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ABSTRACT: The growing string method is a powerful tool in the systematic study of chemical reactions with theoretical methods
which allows for the rapid identification of transition states connecting known reactant and product structures. However, the
efficiency of this method is heavily influenced by the choice of interpolation scheme when adding new nodes to the string during
optimization. In particular, the use of Cartesian coordinates with cubic spline interpolation often produces guess structures which
are far from the final reaction path and require many optimization steps (and thus many energy and gradient calculations) to yield a
reasonable final structure. In this paper, we present a new method for interpolating and reparameterizing nodes within the growing
string method using the linear synchronous transit method of Halgren and Lipscomb. When applied to the alanine dipeptide
rearrangement and a simplified cationic alkyl ring condensation reaction, a significant speedup in terms of computational cost is
achieved (30�50%).

’ INTRODUCTION

One of the key contributions of theoretical chemistry to the
systematic study of chemical reactions is the ability to accurately
predict kinetic rate constants. These kinetic rate constants are
typically calculated with transition state theory, which requires
knowledge of the transition state structure. While locating stable
minima on the potential energy surface (PES) is considered
relatively easy in theoretical chemistry, the automated location of
first order transition states remains a challenge.

The principle method for obtaining exact first order transition
states connecting known reactant and product configurations is
to first generate a rough guess of the structure and then refine this
structure to the exact answer through surface walking.1�4 The
algorithms for surface walking are similar to the algorithms which
locate PES minima. Because there are many more transition
states thanminima on a typical PES, this guess must be very close
(within the basin of attraction) to the proper transition state in
order to properly converge. Once the transition state has been
refined, it must be confirmed by integrating the reaction path
downhill to the reactant and product configurations.5,6

Several algorithms for finding transition state guesses from
known reactant andproduct configurations have beendeveloped,7�33

including the nudged elastic band method (NEB),5�8 the
string method (SM),11�16 and the growing string method
(GSM).17�22 In each of these “chain-of-states” methods,23 the
minimum energy pathway is located by iteratively optimizing a
discretized representation of the pathway. Each of the nodes in
the chain-of-states is a full molecular structure at some inter-
mediate stage of the transition between the reactant and product.
Optimization steps are taken by moving each image downhill on
the PES, perpendicular to the direction of the reaction path.
Additionally, the nodes in the chain are kept equally spaced
through the optimization process, either through an additional
spacing force or by explicit reparameterization. This ensures that
this node-based description of the pathway does not contain
large gaps, where the PES may be left unsampled.

When using ab initio surfaces in each of these methods, the
overall cost of generating a suitable guess of the transition state
can be stated in terms of the overall number of QM nuclear
gradient calculations performed. All other calculations needed to
perform these methods can be considered negligible. Higher
order derivatives of the QM energy, such as the nuclear Hessian,
would provide faster convergence but are typically expensive in
ab initio calculations.

The most commonly encountered chain-of-states method is
the nudged elastic band method,7,8 which finds an approximate
reaction path by optimizing a series of images connected to each
other through a set of springs with contrived hooke constants.
The optimization step direction for each node, vNEB

i , is com-
prised of two components, as shown in eq 1.

v̂iNEB ¼
�g^i þ f ||

i

j � g^i þ f ||
i j

ð1Þ

The first term is the perpendicular force, used to minimize the
energy of each node, and is given by eq 2.

� g^i ¼ � ðI � t̂ ît
T
i Þgi ð2Þ

The tangent direction, t̂i, is typically found by normal finite
difference, but other schemes have been proposed for improved
performance.9,10The second term, fi

), expanded in eq 3, is a force
along the reaction path which arises from the springs that
connect each node in the chain to its neighbors. Here, k is the
spring constant, and R denotes the coordinates of a molecular
structure.

f ||
i ¼ t̂ ît

T
i ½ðRiþ1 � RiÞ � ðRi � Ri�1Þ�k ð3Þ

This component is added to ensure that the images remain
equally spaced during the optimization process.
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A slightly newer method, similar in concept to the nudged
elastic band, is the string method.11�16The reaction path is again
represented by a series of molecular images, but optimization is
broken into two separate steps: evolution and reparameteriza-
tion. In the evolution step, themolecular images aremoved in the
direction of the negative perpendicular gradient, similarly to the
first term in eq 1. The tangent direction is determined by creating
a cubic spline through each Cartesian coordinate of the string of
images. The reparameterization step is performed by reinterpo-
lating the molecular images along this set of cubic splines to
achieve the desired parametrization density. This avoids the need
to decide an arbitrary spring constant, as in the NEB.

The growing string method17�22 is a modification of the
original string method that aims to reduce overall computational
cost by “growing” the set of nodes from the reactant and product
configurations inward toward the transition state. In principle,
this avoids performing gradient calculations on excessively
rugged parts of the PES that are far from the final reaction
pathway. Initially, the string consists of only the reactant and
product configurations, with one node being added to each side
during the first reparameterization. The string is then evolved
and reparameterized in the normal fashion until the specified
convergence criteria for node addition are achieved by the
innermost nodes on the reactant and product sides. New nodes
are added accordingly until the string is fully populated. The
string then continues to optimize until convergence is reached.
Several schemes have been developed to accelerate practical use
by improving optimization, and using cost-saving dual basis
techniques.18�20

The nudged elastic band and stringmethod both require initial
pathways from which the optimizations are launched. This initial
pathway has a tremendous impact on convergence and must be
chosen carefully.14 Cartesian interpolation may work for some
simple reactions; however, it is not always an appropriate choice.
Reactions such as the HNC to HCN isomerization are poorly
described by Cartesian interpolation despite having only a
handful of internal degrees of freedom. Such simple reactions,
as well as more complex reactions with many atoms, require an
interpolation scheme with the chemical intuition built-in. GSM
does not require a full initial guess pathway but does require a
methodology for reparameterizing and interpolating new nodes.

To alleviate this shortcoming of GSM specifically (and more
generally the SM and NEB), we propose using linear synchro-
nous transit (LST) interpolation34,35 for node interpolation and
reparameterization. LST is a method for interpolating between
two fixed molecular geometries that seeks to preserve inter-
nuclear distances within the molecule as it morphed from one to
the other. In doing so, the usual drawbacks of Cartesian inter-
polation in which chemical bonds are overly compressed or
stretched are avoided. A simple example of the contrast between
LST andCartesian interpolation is demonstrated in Figure 1 with
the HCN to HNC isomerization. In this paper, we demonstrate
the advantages of LST interpolation in GSM by direct compar-
ison to Cartesian interpolation.

’MODIFIED IMPLEMENTATION OF THE GROWING
STRING METHOD

I. Evolution Step. To demonstrate the use of LST versus
Cartesian interpolation within the GSM, a modified version of
the algorithm was developed. The evolution step is performed by
moving each current node in the string, i, along the negative

perpendicular gradient, as shown in eq 4. The tangent direction is
determined for each node with either LST interpolation or by
computing the cubic splines over the set of Cartesian coordinates
of the string.

v̂i ¼
�ðI � tit

T
i Þgi

jðI � titTi Þgij
¼

�g^i
jg^i j

ð4Þ

The length of each node’s evolution step is computed by dividing
themagnitude of the node’s perpendicular gradient by a common
scaling factor, γ, as shown in eq 5. This produces a damped
steepest descent step and has the effect of generating a large step
when there is a large perpendicular gradient far from conver-
gence and a small step when the node is near convergence.

di ¼
jg^i j

γ
ð5Þ

The overall step,Δxi, as a combination of eqs 4 and 5 is presented
in eq 6.

Δxi ¼ v̂idi ¼
�g^i
γ

ð6Þ

This step differs from the original GSM,17 which seeks to mini-
mize the string by taking several small trial steps in the down-
hill direction, fitting the observed energy profile to a quadratic
function, and moving to the estimated minimum.
II. Reparameterization Step. After each evolution step, the

string is reparameterized to achieve a uniform node density along
the arclength of the reaction path. If nodes are numbered starting
with the reactant node as i = 1 and the product node as i = N,
whereN is the number of nodes in the fully populated string, the
desired parametrization is given by eq 7. NR and NP are the
number of nodes on the reactant and product sides respectively,
and stot is the current total arclength from reactant to product.
The exact computation of stot is done with the appropriate
interpolation scheme (discussed below).

si ¼ stot
i� 1

N � 1

� �

for i e NR and N �NP < i e N ð7Þ

Figure 1. Contrast of Cartesian and LST interpolation between reac-
tant and product configurations of theHCN toHNC reaction. Note that
the Cartesian interpolated pathway is far from the minimum energy
path, while the LST interpolated pathway is rather close. In addition,
the LST method’s tendency to preserve internuclear distances is
clearly shown.

http://pubs.acs.org/action/showImage?doi=10.1021/ct200654u&iName=master.img-000.jpg&w=198&h=154
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The algorithm is started with two nodes on each side of the
string—the fixed reactant and product structures and one
variable node on each side. Once the magnitude of the perpen-
dicular gradient for the innermost node for a side has fallen below
the specified tolerance for node addition, a new node is added to
a side by incrementing NR or NP during the reparameterization
step. This has the effect of growing a new node on the appro-
priate side until the string is fully populated. Once the full string
has been grown, convergence may be considered. The objective
function for locating theminimum energy path (MEP) is the sum
of the perpendicular gradient magnitudes for each node, as
indicated by eq 8. If the end points are assumed to be stable
minima on the PES, they may be neglected in the sum since they
contribute nothing.

F ¼ ∑
N � 1

i¼ 2
jg^i j ð8Þ

’ INTERPOLATION METHOD

If Cartesian coordinates with cubic splines are used for
reparameterization, the procedure is straightforward. A cubic
spline is determined for each Cartesian coordinate using
the structures of the nodes and their positions along the
string in terms of arclength, and the appropriate nodes are
interpolated.

The use of linear synchronous transit reparameterization is
slightly more complicated. It is based on the use of LST
interpolation between two fixed molecular images, as given by
the resultant structure in the minimization of eq 9.

G ¼ ∑
atoms

a > b

ðriab � rcabÞ
2

ðriabÞ
4 þ 10�6

∑
atoms

a¼ 1
∑

j¼ x, y, z
ðwi

a, j � wc
a, jÞ

2 ð9Þ

The r variables denote internuclear distances, while the w
variables denote pure Cartesian coordinates. The i and c super-
scripts denote “interpolated” versus “computed” values respec-
tively. The interpolated values are determined by mixing the
values of the fixed molecular structures, while the computed
values are derived from the interpolated structure being opti-
mized to minimize G. We are careful to stress that the “com-
puted” internuclear distances, rab

c , are derived from the co-
ordinates provided by the Cartesian “computed” structure, wc.
Thus, there is only one full set of Cartesian coordinates being
manipulated. The numerator of the first term of eq 9 serves to
preserve internuclear distances from being overly stretched or
compressed during interpolation, while the denominator weights

this effect in favor of shorter internuclear distances (i.e., bonding
interactions). The second term of eq 9 provides a small force to
align the interpolated molecule with the fixed end structures.

Equation 9 fails to adequately show that the “interpolated”
values must be computed by choosing a mixing ratio, f, of the two
fixed structures. This is shown in eq 10, where the superscripts 1
and 2 denote the fixed end point structures.

riab ¼ r1ab þ f ðr2ab � r1abÞ

wi
a, j ¼ w1

a, j þ f ðw2
a, j � w1

a, jÞ
ð10Þ

From these equations, it becomes obvious that G is really G =
G(f), and the choice of f (between 0 and 1) will determine how
close the interpolated image is to the fixed end points. A value of
f = 0 will produce an interpolated structure identical to structure
1, while f = 1will reproduce structure 2. If all values of f between 0
and 1 are sampled and the LST equationminimized at each value,
it yields a continuous description of the deformation from
structure 1 to structure 2, with an integrated arclength of sLST
(f). There exists a monotonically increasing but nonlinear
mapping between f and sLST(f) such that it is impossible to know
a prioriwhich value of f to use to return a desired value of sLST. To
avoid this problem, a high-density series of LST interpolations
must be performed between each neighboring set of nodes in the
evolving string.

The general strategy for using LST interpolation for repa-
rameterization in GSM is shown in Figure 2. First, a high-density
set of LST interpolations is performed between each neighboring
pair of nodes. From this, the normalized arclength position of
each interpolated node along the growing string is computed.
Finally, the nodes which yield the appropriate node spacing, as
given by eq 7, are selected from the high-density string and taken
as the reparameterized string. From this same high density LST
interpolated string, the tangent vector at each selected node is
computed and stored.

’COMPUTATIONAL DETAILS

The examples detailed below demonstrate the use of Cartesian
and LST interpolation in our modified implementation of the
growing string method interfaced with Q-Chem 3.2.36 For each
example, a string of 11 nodes was grown from the reactant
and product structures and optimized until a specified objec-
tive function was achieved. At the beginning of the GSM
execution, the reactant and product structures were aligned to
be in maximum coincidence in non mass-weighted Cartesian
coordinates.37 This step is essential to ensure that the rotational
and translational degrees of freedom between the two structures

Figure 2. Cartoon of the strategy for using LST interpolation within the GSM. The spaces between the previous iteration nodes are filled with a discrete
set of LST interpolated images. The set of interpolated images which returns the appropriate prarameterization density is then returned for the next
iteration.

http://pubs.acs.org/action/showImage?doi=10.1021/ct200654u&iName=master.img-001.jpg&w=351&h=105
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do not significantly affect the interpolation. It also ensures that
the computed arclength between nodes does not include appre-
ciable noninternal motion.

The scaling factor used to generate the step length of each
node during the evolution step was γ = 5.0 hartree/Å2. Repa-
rameterization was performed after each evolution step, with new
nodes added to the string (during the reparameterization steps)
if the magnitude of the perpendicular gradient at a frontier node
fell below 0.1 hartree/Å. For reparameterization and node
addition with LST, 200 images were included in each high-
density interpolation string running from reactant to product.
The structures of this high-density string were optimized with
Newton�Rasphon minimization of eq 9 to a tolerance of |3G| <
0.001 when computed in units of Ångstroms.

After the string was fully optimized, the nodes of the string
were used as the starting point of a surface walking transition
state optimization calculation in Q-Chem. This algorithm, which
operates in delocalized internal coordinates, seeks to maximize
the energy along the eigenvector of the lowest Hessian eigen-
mode and minimize the energy along all other eigenmodes.
To aid in these calculations, an exact Hessian was calculated
at the outset of the search and updated via the Powell/Murtagh�
Sargent scheme.38,39

Once a first-order saddle point was isolated from these opti-
mizations, a high-quality MEP was integrated downhill from the
transition state, via the Schlegel�Gonzalez MEP following
algorithm6 in non-mass-weighted Cartesian coordinates, to en-
sure that the transition state connected the reactant and product
structures initially fed to the growing string method. It is possible
that multiple transition states may be found if each node is used
to launch a calculation. For elementary reaction steps, only the
highest energy node for an adequately converged string should
result in a meaningful transition state. For nonelementary
reaction steps, legitimate transition states may be found for each
elementary reaction. Both of these possibilities are explored in
the test cases presented below.

’ALANINE DIPEPTIDE REARRANGEMENT

A common test problem for the benchmarking of MEP and
transition state finding algorithms is the rearrangement of alanine
dipeptide from the C5 isomer to the C7AX isomer. The minimum
energy pathway involves the concerted rotation of the two
dihedral angles, ϕ and ψ, shown in Figure 3. The relevant values
of the dihedral angles for the reactant, TS, and product in the gas

phase at the B3LYP/6-31G level of theory given in the work of
Perczel et al.40 are shown in Table 1. This is the same level of
theory used in the present example.

Figure 4 shows the value of the objective function F (from
eq 8) as a function of iteration. These curves can each be broken
into two regions: growth and refinement. The initial growth
phase, during which new nodes are still being added to the string,
results in the spikes seen initially in Figure 4. Since the number of
nodes in each iteration is not constant in this phase, the number
of QM gradients necessary for each iteration also varies. The
subsequent refinement phase begins once the string has been
fully grown and is marked by the monotonically decreasing value
of F during which the string settles into the reaction pathway. For
alanine dipeptide rearrangement with Cartesian interpolation,
the growth phase is completed after the 33rd iteration, corre-
sponding to 133 QM gradient calculations. With LST interpola-
tion, growth is completed after the 11th iteration and 55 QM
gradient calculations (see Figure 5 for a comparison of the
intermediate energy profiles for the LST and Cartesian GSM).
The growth phase is much faster with LST due to the superior
quality of the new interpolated nodes. This demonstrated in
Figure 6, which shows the energy as a function of iteration for the
first node added to the reactant side of the string. The LST
interpolated node begins at a much lower energy and achieves
the threshold for the next node addition more quickly.

Table 2 lists the number of QM gradient calculations neces-
sary to fully grow the string and achieve the desired level of
convergence. For a convergence criterion of 0.3 hartree/Å, LST
interpolation reduces the number of QM gradients required by
49%, effectively doubling the speed of GSM. The string energy
profiles for each interpolationmethod at a convergence of F = 0.3

Figure 3. The reactant, transition state, and product configurations for the alanine�dipeptide rearrangement reaction.

Table 1. Dihedral Angles (in degrees) of the Alanine Di-
peptide Isomerization

ϕ ψ

C5 �161.5 167. 1

TS 113.7 �141.9

C7AX 72.5 �59.5

Figure 4. Objective fuction, F, vs iteration for the alanine dipeptide
rearrangement reaction. The spikes in the initial portion of each curve
indicate the addition of new nodes during the growth phase.

http://pubs.acs.org/action/showImage?doi=10.1021/ct200654u&iName=master.img-002.jpg&w=318&h=57
http://pubs.acs.org/action/showImage?doi=10.1021/ct200654u&iName=master.img-003.jpg&w=239&h=176
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hartree/Å shown in Figure 6 indicate that the overall quality of
the string with Cartesian and LST interpolation is approximately
the same. For a more tightly converged reaction coordinate at F =
0.2 hartree/Å, the speedup is similar at 41%. For each of the four
strings resulting from LST and Cartesian interpolation methods
in GSM at these two convergence criteria, the highest energy
node yields the proper transition state using the standard
Q-Chem surface-walking algorithm detailed in the Computa-
tional Details section.

’RING CONDENSATION REACTION

The second benchmarking case is the cationic ring con-
densation of 2-(but-3-enyl)oxiranium to 4-hydroxycyclohexan-
1-ylium. This reaction is inspired by the much more complicated
(and enzymatically catalyzed) reaction of 2,3-oxidosqualene to
produce lanosterol during cholesterol synthesis.41 Even though
this reaction is simplified, it possesses four transition states on the
path from linear reactant to final product at the gas-phase HF/
STO-3 g level of theory. Each of these transition states and the
stable intermediates are depicted in Figure 7. TS1, TS2, and TS4
are each internal rotations of the molecule with small barriers
between 2.0 and 3.0 kcal/mol. The remaining transition state,
TS3, involves the rearrangement of bond orders and possesses a
much higher barrier of 23.2 kcal/mol.

Figure 8 shows the convergence rate of GSM with both
Cartesian and LST interpolation for this reaction. With Cartesian
interpolation, the growth phase is completed after 36 iterations,
which corresponds to 186 QM gradient calculations. With LST
interpolation, the growth phase requires only 16 iterations,

Figure 5. Comparison of the intermediate energy profiles for the LST
and Cartesian GSM and the exact MEP energy profile for the alanine
dipeptide rearrangement. The GSM energy profiles are snapshots taken
when the objective function, F, reached 0.3 hartree/Å.

Figure 6. Energy of the first interior node from the reactant side versus
iteration for the alanine dipeptide rearrangement. Note that the LST
interpolated node begins at a much lower energy than the Cartesian
interpolated node and achieves the threshold for node addition much
sooner.

Table 2. Computational Cost in QM Gradients for the
Alanine Dipeptide Rearrangement, with Speedup for LST
versus Cartesian Interpolation

conv. criteria method QM gradients speedup

0.3 hartree/Å Cartesian 268 49%

LST 136

0.2 hartree/Å Cartesian 367 41%

LST 217

Figure 7. Reactant, product, stable intermediates, and transition states on the pathway between the linear and ring structures.

Figure 8. Objective fuction, F, versus iteration for the cationic ring
condensation reaction. The spikes in the initial portion of each curve
indicate the addition of nodes during the growth phase.

http://pubs.acs.org/action/showImage?doi=10.1021/ct200654u&iName=master.img-004.jpg&w=199&h=152
http://pubs.acs.org/action/showImage?doi=10.1021/ct200654u&iName=master.img-005.jpg&w=214&h=146
http://pubs.acs.org/action/showImage?doi=10.1021/ct200654u&iName=master.img-006.jpg&w=310&h=95
http://pubs.acs.org/action/showImage?doi=10.1021/ct200654u&iName=master.img-007.jpg&w=230&h=172
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corresponding to 84 QM gradient calculations. As denoted in
Table 3, a 27% reduction in the number of gradients is observed
for convergence to F = 0.4 hartree/Å, and a 37% reduction is
observed for convergence to F = 0.3 hartree/Å. Figure 9 shows
the exact energy profile for this reaction, as well as the energy
profiles for both GSM executions once the objective function
reached 0.3 hartree/Å.

In each of the four cases noted in Table 3, launching TS
optimization calculations in Q-Chem36 from the converged
strings’ nodes resulted in several first order transition states. In
all cases, TS1, TS2, and TS3 from Figure 7 were successfully
recovered. However, TS4 (which involves a subtle hydroxyl
group rotation) was only observed for the more tightly
converged (F = 0.3 hartree/Å) LST interpolated string.

’CONCLUSIONS

The growing string method is a powerful tool in the study of
chemical reactions from an ab initio perspective because it allows
for the rapid identification of transition states, from which
approximate kinetic rate constants may be computed with
transition state theory. However, the interpolation method by
which the string is reparameterized and new nodes are added
during the growth phase has a large impact on the rate of
convergence and thus the quality of results. In particular, choos-
ing an interpolation scheme which compresses or expands
chemical bonds arbitrarily can necessitate a large number of
QM calculations in order to properly find the minimum energy
path and transition state.

Our results indicate that using the linear synchronous transit
method developed initially by Halgren and Lipscomb34 can be a
powerful addition to the traditional growing string method. This

interpolation method is an improvement over Cartesian interpola-
tion because it preserves bond lengths and performs rotational
rearrangements seamlessly. The guessed pathways are thus closer to
the final result and require less computational effort to optimize.

When applied to the isomerization of alanine dipeptide, GSM
with LST interpolation requires roughly half of the computa-
tional effort as GSM with Cartesian interpolation. In the con-
densation of 2-(but-3-enyl)oxiranium to 4-hydroxycyclohexan-
1-ylium, computational cost is reduced by roughly one-third
when LST interpolation is used. In this latter reaction, which
contains multiple transition states between the reactant and
product, the LST version of the GSM proves superior by
properly identifying every transition state (major and minor)
where the Cartesian version misses at least one.

’AUTHOR INFORMATION

Corresponding Author
*E-mail: mhg@cchem.berkeley.edu.

Notes
The authors declare no competing financial interest.

’ACKNOWLEDGMENT

This work was supported by the Methane Conversion Co-
operative funded by BP. Calculations were performed on a
cluster provided by the UC Berkeley College of Chemistry
through grant NSF CHE-0840505.

’REFERENCES

(1) Cerjan, C. J.; Miller, W. H. J. Chem. Phys. 1981, 112, 2129.
(2) Banerjee, A.; Adams, N.; Simons, J.; Shepard, R. J. Phys. Chem.

1985, 89, 52.
(3) Hrantchian, H. P.; Schlegel, H. B. J. Comput. Chem. 2003,

24, 1514.
(4) Schlegel, H. B. J. Comput. Chem. 2003, 24, 1514.
(5) Fukui, K. J. Phys. Chem. 1970, 74, 4161.
(6) Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154.
(7) Mills, G.; Jonsson, H. Phys. Rev. Let 1994, 72, 1124.
(8) Henkelman, G.; Jonsson, H. J. Chem. Phys. 2000, 113, 9978.
(9) Henkelman, G.; Uberuaga, B. P.; Jonsson, H. J. Chem. Phys. 2000,

113, 9901.
(10) Trygubenko, S. A.; Wales, D. J. J. Chem. Phys. 2004, 120, 2083.
(11) E, W.; Ren, W.; Vanden-Eijnden, E. Phys. Rev. B. 2002,

66, 052301.
(12) E, W.; Ren, W.; Vanden-Eijnden, E. J. Phys. Chem. B. 2005,

109, 6688.
(13) E, W.; Ren, W.; Vanden-Eijnden, E. J. Chem. Phys. 2007,

126, 164103.
(14) Sheppard, D.; Terrell, R.; Henkelman, G. J. Chem. Phys. 2008,

128, 134106.
(15) Burger, S. K.; Yang, W. J. Chem. Phys. 2006, 124, 054109.
(16) Burger, S. K.; Yang, W. J. Chem. Phys. 2007, 127, 164107.
(17) Peters, B.; Heyden, A.; Bell, A. T. J. Chem. Phys. 2004,

120, 7877.
(18) Goodrow, A.; Bell, A. T.; Head-Gordon,M. J. Chem. Phys. 2008,

129, 174109.
(19) Goodrow, A.; Bell, A. T.; Head-Gordon,M. J. Chem. Phys. 2009,

130, 244108.
(20) Goodrow, A.; Bell, A. T.; Head-Gordon, M. Chem. Phys. Lett.

2010, 484, 393.
(21) Quapp, W. J. Comput. Chem. 2007, 28, 1834.
(22) Quapp, W. J. Theor. Comput. Chem. 2009, 8, 101.
(23) Elber, R.; Karplus, M. Chem. Phys. Lett. 1987, 139, 375.

Table 3. Computational Costs, Speedups, and Success in
Identifying Various TS Structures for the Cationic Ring
Condensation Reaction

conv. criteria method QM gradients speedup TS1 TS2 TS3 TS4

0.4 hartree/Å Cartesian 411 27% Y Y Y N

LST 300 Y Y Y N

0.3 hartree/Å Cartesian 645 37% Y Y Y N

LST 408 Y Y Y Y

Figure 9. Comparison of the intermediate energy profiles for the LST
and Cartesian GSM and the exact MEP energy profile for the ring
condensation reaction. The GSM energy profiles are snapshots taken
when the objective function, F, reached 0.3 hartree/Å.

http://pubs.acs.org/action/showImage?doi=10.1021/ct200654u&iName=master.img-008.jpg&w=199&h=145


4025 dx.doi.org/10.1021/ct200654u |J. Chem. Theory Comput. 2011, 7, 4019–4025

Journal of Chemical Theory and Computation ARTICLE

(24) Ayala, P. Y.; Schlegel, H. B. J. Chem. Phys. 1997, 107, 375.
(25) del Campo, J. M.; Koster, A. M. J. Chem. Phys. 2008, 129,

024107.
(26) Ghasemi, S. A.; Goedecker, S. J. Chem. Phys. 2011, 135, 014108.
(27) Burger, S. K.; Ayers, P. W. J. Chem. Phys. 2010, 132, 234110.
(28) Maeda, S.; Morokuma, K. J. Chem. Phys. 2010, 132, 241102.
(29) Dey, B. K.; Ayers, P. W. Mol. Phys. 2006, 104, 541.
(30) Aguilar-Mogas, A.; Gimenez, X.; Bofill, J. M. J. Chem. Phys.

2008, 128, 104102.
(31) Aguilar-Mogas, A.; Gimenez, X.; Bofill, J. M. J. Comput. Chem.

2010, 31, 2510.
(32) Klimes, J.; Bowler, D. R.; Michaelides, A. J. Phys: Condens.

Mater. 2010, 22, 074203.
(33) Koslover, E. F.; Wales, D. J. J. Chem. Phys. 2007, 127, 134102.
(34) Halgren, T. A.; Lipscomb, W. N. Chem. Phys. Lett. 1977,

49, 225.
(35) Peng, C.; Schlegel, H. B. Israel J. Chem 1993, 33, 449.
(36) Shao, Y.; et al. Phys. Chem. Chem. Phys. 2006, 8, 3172.
(37) Rhee, Y. M. J. Chem. Phys. 2000, 113, 6021.
(38) Powell, M. J. D. Math. Prog. 1971, 1, 26.
(39) Murtagh, B. A.; Sargent, R. W. H. Comput. J. 1972, 13, 185.
(40) Perczel, A.; Farkas, O.; Jakli, I.; Topol, I. A.; Csizmadia, I. G.

J. Comput. Chem. 2002, 24, 1026.
(41) Wendt, K. U.; Schulz, G. E.; Corey, E. J.; Liu, D. R. Angew.

Chem., Int. Ed. 2000, 39, 2812.


