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Incorporating Information on Neighboring Coefficients
into Wavelet Estimation

T. Tony Cai Bernard W. Silverman
Department of Statistics Department of Mathematics
The Wharton School University of Bristol
University of Pennsylvania Bristol BS8 1TW
Philadelphia, PA 19104 U.K.

Abstract

In standard wavelet methods, the empirical wavelet coefficients are thresholded term by term,
on the basis of their individual magnitudes. Information on other coefficients has no influence
on the treatment of particular coefficients. We propose and investigate a wavelet shrinkage
method that incorporates information on neighboring coefficients into the decision making.
The coefficients are considered in overlapping blocks; the treatment of coefficients in the
middle of each block depends on the data in the whole block. Both the asymptotic and nu-
merical performances of two particular versions of the estimator are considered. In numer-
ical comparisons with various methods, both versions of the estimator perform excellently;
on the theoretical side, we show that one of the versions achieves the exact optimal rates of
convergence over a range of Besov classes.

Keywords: Adaptivity; Besov Space; Block Thresholding; James-Stein Estimator; Local Adap-
tivity; Nonparametric Regression; Wavelets; White Noise Model.
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1 Introduction

Consider the nonparametric regression model

yi = f(ti) + � zi (1)

whereti = i=n for i = 1; 2; : : : n; � is the noise level, and thezi are i.i.d.N(0; 1). The function
f(�) is an unknown function of interest.

Wavelet methods are attractive for nonparametric function estimation because of their spa-
tial adaptivity, computational efficiency and asymptotic optimality properties. Standard wavelet
methods achieve adaptivity through term-by-term thresholding of the empirical wavelet coef-
ficients. Typically, to obtain the wavelet coefficients of the function estimate, each individual
empirical wavelet coefficienty is compared with a predetermined threshold� , and is processed
taking account solely of its own magnitude. Other coefficients have no influence on the estimate.
Examples of shrinkage functions applied to individual coefficients include the hard thresholding
function�h� (y) = y � I(jyj > �) and the soft thresholding function�s� (y) = sgn(y) � (jyj � �)+.
For example, Donoho and Johnstone’s (1995a) VisuShrink estimates the true wavelet coefficients
by soft thresholding with theuniversal threshold� = �(2 logn)1=2.

Hall et al. (1999) and Cai (1996, 1999a, and 1999b) studied local block thresholding rules
for wavelet function estimation. These threshold the empirical wavelet coefficients in groups
rather than individually, making simultaneous decisions to retain or to discard all the coefficients
within a block. The aim is to increase estimation accuracy by utilizing information about neigh-
boring wavelet coefficients. These methods group coefficients in nonoverlapping blocks. The
multiwavelet threshold estimators considered by Downie and Silverman (1998) also utilize block
thresholding ideas.

In the present paper, we investigate wavelet shrinkage methods that incorporate information
about neighboring coefficients in a different way. The coefficients are considered in overlapping
blocks. The basic motivation of block thresholding remains: if neighboring coefficients contain
some signal, then it is likely that the coefficients of current direct interest also do, and so a
lower threshold should be used, essentially yielding a different local tradeoff between signal
and noise. Two particular approaches are considered. One method, which we callNeighCoeff,
chooses a threshold for each coefficient by reference not only to that coefficient but also to its
neighbors. In the other approach, calledNeighBlock, we aim to incorporate the advantages of
the block thresholding method by estimating wavelet coefficients simultaneously in groups, but
again use neighboring coefficients outside the block of current interest in fixing the threshold.
Both methods are specified completely, with explicit definition of both the block size and the
threshold level.

After Section 2 in which basic notation and definitions are reviewed, the two estimators are
defined in Section 3. We then investigate the two estimators both practically and theoretically.
In Section 4, the estimators are applied both to simulated and real data, with good performance
relative to other wavelet methods, with the NeighCoeff method performing particularly well.
Some theoretical results are derived in Section 5, where we show that a sequence space versions
of the estimators enjoy a high degree of adaptivity. Specifically, we prove that the NeighBlock
estimator simultaneously attains the exact optimal rate of convergence over a wide interval of
the Besov classes withp � 2 without prior knowledge of the smoothness of the underlying
functions. Over the Besov classes withp < 2, the estimator simultaneously achieves the optimal
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convergence rate within a logarithmic factor. We also prove that the NeighCoeff estimator is
within a logarithmic factor of being minimax over a range of Besov classes. As shown in Cai
(2000), this extra logarithmic factor is unavoidable for any estimator which uses a fixed number
(independent ofn) of empirical coefficients to estimate each wavelet coefficient.

The estimators are appealing visually as well as quantitatively. The reconstructions jump
where the target function jump; the reconstruction is smooth where the target function is smooth.
They do not contain the spurious fine-scale structure contained in some wavelet estimators, but
adapt well to subtle changes in the underlying functions. The web site Cai and Silverman (1999)
contains SPlus scripts implementing both our estimators. It also describes additional simulation
results not included in this paper.

2 Wavelet methods for function estimation

2.1 Further background, notation and conventions

We shall assume that we are working within an orthonormal wavelet basis generated by dilation
and translation of a compactly supported scaling function� and a mother wavelet .

For simplicity in exposition, we work with periodized wavelet bases on[0; 1], letting

�pj;k(t) =
1X

l=�1

�j;k(t� l);  p
j;k(t) =

1X
l=�1

�j;k(t� l); for t 2 [0; 1]

where
�j;k(t) = 2j=2�(2jt� k);  j;k(t) = 2j=2 (2jt� k):

The collectionf�pj0;k; k = 1; : : : ; 2j0;  p
j;k; j � j0 � 0; k = 1; :::; 2jg is then an orthonormal

basis ofL2[0; 1], provided the primary resolution levelj0 is large enough to ensure that the support
of the scaling functions and wavelets at levelj0 is not the whole of[0; 1]. The superscript “p”
will be suppressed from the notation for convenience.

An orthonormal wavelet basis has an associated exact orthogonal Discrete Wavelet Transform
(DWT) that is norm-preserving and transforms sampled data into the wavelet coefficient domain
in O(n) steps. We use the standard device of transforming the problem in the function domain
into a problem, in the sequence domain, of estimating the wavelet coefficients. See Daubechies
(1992) and Strang (1992) for further details about the wavelets and the discrete wavelet transform.

Wavelets are known for their excellent compression and localization properties. In very many
cases of interest, information about a function is essentially contained in relatively small number
of large coefficients. Figure 1 displays the wavelet coefficients of the well-known test function
Bumps (Donoho & Johnstone, 1994). It shows that large detail coefficients come as groups; they
cluster around the areas where the function changes significantly.

This example illustrates the motivation for our methods—a coefficient is more likely to con-
tain signal if neighboring coefficients do also. Therefore when the observations are contaminated
with noise, estimation accuracy might be improved by incorporating information on neighboring
coefficients. Indeed, as we shall see, our estimators show significant numerical improvement
over the conventional term-by-term thresholding estimators.

Suppose we observe the dataY = fyig as in (1). We shall assume that the noise level� is
known. Let ~� = W � Y be the discrete wavelet transform ofY . Then ~� is ann-vector with
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(a). Bumps
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(b). Wavelet Coefficients

Figure 1: Wavelet coefficients of the Bumps function

elements~�j0;k (k = 1; � � � ; 2j0), which are the gross structure scaling function terms at the lowest
resolution level, and~�j;k (j = j0; � � � ; J � 1; k = 1; � � � ; 2j), which are fine structure wavelet
terms. Since the DWT is an orthogonal transform, the coefficients are independently normally
distributed with variance�2.

For any particular estimation procedure based on the wavelet coefficients, use the notation�̂
for the estimate of the DWT� of the values off at the sample points. Up to the error involved
in approximatingf at the finest level by a wavelet series, the mean integrated square error of the
estimation satisfies

Ekf̂ � fk22 = n�1Ek�̂��k2:
We therefore measure quality of recovery in terms of the mean square error in wavelet coefficient
space.

3 The NeighBlock and NeighCoeff procedures

We now define the estimates studied in this paper. We give a definition of the NeighBlock es-
timator first, because the NeighCoeff estimator can then be defined by reducing the basic block
length to 1.
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3.1 The NeighBlock method

The NeighBlock method has the following steps, aiming to build on the advantages previously
found for block thresholding by incorporating information about neighboring coefficients. The
procedure is simple and easy to implement, and has a computational cost ofO(n).

1. Transform the data into the wavelet domain via the discrete wavelet transform:~� = W �Y .

2. At each resolution levelj, group the empirical wavelet coefficients into disjoint blocksbji
of lengthL0 = [(logn)=2]. (If necessary, shorten one or both of thebji at the boundary to
ensure that the blocks are nonoverlapping.)

3. Extend each blockbji by an amountL1 = max(1; [L0=2]) in each direction to form over-
lapping larger blocksBj

i of lengthL = L0 + 2L1. (If periodic boundary conditions are
not being used, then thebji at the boundary are only extended in one direction to formBj

i ,
again of lengthL.)

4. Within each blockbji , estimate the coefficients simultaneously via a shrinkage rule

�̂j;k = �ji ~�j;k; for all (j; k) 2 bji :

The shrinkage factor�ji is chosen with reference to the coefficients in thelarger blockBj
i :

�ji = (1� ��L�
2=S2

j;i)+ (2)

where
S2
j;i =

X
(j;k)2Bj

i

~�2j;k (3)

and�� = 4:50524::: is the solution of the equation�� log� = 3. We can envisionBj
i as a

sliding window which movesL0 positions each time and, for each given window, only the
half of the coefficients in the center of the window are estimated.

5. Obtain the estimate of the function via the inverse discrete wavelet transform of the de-
noised wavelet coefficients.

The value of the thresholding coefficient�� is derived from an oracle inequality introduced in
Cai (1999a). Reasons for this choice will be discussed further when we consider the theoretical
properties of the estimator. Note, in contrast to some other block thresholding methods, the
various parameters are fully specified: the block lengthL0 = [(logn)=2] depends on the sample
sizen only and the thresholding constant� is an absolute constant.

The estimator can be modified by averaging over every possible position of the block centers.
The resulting estimator sometimes has numerical advantages, at the cost of higher computational
complexity.
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3.2 The NeighCoeff method

The NeighCoeff procedure follows the same steps as the NeighBlock estimator, but withL0 =
L1 = 1, L = 3, and� = 2

3
logn. The effect is that each individual coefficient is shrunk by an

amount that depends on the coefficient and on its immediate neighbors.
NeighCoeff uses a lower threshold level than the VisuShrink method of Donoho and John-

stone (1995a). In NeighCoeff, a coefficient is estimated by zero only when the sum of squares of
the empirical coefficient and its immediate neighbors is less than2�2 logn, or the average of the
squares is less than2

3
�2 logn.

3.3 Discussion

In this paper, our main concern is with the nonparametric regression estimation of a function
observed at regular intervals with independent homoscedastic noise. Nevertheless, the idea of
the NeighBlock and NeighCoeff procedures can be generalized to treat other statistical func-
tion estimation problems. For instance, Johnstone and Silverman (1997) considered the case of
data observed with stationary correlated noise. Such data lead to a wavelet transform that has
level-dependent variance, but within each level the variance is constant, and their paper showed
that thresholding such data as if they were independent would give good results. It is therefore
straightforward to apply a block thresholding procedure in a case of this kind. Even though the-
oretical work remains to be done on the precise properties of such a procedure, the results of
Johnstone and Silverman (1997) are encouraging.

Data with more general structure were considered by Kovac and Silverman (2000). Their
work covers both the case of data observed at irregularly spaced design points and of data with
more general covariance structure, and their paper provides efficient methods for finding the
variances of all the empirical wavelet coefficients. A natural approach is then to rescale each
coefficient by its own standard deviation, apply one of the block thresholding methods set out
above, and then refer back to the original scale.

Thresholding of coefficients with unequal variances also arises in wavelet approaches to den-
sity estimation. For a discussion of the use of wavelets in density estimation, and for further
references, see the paper in this volume by Herrick, Nason and Silverman (2001). Suppose we
observe a random sampleX1; X2; : : : ; Xn from a densityf with wavelet expansion

f(t) =
X
k

�j0k�j0k(t) +
1X

j=j0

X
k

�jk jk(t)

with the wavelet coefficients

�j0k =
Z
�j0k(x)f(x) dx = Ef�j0k(X) and �jk =

Z
 jk(x)f(x) dx = Ef jk(X):

Denote the empirical wavelet coefficients by

~�j0k =
1

n

nX
i=1

�j0k(Xi) and ~�jk =
1

n

nX
i=1

 jk(Xi):

At each level, the empirical wavelet coefficients will only be nonzero for a finite range of indices
k. Herricket al.consider ways of estimating the variances of the coefficients, and these estimates
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can then be used within a block thresholding procedure. A particular issue that requires some
careful thought is the treatment of the non-normal distributions that arise at finer levels of the
transform.

Detailed study of all these extensions of the NeighBlock and NeighCoeff estimators is an
interesting topic for future work.

4 Numerical comparisons

We first explore the performance of the estimators beginning with two illustrative examples, and
then considering a more detailed simulation study. We implement the NeighBlock and NeighCo-
eff estimators in the software package S+Wavelets. The programs are available from the web site
Cai and Silverman (1999).

The comparison methods include Donoho and Johnstone’s VisuShrink and SureShrink as
well as Coifman and Donoho’s Translation-Invariant (TI) denoising method. SureShrink selects
the threshold at each resolution level by minimizing Stein’s (1981) unbiased estimate of risk.
In the simulation, we use the hybrid method proposed in Donoho and Johnstone (1995b). The
TI-denoising method was introduced by Coifman and Donoho (1995), and is equivalent to av-
eraging over estimators based on all the shifts of the original data. This method has various
advantages over the universal thresholding methods. For further details see the original papers.
In the systematic simulation study in Section 4.3, we also consider the BlockJS estimator intro-
duced in Cai (1999b). The BlockJS estimator has been shown to perform well both numerically
and theoretically; see Cai (1999a) for further details.

4.1 A simulated signal of varying frequency

Figure 2 displays a noisy Doppler signal as well as reconstructions obtained using various meth-
ods. All the methods except SureShrink recover the smooth low frequency part reasonably well.
Both NeighBlock and NeighCoeff automatically adapt to the changing frequency of the underly-
ing signal. Both estimate the smooth and low frequency part accurately; at the same time, they
also capture the more rapidly oscillating area betweent = 0:1 andt = 0:4. In contrast, both Vi-
suShrink and TI de-noising significantly over-smooth in this region. SureShrink does better than
VisuShrink and TI de-noising in recovering the high frequency part, but it contains noticeable
spurious local fluctuation and is visually unpleasant. None of the estimators does a particularly
good job in the regiont < 0:1 of very high frequency oscillation, partly because of the low sam-
pling rate relative to the rate of oscillation; however, in contrast to any of the other estimators,
both NeighBlock and NeighCoeff do recover a little of the signal even in this region.

Quantitatively, NeighBlock and NeighCoeff are almost identical and both are significantly
better than the other methods. In this particular example, the ratios of the mean squared error
of NeighBlock and NeighCoeff to those of VisuShrink, SureShrink, and TI de-noising are 0.35,
0.72, and 0.45 respectively.

Inspection of wavelet coefficients shows that NeighBlock NeighCoeff, VisuShrink, and SureShrink
use 33, 28, 15, and 61 detail coefficients in the reconstruction, respectively. SureShrink retains
many detail coefficients in the low frequency area and as a result, the reconstruction contains
spurious oscillations. VisuShrink keeps only 15 detail coefficients and the reconstruction is
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over-smoothed. The additional smoothing inherent in the TI-denoising method has also led to
over-smoothing.

4.2 An anesthesiology example

Figure 3 shows a typical segment of the result of the same methods applied to the inductance
plethysmography data analyzed, for example, by Abramovichet al. (1998). Because this is real
data there is no ‘right’ answer, but both the VisuShrink and TI denoising estimates smooth out
the broad features of the curve, while the SureShrink estimator contains high frequency effects
near times 300 and 335, both of which are almost certainly spurious.

4.3 A simulation study

To provide a more systematic comparison, we compared the numerical performance of the meth-
ods using eight test functions representing different level of spatial variability. The test functions
are plotted in Figure 4. Sample sizes ranging fromn = 512 to n = 8192 and root-signal-to-noise
ratios (RSNR) from 3 to 7 were considered. The RSNR is the ratio of the standard deviation of
the function values to the standard deviation of the noise. Several different wavelets were used.

For reasons of space, we only report in detail the results for one particular case, using
Daubechies’ compactly supported waveletSymmlet 8 and RSNR equal to 3. Table 1 reports
the average squared errors over 60 replications with sample sizes ranging fromn = 512 to
n = 8192. A graphical presentation is given in Figure 5. Different combinations of wavelets
and signal-to-noise ratios yield basically the same results; for details see the web site Cai and
Silverman (1999).

The NeighBlock and NeighCoeff methods both uniformly outperform VisuShrink. For five
of the eight test functions, Doppler, Bumps, Blocks, Spikes and Blip, our methods have better
precision with sample sizen than VisuShrink with sample size2n for all sample sizes where
the comparison is possible. The NeighCoeff method is slightly better than NeighBlock in almost
all cases, and outperforms the other methods as well. The NeighCoeff method is also better
than TI-denoising in most cases, especially when the underlying function is of significant spa-
tial variability. In terms of the mean square error criterion, conceivable competitors among the
other methods are BlockJS and SureShrink. Both NeighCoeff and NeighBlock nearly always
outperform BlockJS. Apart from being somewhat superior to SureShrink in mean square error,
our methods yield noticeably better results visually; our estimates do not contain the spurious
fine-scale effects that are often contained in the SureShrink estimator.

The curious behavior of some of the methods with the Waves signal calls for some explana-
tion. Throughout, the primary resolution levelj0 = [log2 logn] + 1 was used for all methods.
Thus,j0 = 3 for n � 2048, andj0 = 4 for n = 4096 and 8192. This change in the value of
j0 affects whether or not the high frequency effect in the Waves signal is felt in the lowest level
of wavelet coefficients. Forj0 = 3, the standard methods all smooth out the high frequency
effect to some extent, because of applying a soft threshold with fixed threshold. An attractive
feature of the NeighCoeff and NeighBlock methods is that they are not sensitive to the choice of
primary resolution level in this way, because the threshold adapts to the presence of signal in all
the coefficients.
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4.4 Summary of results

Overall the two methods introduced in this paper have performed very well in comparison to other
standard methods. If anything, the simple NeighCoeff procedure is the best of the estimators
we have considered. Of course, there are many other approaches to the processing of wavelet
coefficients now in the literature, but the simple message that could be applied more generally
is that borrowing information from immediately neighboring coefficients can make a substantial
improvement.

One method we have not used in our comparisons is the block thresholding estimator of Hall
et al. (1999). Their method requires the selection of smoothing parameters—block length and
threshold level—neither of which is completely specified and no criterion is given for choos-
ing the parameters objectively in finite sample cases. However, simulation results by Hallet
al. (1997) show that even the translation-averaged version of the estimator has little advantage
over VisuShrink when the signal to noise ratio is high. Our simulation shows that NeighBlock
uniformly outperforms VisuShrink in all examples, and indeed the relative performance of Vi-
suShrink is even worse for values of RSNR higher than the one presented in detail. Therefore
we expect our estimator to perform favorably over the estimator of Hallet al. in terms of mean
squared error, at least in the case of high signal-to-noise-ratio.

5 Theoretical properties

In the remainder of the paper, we consider the theoretical properties of our proposed estimators.
In the Besov sequence space formulation that is by now classical for the analysis of wavelet
regression methods, we find that both methods have excellent asymptotic properties. It should be
noted that the Besov norms are invariant under permutation of the order of wavelet coefficients
within each level of the transform, and it therefore may be the case that they do not completely
capture the subtleties of inhomogeneous variability of functions actually arising in practice. This
is an interesting topic for future work.

5.1 Background

Besov spaces are a very rich class of function spaces. They contain many traditional smoothness
spaces such as H¨older and Sobolev Spaces. Full details of Besov spaces are given, for example,
in DeVore and Popov (1988).

For a given square-integrable functionf on [0; 1], define the scaling function and wavelet
coefficients of the wavelet expansion off by

�j;k = hf; �j;ki; �j;k = hf;  j;ki:

Let � be the vector of the scaling function coefficients, and for eachj let �j be the vector of the
wavelet coefficients at levelj.

Suppose� > 0; 0 < p � 1 and0 < q � 1. Then, roughly speaking, the Besov function
norm of index(�; p; q) quantifies the size in anLp sense of the derivative off of order�, with q
giving a finer gradation; for a precise definition see DeVore and Popov (1988).
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Defines = �+1=2� 1=p. We call a wavelet r-regular if  hasr vanishing moments andr
continuous derivatives. For a givenr-regular mother wavelet with r > �, the Besov sequence
norm of the wavelet coefficients of a functionf is then defined by

k�kp +
0
@ 1X
j=j0

2jsqk�jkqp
1
A

1=q

: (4)

It is an important fact (Meyer 1992) that the Besov function norm of index(�; p; q) of a function
f is equivalent to the sequence norm (4) of the wavelet coefficients of the function.

5.2 Estimation in sequence space by NeighBlock and NeighCoeff

In the present paper we shall confine our detailed theoretical discussion to a sequence space
version of the NeighBlock and NeighCoeff estimators. Supposen = 2J for some integerJ and
that we observe sequence data

yj;k = �j;k + n�1=2�zj;k; j � 0; k = 1; 2; � � � ; 2j (5)

wherezj;k are i.i.d. N(0; 1). The mean array� is the object that we wish to estimate, and the
accuracy of estimation is measured by the expected squared error

R(�̂; �) = E
X
j;k

(�̂j;k � �j;k)
2:

We assume that� is in some Besov Body�s
p;q(M) = f� : P1

j=j0
2jsqk�jkqp �M qg. Make the

usual calibrations = � + 1=2� 1=p. Donoho and Johnstone (1998) show that the minimax rate
of convergence for estimating� over the Besov body�s

p;q(M) is n�2�=(1+2�) asn!1.
We apply the NeighBlock procedure of Section 3.1 to the array of sample coefficients~�j;k for

j < J , to obtain estimated coefficientŝ�j;k. For j � J we set�̂j;k = 0: Similarly we denote by
��j;k the result of applying the NeighCoeff procedure of Section 3.2, setting the estimate to zero
for j � J:

We prove that both estimators attain the minimax rate up to logarithmic terms over all Besov
Bodies�s

p;q(M) with �p � 1. For the NeighBlock estimator, our proofs yield the exact minimax
rate forp � 2. The detailed results are as follows:

Theorem 1 Define�̂ to be the NeighBlock estimator of the array�, as defined above. Then, as
n!1,

sup
�2�s

p;q(M)
Ek�̂ � �k22 �

(
Cn�2�=(1+2�) for p � 2
Cn�2�=(1+2�)(logn)(2�p)=fp(1+2�)g for p < 2 and�p � 1:

(6)

Theorem 2 Define�� to be the NeighCoeff estimator of the array�. Then, for�p � 1, as
n!1,

sup
�2�s

p;q(M)
Ek�� � �k22 � C(logn=n)2�=(1+2�):
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Before proving these theorems, we remark that Donoho and Johnstone (1998) show a strong
equivalence result between the nonparametric regression and the white noise models over Besov
function classes of index(�; p; q). When the wavelet is r-regular withr > � andp; q � 1,
then a simultaneously near-optimal estimator in the sequence estimation problem can be applied
to the empirical wavelet coefficients in the function estimation problem in (1), and will be a
simultaneously near-optimal estimator in the function estimation problem. For further details
about the equivalence and approximation arguments, the readers are referred to Donoho and
Johnstone (1995b), (1998) and (1999) and Brown and Low (1996a). For approximation results,
see also Chambolleet al. (1998).

5.3 The choice of the thresholding constant�� in NeighBlock

In the NeighBlock procedure, the thresholding constant�� is set to�� = 4:505:::, which is
the solution of the equation� � log� = 3. The reasons for choosing this value is analogous
to those for the choice of(2 logn)1=2 in term by term thresholding. Donoho and Johnstone
(1994) use(2 logn)1=2 as thresholding constant in their VisuShrink estimator based on an oracle
inequality and the following fact which makes the VisuShrink estimator almost “noise free”. For
Z1; : : : ; Zn

iid� N(0; 1)

P
�
max

i
jZij > (2 logn)1=2

�
! 0; asn!1.

In NeighBlock, the choice of�� is also based an oracle inequality ( See Theorem 1 in Cai
(1999a)) and the following smoothness property. LetZ1; : : : ; Zn

iid� N(0; 1) andL = logn.
Divide Zi into blocks of sizeL, then the sums of squaresS2

b =
PbL

i=b(L�1)+1 Z
2
i of the blocks

satisfies
P
�
max
b

S2
b > ��L

�
! 0; asn!1. (7)

The value of�� = 4:50524::: is the smallest constant satisfying (7). With this choice of��, the
NeighBlock estimator, with high probability, removes pure noise completely. This smoothness
property offers high visual quality of the reconstruction. The choice of�� can also be motivated
by a hypothesis testing formulation. See Cai (1999b) for further details.

Finally, we note that the theoretical results in Theorem 1 remain valid for any constant
� � ��. (Similarly, term by term thresholding estimators attain the same convergence rate of
(logn=n)2�=(1+2�) with the threshold(a logn)1=2 for anya � 2.)

5.4 Proofs

Our proofs depend on three lemmas. The first contains two key oracle inequalities for the esti-
mators we are considering.

Lemma 1 Assume thatyj;k, �̂j;k and��j;k are as defined in Section 5.2. Then, defining�� > 1 by
�� � log�� = 3, for eachi andj0 � j < JX

(j;k)2bj
i

E(�̂j;k � �j;k)
2 � ��(�

2n�1 logn ^ X
(j;k)2Bj

i

�2j;k) + 2n�2�2: (8)

E(��j;i � �j;i)
2 � (2�2n�1 logn) ^

i+1X
k=i�1

�2j;k + 2�2n�2(logn)1=2: (9)

11



At the boundary, the sum in (9) is taken over the block of length 3 containing(j; i). The proof of
this lemma is an extension of the proof of Theorem 1 of Cai (1999a), but with certain essential
modifications. First consider (8). Forj; k in Bj

i define

�yj;k = (1� n�1��L�
2=S2

j;i)+ yj;k:

Then�yj;k = �̂j;k for (j; k) in bji , so extending the sum frombji to Bj
i , and replacinĝ� by �y, can

only increase the left hand side of (8). The argument of Theorem 1 and Lemma 2 of Cai (1999a)
shows that the inequality holds with these changes, completing the proof of (8). The proof of (9)
follows from Theorem 1 in Cai (1999a) and the following upper bound for the tail probability of
the�2

m for integersm:

P (�2
m > �m) � ��1=2(�� 1)�1m�1=2 e�

m
2
(��log ��1) for � > 1: (10)

To prove (10), denote byfm(y) the pdf of a�2
m variable, and let~Fm(x) be the tail probabilityR1

x fm(y)dy. Then, by exercise 16.7 of Stuart and Ord (1994) and elementary calculations for
the�2

1 distribution,

~Fm(�m) � 2
[(m�1)=2]X

k=0

fm�2k(�m) (11)

It is easy to see that, for̀� m,

f`(�m) =
`

�m
f`+2(�m) � ��1f`+2(�m): (12)

Combining (11) and (12), one has

~F (�m) � 2
[(m�1)=2]X

k=0

��kfm(�m) � 2�

�� 1
� 1

2m=2�(m=2)
(�m)m=2�1e��m=2: (13)

Now by Stirling’s formula,�(x+ 1) � p
2� xx+1=2e�x for all x > 0, and so

~Fm(�m) � ��1=2(�� 1)�1m�1=2e�
m
2
(��log ��1)

as required, completing the proof of Lemma 1.
We now recall two elementary inequalities between two different`p norms, and a bound for

a certain sum.

Lemma 2 Letx 2 IRm, and0 < p1 � p2 � 1. Then the following inequalities hold:

kxkp2 � kxkp1 � m
1

p1
� 1

p2 kxkp2 (14)

Lemma 3 Let 0 < a < 1 andS = fx 2 IRk :
Pk

i=1 x
a
i � B; xi � 0; i = 1; � � � ; kg. Then for

� > 0,

sup
x2S

kX
i=1

(xi ^ �) � B � � 1�a:

12



We can now proceed to the proofs of the theorems themselves. We have

Ek�̂��k22 =
X
j<j0

X
k

E(�̂j;k��j;k)2+
J�1X
j=j0

X
k

E(�̂j;k��j;k)2+
1X
j=J

X
k

�2j;k � S1+S2+S3; (15)

say. We bound the termS2 by using Lemma 1. Let

Aj
i =

X
(j;k)2Bj

i

�2j;k;

the sum of squared coefficients within the blockBj
i . We then split up the sum definingS2 into

sums over the individual blocksbji , and apply the oracle inequality (8). SinceL = logn and the
number of blocks is definitely less thann, this yields

S2 =
J�1X
j=j0

X
k

E(�̂j;k � �j;k)
2 � C

J�1X
j=j0

X
i

(Aj
i ^ �2n�1L) + 2n�1�2: (16)

Note also that, since� 2 �s
p;q(M), we have2jsk�jkp � M for eachj. We now complete the

proof for the two cases separately.

The casep � 2: For � 2 �s
p;q(M), Lemma 2 implies that

k�jk22 � (2j)2(
1

2
� 1

p
)k�jk2p �M222j(

1

2
� 1

p
�s) =M22�2�j: (17)

It follows that

S1 + S3 � 2j0n�1�2 +
1X
j=J

M22�2�j = o(n�2�=(1+2�)); (18)

so thatS1 + S3 can be neglected.
We divide the sum in (16) into two parts. ChooseJ1 such that2J1 � n1=(1+2�). Then,

J1�1X
j=j0

X
i

(Aj
i ^ �2n�1L) �

J1�1X
j=j0

X
i

�2n�1L � C2J1n�1 � Cn�2�=(1+2�); (19)

and, making use of the bound (17),

J�1X
j=J1

X
i

(Aj
i ^ �2n�1L) �

J�1X
j=J1

X
i

Aj
i � 2

J�1X
j=J1

k�jk22 � Cn�2�=(1+2�): (20)

Combining (19) and (20) demonstrates thatS2 � Cn�2�=(1+2�), completing the proof for this
case.

The casep < 2 with �p � 1: For � 2 �s
p;q(M), Lemma 2 now yieldsk�jk22 � k�jk2p �

M22�2js. The assumption�p � 1 implies thats � 1
2
, so that

S3 � C
1X
j=J

2�2js � Cn�2s � Cn�1:

13



ThusS1 + S3 = o(n�2�=(1+2�)) as before.
Now let J2 be an integer satisfying2J2 � n1=(1+2�)(logn)�(2�p)=p(1+2�). Then, by an argu-

ment analogous to that leading to (19),

J2�1X
j=j0

X
i

(Aj
i ^ �2n�1L) �

J2�1X
j=j0

X
i

�2n�1L � Cn�2�=(1+2�)(logn)(2�p)=p(1+2�): (21)

Turning to the other part ofS2, it follows from Lemma 2 that, for eachj,
X
i

(Aj
i )
p=2 �X

i

X
(j;k)2Bj

i

(�2j;k)
p=2 � 2

X
k

(�2j;k)
p=2 � 2Mp2�jsp:

Applying Lemma 3 witha = p=2, we have, after some algebra,

J�1X
j=J2

X
i

(Aj
i ^ �2n�1L) � Cn�2�=(1+2�)(logn)(2�p)=p(1+2�): (22)

We complete the proof of Theorem 1 by combining the bounds (21) and (22), as in the case
p � 2:

The proof of Theorem 2 is similar, using the oracle inequality (9) instead of (8).
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Figure 2: The noisy Doppler signal (top left panel) and the reconstructions (methods as labelled).
The dotted line is the true signal.
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Figure 3: A segment of the data and curve estimates for the inductance plethysmography data. Left
figure: NeighBlock (solid), VisuShrink (dotted), TI denoising (dashed). Right figure: NeighBlock (solid),
NeighCoeff (dotted), SureShrink (dashed).
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Figure 4: Test functions. Doppler, HeaviSine, Bumps and Blocks are from Donoho and Johnstone
(1995a). Blip and Wave are from Marronet al. (1995). The test functions are normalized so that
every function has standard deviation 10. Formulae for Spikes and Corner are given in Cai
(1999a).
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Figure 5: RSNR=3. The vertical bars represent the ratios of the MSEs of various estimators to the
corresponding MSE of the NeighCoeff estimator. The higher the bar the better the relative performance
of the NeighCoeff estimator, and a value of one means that the estimators have equal performance. The
plotted ratios are truncated at a value of 2. For each signal the bars are ordered from left to right by the
sample sizes (n = 512; 1024; 2048; 4096; 8192).
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Table 1: Mean Squared Error From 60 Replications (RSNR=3)

n NeighCoeff NeighBlock SureShrink TI-denoising VisuShrink
Doppler
512 2.22 2.36 2.91 5.13 6.76
1024 1.34 1.35 1.98 3.36 4.49
2048 0.83 0.82 1.23 2.24 2.96
4096 0.51 0.50 0.68 1.25 1.61
8192 0.30 0.26 0.43 0.77 1.05
HeaviSine
512 0.82 0.82 0.81 0.81 0.83
1024 0.59 0.63 0.56 0.62 0.63
2048 0.46 0.47 0.41 0.48 0.51
4096 0.28 0.36 0.30 0.29 0.36
8192 0.16 0.23 0.18 0.20 0.26
Bumps
512 6.73 8.38 7.17 15.90 20.98
1024 3.66 4.24 4.04 10.08 13.63
2048 2.11 2.28 2.50 6.34 8.99
4096 1.08 1.75 1.54 3.42 5.09
8192 0.57 0.90 0.73 2.05 3.14
Blocks
512 5.49 6.30 5.68 10.45 11.84
1024 3.78 4.09 3.65 7.37 8.29
2048 2.28 2.42 2.16 4.99 5.55
4096 1.39 1.96 1.42 2.92 3.38
8192 0.83 1.23 0.95 1.94 2.32
Spikes
512 1.92 2.19 2.00 4.88 6.13
1024 1.18 1.31 1.35 3.11 4.00
2048 0.67 0.70 0.76 1.80 2.48
4096 0.38 0.49 0.42 0.71 1.19
8192 0.22 0.25 0.25 0.41 0.78
Blip
512 1.06 1.33 1.50 1.80 1.94
1024 0.70 0.83 0.98 1.20 1.36
2048 0.39 0.43 0.55 0.77 0.93
4096 0.24 0.39 0.37 0.43 0.52
8192 0.13 0.19 0.21 0.28 0.34
Corner
512 0.67 0.74 0.76 0.61 1.06
1024 0.36 0.41 0.40 0.40 0.69
2048 0.19 0.21 0.22 0.26 0.43
4096 0.11 0.15 0.13 0.12 0.16
8192 0.06 0.07 0.06 0.07 0.10
Wave
512 2.65 2.84 3.15 5.75 7.14
1024 1.36 1.43 2.90 3.67 5.08
2048 0.55 0.54 3.18 2.22 3.27
4096 0.25 0.23 0.20 0.27 1.27
8192 0.14 0.13 0.12 0.16 0.70
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