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Abstract. In this paper, we address the problem of reverse-engineering
a gene regulatory network from gene expression time series. We approach
the problem by implementing an ant system to generate candidate net-
work structures. The quality of a candidate structure is evaluated using
a particle swarm optimization algorithm that tunes the parameters of
the corresponding model, by minimizing the error between the actual
time series and the trained model’s output. We extend this approach by
incorporating domain-specific heuristics to the ant system, as a mecha-
nism that has the potential to bias the pheromone amplification effect
towards biologically plausible relationships. We apply the method to a
subset of genes from a real world data set and report on the results.

1 Introduction

Gene expression is the process by which a gene’s DNA sequence is converted
through a series of steps into a functional product: the protein. This cellular
process constitutes the central dogma of molecular biology, i.e. that genes code
for proteins. During this process, DNA is first transcribed (copied) to an in-
termediate macromolecular form, the mRNA (messenger RNA), which is then
translated to protein. Proteins are involved in essential functions of a living or-
ganism, including transcription, the catalysis of chemical reactions, cell signalling
etc.

Certain genes code for special proteins called transcription factors, which are
responsible for regulating the expression of other genes (targets). Transcription
factors bind a cis-regulatory site in the promoter region of the target gene, thus
inducing a change in the target’s rate of transcription. The nature of change
specifies this effect as either activatory, in case of an increase in the target’s rate
of transcription, or repressive (inhibitory) in case of a decrease [1].

A gene regulatory network (GRN) is a complex network of causal relation-
ships between genes, where connections represent regulatory interactions be-
tween activators or repressors and targets.



With the advent of DNA microarray technology that measures the mRNA
levels of thousands of targets, it has become possible to observe such complex
biological processes by taking snapshots of the cellular state and capturing the
expression profiles of thousands of genes simultaneously. Gene expression data
can either be static, with gene profiles from different organisms, each typically
characterized by a class value, or dynamic in the form of gene expression time
series from the same organism.

The problem of reverse-engineering GRNs from gene expression data is a
major issue in systems biology [2]. A principal obstacle is the relative insufficiency
of observations (typically tens or a few hundreds) compared to the number of
genes measured (in the order of thousands or a few tens of thousands), the
so-called curse of dimensionality.

Additionally, the common practice of validating the biological plausibility
of inferred causal relationships by consulting the relevant literature, albeit un-
avoidable, is controversial because, in the absence of such experimental evidence
for a putative connection, there is no apparent method of classifying it either as
a previously unknown interaction or as just a spurious edge [3].

In this paper, we describe a swarm intelligence approach to the problem of
reverse-engineering GRNs from gene expression time series. We model a GRN as
a graph, upon which the ant colony optimization (ACO) meta-heuristic is imple-
mented for the selection of putative GRN architectures. The selected structure is
then modelled as a recurrent neural network (RNN), whose parameters (weights
and bias terms) are optimized using particle swarm optimization (PSO), so as
to minimize the error between the model’s output and the actual time series.

Our approach extends the work by Ressom et al. [4], first by changing the way
candidate architectures are constructed by individual artificial ants and, second,
by introducing a heuristic metric with the intention to bias the probabilistic edge
selection process towards biologically plausible relationships.

In the next section, we present an overview of existing approaches to the
problem of GRN inference from time course gene expression data. In section
3, the proposed framework is outlined by describing its components and their
interrelationships. In section 4, we report on the results of applying the method
to a subset of known genes from the yeast gene expression data set and we
discuss some of the issues that emerged, before the paper’s conclusion in section
5.

2 Existing Approaches

The earliest approaches to the problem of inferring gene relationships from time
course gene expression data, were cluster analysis methods, mostly based on
global correlation metrics, such as Pearson correlation coefficient, mutual infor-
mation etc., that extracted co-regulation information out of co-expressed gene
clusters [5][6]. These pioneering, model-free methods essentially group genes ac-
cording to their expression levels, providing an insight into the functionality of
unknown genes based on the cluster in which they belong. However, they do not



take the temporal nature of data into consideration and do not assign regulatory
roles to genes, since, given two genes that are co-expressed (have similar expres-
sion), it is not clear which regulates the other. Nevertheless, cluster analysis is
still useful, primarily as a technique to reduce the search space and improve the
performance of algorithms.

Model-based methods, on the other hand, operate by assuming the existence
of a model that represents the gene regulatory network and attempt to train
this model based on the available artificial or experimental data. In essence,
they attempt to reconstruct the architecture by reproducing the system dynam-
ics. Such models include Boolean networks, Bayesian networks, linear additive
models, systems of differential equations, power law systems etc. [7]

In Boolean networks, the state of a node at one time point is a boolean
function of the states of K other nodes at the previous time point. As such,
they constitute binary idealizations of genetic network architectures that, while
succeeding in the simulation and analysis of global dynamics [8], seem to suffer
from the problem of information loss during data binarization.

Dynamic Bayesian networks are models of joint, multivariate probability dis-
tributions that attempt to represent conditional independence relationships be-
tween variables. Their strength in representing noisy, stochastic processes due
to their probabilistic nature, makes them good candidates for addressing the
problem of inferring gene regulatory networks [9].

In linear additive (neural) models [10][11], the output of each node is a com-
bination of inputs from all other nodes, a function of the weighted sum of their
expression levels. Zero weights indicate no regulation, positive weights signify
activation, while negative weights signify repression. The assumption of linear-
ity is not a severe one [12], especially if one considers the statistical treatment
of microarray data and the increased levels of noise.

Ressom et al. [4] implement a swarm intelligence framework where an ant
system, driven only by pheromone amplification, is used for the selection of pu-
tative network structures. For each gene (regulator), each artificial ant considers
all 2n regulator-target combinations, where n is the number of genes, for the
construction of a candidate architecture. After a structure has been formed, the
corresponding model (RNN) is optimized using PSO, in order to evaluate the
quality of the selected structure.

Xu et al. [13] deploy a discrete version of PSO for structure selection and a
continuous version for model training. They also discuss the relative difficulty
of reconstructing the correct regulatory network structure over reproducing the
correct dynamics, explaining that there is no unique network to satisfy the data
upon which inference is based. Reconstructing the structure depends upon re-
producing the system dynamics and, therefore, is a problem of higher order.

3 Methods

Our approach uses an ACO implementation, on a graph with nodes representing
genes and directed edges representing regulatory (causal) relationships, to select



putative network architectures, driven by pheromone amplification and heuristic
information, where:

– pheromone trails are updated according to the ability of the model (RNN)
that represents the selected structure to reproduce the time series, after
having been trained using a PSO algorithm.

– the desirability value for a particular edge is calculated by a suitably defined
heuristic function.

A candidate gene network structure is represented by a recurrent neural
network model, whose update equation is given by:

xi(t) = f(

N∑

j=1

wijxj(t − 1) + bi) (1)

where xi(t) is the value (expression level) of node i at time t, bi a bias term and
weights wij express the influence of node j to node i, ranging from -1 (gene j

represses gene i) to 1 (gene j activates gene i). A value of 0 signifies no regulation.
f is a nonlinear transfer function, either the logistic or the hyperbolic tangent.

Network architectures are constructed using the ACO meta-heuristic [14],
whereby artificial ants navigate a graph of N nodes, where N is the number of
genes in the time series. Each artificial ant probabilistically selects K regula-
tor nodes for each target node in the graph, resulting in a candidate network
structure S = {eji} of NK connections. The parameter K reflects the fact that
gene networks are sparse and that a gene is regulated by only a handful of other
genes. An edge eji represents a regulatory relationship from node j to node i.
The probability of selection of node j as a potential regulator of node i is given
by:

pij =
τα
ijη

β
ij∑N

j=1 τα
ijη

β
ij

(2)

where τij is the pheromone value of edge eji, ηij is the selection desirability
of edge eji based on a suitably defined heuristic function and α, β are their
respective relative influences.

After a candidate structure S has been constructed, its quality is assessed by
tuning the corresponding model’s parameters in order to compare its predicted
output with the actual time series. The synaptic weights of the edges that are
not part of the selected structure are locked to 0.

Optimization of the model’s parameters is performed using a PSO algorithm
[15], where each particle’s position is encoded as a vector wS of size N(K + 1)
that contains the weights of the selected edges, as well as the bias terms. The
quality of a particle’s position is determined by calculating the MSE between
the predicted model output and the actual time series:

ǫ(wS) =
1

TN

T∑

t=1

N∑

i=1

[xi(t) − xwS

i (t)]2 (3)



where T is the number of available time points, N is the number of genes, xi(t)
is the actual expression level of the ith gene at time t and xwS

i (t) is the predicted
expression level of the ith gene at time t. The predicted time series are calculated
by setting up the model using wS and running it using each state of the actual
time series, in order to obtain the next state of the predicted time series.

After the threshold of maximum allowed PSO iterations has been reached, the
minimum achieved error ǫ(wS) is returned to the ACO algorithm as the quality
of the selected structure S. The pheromone matrix is then updated according
to:

τij =
1

ǫ(wS)
∀eji ∈ S (4)

The incorporation of heuristics to probabilistic structure selection offers a
way of enriching a domain-agnostic procedure with problem-specific insights. The
heuristic factor ηij from equation (2) can be defined as a function η : N×N → R
that maps a pair (i, j) to a score that reflects the strength and nature of gene’s j

influence on gene i. In this context, strength means the likelihood of regulation
and nature means the type of regulation (activation or repression).

Table 1. Scoring matrix for event matching. The score of a pair of symbols is a function of the
time lag dt between two events. S(dt) is a linearly decreasing function with 0 < S(dt) < 1, so that
the bigger the time lag, the less likely a causal effect is to be assumed. In case of a negative dt, the
match is assigned a maximum penalty. Parameters a and b range from 0 to 1 and their role is to
emphasize particular matching forms, based on biological arguments [16].

R C F

R S(dt) 0 −bS(dt)
C 0 0 0
F −bS(dt) 0 aS(dt)

For the purpose of demonstrating our approach, we are using a heuristic
proposed by Kwon et al. [16]. They hypothesize that if a rise in the expression
of gene A is followed by a rise in the expression of gene B, then this indicates
that gene A potentially activates gene B. Conversely, if a rise in the expression
of gene A is followed by a fall in the expression of gene B, then gene A is a
potential repressor for gene B.

These expression changes in a gene’s temporal profile are encoded as ‘events’,
by calculating the slope of the expression profile at every time interval and
classifying it as either ‘R’ (rising), ‘F’ (falling) or ‘C’ (constant). A variation of
the Needleman-Wunsch algorithm for sequence alignment [17] is then used to
determine the best possible alignment for a pair of event strings, by using the
event scoring matrix shown in Table 1.

Given the expression levels of two genes, one of which is assumed to be the
regulator and the other the target, the algorithm first calculates the score for
the presumed activatory relationship and then for the inhibitory relationship,
by complementing the event string of the target. This is done by swapping ‘R’s
with ‘F’s, while ‘C’s remain intact. The maximum score of the two is returned



to ACO as the overall score of the particular relationship and is cached to avoid
recalculation.

4 Results

We selected 5 cyclin genes that are known to be involved in cell cycle regulation,
from the S. cerevisiae (yeast) data set published in Spellman et al. [18], for the
purpose of comparing our results to those of Ressom et al. [4]. The yeast data
set contains multiple time series from the yeast cell cycle; we chose the cdc15

time series, consisting of 24 time points (more than the others). Gene expression
levels were first smoothed, by using a sliding window method (convolution of a
scaled Hann window with the expression profile), and consequently normalized
between 0 and 1.

Table 2. The known relations for the collection of selected genes come from PathwayStudio soft-
ware, as reported in Ressom et al. [4]. The last column summarizes how our algorithm compares
with their predictions.

Relation Type Known Relation Predicted by [4] Our Prediction

Expression CLB1 ← CLB6 yes (reversed) yes
Expression CLB1 ←+ CLB2 yes yes
Regulation CLB6 → CLB5 yes (reversed) yes
Regulation CLB6 +→ CLB2 no yes (opposite sign)
Regulation CLB1 ←+ CLB5 yes (reversed) no
MolSynthesis CLB1 +→ CLB2 yes yes
Direct Regulation CLB6 +→ cdc28 yes (reversed) yes (reversed)
Direct Regulation CLB5 +→ cdc28 yes yes
Direct Regulation CLB2 +→ cdc28 yes yes
Direct Regulation CLB2 ←+ CLB5 no yes (opposite sign)
Direct Regulation CLB1 +→ cdc28 yes no

For the PSO implementation we used a swarm with the global best topology,
a population size of 15 particles, a maximum number of 2000 iterations, φ1 =
φ2 = 2 and a random inertia weight ω drawn from a uniform distribution, ranging
from ωmin = 0.3 to ωmax = 0.8.

The settings for ACO were set as follows: the relative influences of pheromone
and heuristic value α = 1 and β = 1 respectively, the pheromone evaporation
rate ρ = 0.1 and the number of regulators for a given target gene K = 2. The
colony size was set to 5 and it was allowed to run for 50 steps.

We performed 10 such experiments and recorded the number of times each
edge was selected. We considered a particular relationship to be inferred if the
corresponding graph edge was selected at least half of the times, during all
experiments. The average MSE of RNN training was 0.058 with a standard
deviation of 0.0026.

The results, as shown in Table 2, do not indicate a notable (if any) improve-
ment over the predictions in [4]. The incorporation of the selected heuristic metric



does not seem to influence structure selection in a decisive manner. Perhaps, this
is due to the relative influences of pheromone value and heuristic desirability, α

and β, being equally weighted.

Table 3. Two examples of actual gene expression levels from the original time series and predicted
levels from the optimal RNN that resulted from the experiments.
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Two of our predicted, putative connections, namely CLB2 → CLB6 and
CLB5 → CLB6, are not reported as known relationships by [4] and their biolog-
ical plausibility can only be verified experimentally.

5 Further Work

The reported early results that have been presented in this paper, form part of
an ongoing study into a swarm intelligence perspective to the problem of reverse-
engineering gene regulatory networks. The proposed framework allows for the
incorporation of an arbitrary number of problem-specific heuristics, perhaps with
an appropriately defined weighting scheme, to a model-based optimization ap-
proach.

The behaviour of the ant system needs to be studied in relation to the values
of its parameters and the aggregation of heuristics. The suitability of different
models, representing selected structures, is also a path to be explored.

Furthermore, we note that our experiments have used a hand-picked subset of
temporal gene expression profiles. An investigation of the algorithm’s scalability
is necessary, particularly when considering the full set of genes, whose expression
levels are captured in a real world data set.
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