrix we are trying to
invert.

Helix transform

If our regularization operator were 1D, applying the inverse
of the filter could easily be done through polynomial division
(Claerbout, 1976). If the filter is greater than 1D, there is no
general method to apply its inverse. The problem is that our
regularization operator, the steering filter, is multidimensional.
We can apply the inverse of the operator by taking advan-
tage of the helix transform (Claerbout, 1998b). The general
approach is to transform the problem into 1D space. Given
a multidimensional filter, such as Figure 10, first map it onto
the coordinate space of the data (panel a of Figure 14). Then
imagine wrapping the data around a cylinder, with the end of
column one connected to the beginning of column two. Finally,
unwind the data into a single string of numbers, and the mul-
tidimensional filter is converted into a 1D filter. If this new,
one-dimensional filter is causal and minimum phase, which the
steering filter is, we can apply polynomial division (Claerbout,
1976).

With the helix, we can now solve the missing-data prob-
lem that took us 40 iterations as a regularized problem, as in
Figure 13. Now we solve it in six iterations, at the same cost per
iteration and with the same quality of result (Figure 15).

Figure 14. Filtering on a helix. The same filter coefficients overlie the same data values if the 2D coils are unwound
into 1D strips. Figure courtesy of Sergey Fomel.

Figure 15. The interpolation result after six iterations using the
preconditioned formulation (10) of the problem.

Figure 16. The correct velocity model with the reflector
positions overlayed.
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REGULARIZING TOMOGRAPHY

To test the advantage of incorporating non-stationary-dip
information into the tomography problem, we constructed a
synthetic model (Figure 16). The model is an anticline with
seven reflectors. The top five reflectors are within the anticline
structure. The last two, a flat reflector and a dipping reflector,
are below the anticline. The imaging challenge is to position

Figure 17. Steering filter directions as a function of geologic dip.
The bold, solid lines are estimated reflector positions (taken
from the initial migration); the remaining lines represent dip
bars estimated by interpolating the dips between the reflectors.

Figure 18. The initial migration result using an s(z) velocity function from the edge of the model. Right are five
(z, θ) planes at different x positions. Note that the CRP gather at 5.5 is flat, whereas the other four CRP gathers
show significant moveout.

the bottom reflectors correctly. For added difficulty there is
a low-velocity layer between the second and third reflectors.
The model was used to do acoustic wave modeling, with the
resulting data set having 40-m common-midpoint (CMP) spac-
ing and 60 offsets spaced 80 m apart. If the initial estimation
of the slowness is the s(z) function from outside the anticline,
the migrated reflector positions are pulled up because of our
using too low a velocity within the anticline.

Finding smoothing directions

To build the steering-filter operator, we need a dip field, the
range, and the level of anisotropy throughout the model. In
many cases, it is important to have all three of these param-
eters vary spatially. For this simple example, we can assign a
constant range and anisotropy to the entire model. For the dip
field estimate, we assume that velocity follows dip and use the
position in which the reflectors image at zero offset. Figure 17
shows the dip directions based on the migrated reflector posi-
tions using the initial velocity estimate.

Fitting goals

For the tomography problem, we begin by linearizing around
an initial slowness model s0. We then construct a ray-based
tomography operator T (Stork and Clayton, 1991; Stork, 1992)
that relates changes in migrated reflector position (and through
local velocity changes in traveltime 1t) to slowness perturba-
tions 1s.
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Following the same procedure that we used for the missing-
data problem, we add the regularization goal to the tomogra-
phy problem to get our shorthand fitting goals:

1t ≈ T1s

0 ≈ εA1s, (10)

where A is the steering filter operator and ε is a scalar param-
eter controlling the importance of the smoothing criteria.

However, these fitting goals don’t accurately describe what
we really want. The steering filters are based on the desired

Figure 19. The velocity model using an isotropic regularization
operator.

Figure 20. The migration result using the velocity of Figure 19.

slowness s, rather than on the change of slowness1s. With this
fact in mind, we rewrite the model styling goal as

0 ≈ εA(s0 +1s). (11)

Here we see the advantage of the helix. Without having the
exact inverse of A as our preconditioner, we would not be able
to do the same substitution. The left-hand side of the model
styling goal is not equal to zero, but we can still do the same
preconditioning substitution:

1t ≈ TA−1p

−εAs0 ≈ εIp. (12)

SYNTHETIC COMPARISONS

Now that we have set up the tomography problem, it is
time to test the theory and compare the advantage of using
an anisotropic steering filter versus using isotropic regulariza-
tion. For this test case, we will use a wave-equation method to
migrate the data and construct angle gathers.

Figure 18 is the result of migrating with an s(z) slowness
function (varying only as a function of depth) extracted from
x= 4. The correct reflector positions are indicated with aster-
isks (*). As we expected, away from the anticline, the gathers
are flat and we have correctly positioned the reflectors. Along
the edge of the anticline, we see upward curvature in the CRP
gathers, indicating that we have used too slow a velocity at
this location. Below the center of the anticline, x= 10, the bot-
tom reflector shows some reverse moveout, the well-known W
pattern.
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For comparison, we performed one nonlinear iteration of
tomography using different operators for A in equation (12).
In the first case, we use an isotropic regularizer for A. Figure 19
shows the resulting velocity model. We have begun to recover
the anticline shape but have significantly smeared out the low-
velocity zone. If we migrate with this new velocity, as shown in
Figure 20, we see that we have significantly improved the image.
The CRP gathers are flatter but still show moveout errors. The
reflectors are better positioned, but we still have some pull-up.

Figure 21. The velocity model using steering-filter
regularization.

Figure 22. The migration result after one iteration of tomography using a steering filter as the regularization
operator.

We get a substantially improved result using a steering-
filter operator constructed from our initial migration positions.
Figure 21 shows the resulting velocity model. Note how the low-
velocity layer is much better defined in Figure 21 than it was
in Figure 19. By migrating with this velocity, we get an excel-
lent image, seen in Figure 22. The events are generally better
focused, we have little moveout in the CRP gathers, and there
is almost perfect placement of the reflectors.

FIELD DATA

To test the methodology on field data, we chose a data set
over a salt dome in the North Sea. The data are very clean,
with strong reflectors that are generally continuous. The data
contain a chalk layer that causes a velocity inversion below it.

The data set is 3D marine, acquired using four cables with
geophones every 25 m. In this paper, we will be dealing with a
2D subset of the 3D data set. The subset was created by partial
stacking and then applying azimuth moveout (AMO) (Biondi
et al., 1998) to the CMP gathers.

For our initial velocity, we started with Figure 23. Figure 24
is the result of migrating the data with the velocity of Figure 23.
The initial migration shows little reflector coherency as we ap-
proach the left edge of the salt (A). Very little coherent en-
ergy is visible directly below the strong reflection at 1.7 km
(B). To the right of the salt, we lose reflector coherency below
2.8 km (C). In addition, the left salt boundary (D) is nearly
nonexistent.
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Using the initial migrated image, we chose 11 reflectors with
which to perform tomography (Figure 25). To constrain the up-
per portion of the model, we chose the water-bottom reflection
and two reflectors above the salt. We also picked the salt top
and salt bottom and three reflectors on both sides of the salt
body.

We performed two nonlinear iterations of tomography hold-
ing the salt velocity constant. We used a steering filter as our
regularization operator and obtained the velocity in Figure 26.
Note how the velocity generally follows structure. The veloc-
ity contours follow the top of the salt structure and the basin
structure to the right of the salt. On the left side of the salt,
velocity is not as consistent with the structural model.

The migration (Figure 27) using the new velocity (Figure 26)
has also improved. Whereas little coherent energy was seen
along the left the edge of the salt body (A) in the initial
migration, we now see nice, continuous reflections to the salt
edge. At B, the focusing of events has significantly improved.
We also see coherent events to the right of the salt (C). The left
salt edge (D), which was absent in the initial migration, is also
visible.

Figure 23. The initial velocity model for the 2D line.

Figure 24. Migration result using the velocity from Figure 23.

Figure 25. Initial migration with picked reflectors overlaid.

Figure 26. Final velocity. Note how the velocity generally
follows structure. The velocity contours follow the top of the
salt structure and the basin structure to the right of the salt.
On the left side, the salt velocity is not as consistent with the
structural model.

Figure 27. Final migrated image. Locations A–D show
improvement, compared with Figure 24.
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CONCLUSIONS

In this paper, we demonstrated that a poor choice of regular-
ization operator can degrade inversion estimates. We showed
that a standard regularization choice, a stationary isotropic
operator, produced unrealistic features in our velocity model
for a synthetic and real tomography example. We overcame
that problem by using readily available a priori information—
reflector dip estimates based on early migration results—to
construct a nonstationary anisotropic regularization opera-
tor. By using this new regularization operator, we produced
velocity models that were more geologically reasonable and
produced better images. In the synthetic example, the image
produced from the velocity model using the nonstationary op-
erator better positioned the reflectors and flattened the gathers,
compared with the model obtained using the isotropic regular-
ization operator. In the field-data example, the image using
the velocity model estimated using the nonstationary oper-
ator showed significantly better focusing and more reflector
continuity.
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