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ABSTRACT

Spectrogram factorization methods have been proposed for

single channel source separation and audio analysis. Typ-

ically, the mixture signal is first converted into a time-fre-

quency representation such as the short-time Fourier trans-

form (STFT). The phase information is thrown away and this

spectrogram matrix is then factored into the sum of rank-one

source spectrograms. This approach incorrectly assumes the

mixture spectrogram is the sum of the source spectrograms.

In fact, the mixture spectrogram depends on the phase of the

source STFTs. We investigate the consequences of this com-

mon assumption and introduce an approach that leverages a

probabilistic representation of phase to improve the separa-

tion results.

Index Terms— non-negative matrix factorization, source

separation, audio

1. INTRODUCTION

Spectrogram factorization methods have been proposed for

single channel source separation [1–4] and audio analysis [5–

8]. These methods estimate the magnitude of each source

spectrogram using the magnitude of the mixture spectrogram.

The incorrect implicit assumption common to all these meth-

ods is that the magnitude of the mixture spectrogram is the

sum of the magnitudes of the source spectrograms. In fact,

the mixture spectrogram depends on the magnitude and phase

of the source spectrograms. This paper investigates the role

of phase in determining the mixture spectrogram and incor-

porates a probabilistic representation of phase into a novel

method for source spectrogram estimation.

When multiple mixture signals are available, independent

component analysis [9] (ICA) is a statistical technique that

separates as many independent source signals as mixture sig-

nals. When there is only one mixture signal, the signal may be

transformed into a time-frequency representation such as the

magnitude of the short-time Fourier transform (i.e., magni-

tude spectrogram). Casey and Westner [1] originated the idea

of spectrogram factorization by applying ICA to the mag-

nitude of the mixture spectrogram, treating each frequency

channel as a separate mixture signal. Using this approach,

ICA separates as many sources as frequency channels. How-

ever, the expressiveness of each source is necessarily dimin-

ished. Each source magnitude spectrogram is a rank-one ma-

trix formed by the product of a column vector containing the

spectral shape and a row vector containing the time-varying

gain. The actual source spectra are deemed to be a combina-

tion of multiple rank-one source spectrograms.

The problem with ICA for spectrogram factorization is

that it extracts components that have negative elements, where-

as magnitude spectrogram data is always non-negative. There-

fore, non-negative matrix factorization [11] (NMF) has been

proposed for source spectrogram estimation. NMF does not

require independence but maintains non-negative elements.

An underlying assumption of ICA- and NMF-based ap-

proaches is that the mixture magnitude spectrogram is the

sum of the source magnitude spectrograms. This assump-

tion is valid only in the unlikely event that all sources have the

same phase at every time-frequency point or in the trivial case

when only one source is active. In all other cases, the mixture

spectrogram necessarily depends on the phase information in

the short-time Fourier transform (STFT) of the sources. We

present a method to incorporate the unknown source phase

information into the estimation of the source magnitude spec-

trograms using a probabilistic representation of phase.

2. RELATED WORK

Source separation via spectrogram factorization suffers from

several problems. Complex sources must be represented as

the combination of several rank-one source spectrograms. De-

ciding how to cluster the rank-one spectrograms to form com-

plex source spectra is a difficult problem. Casey and West-

ner [1] propose clustering via spectral similarity. Once a suit-

able spectrogram for each source has been formed, it is nec-

essary to determine the phase of each time-frequency point in

order to invert the resulting STFT. The most common method

is to reuse the phase from the mixture STFT. However, sta-

tistical approaches have been proposed [10]. This paper re-

examines the method for estimating rank-one source spectro-



grams from a mixture spectrogram. Prior work disregards the

unknown phase of the sources in this analysis. We incorpo-

rate a probabilistic representation of phase and show an im-

provement in the estimation of the unknown rank-one source

spectrograms.

3. REPRESENTATION

We consider the case of a single mixture signal that is the sum

of multiple source signals:

x(t) =
∑

r

sr(t) (1)

We transform this signal into the time-frequency domain us-

ing the short-time Fourier transform (STFT):

X(k, t) =
∑

n

h(n − t)x(n)e−jkn (2)

where h is a localization window. In matrix form, Xkt =
X(k, t), and the mixing equation becomes:

X =
∑

r

Sr (3)

Each element of these matrices is a complex number which

we represent as a phasor:

X = |X|ejΘ, Sr = |Sr|e
jΘr (4)

where all operations are element-wise and Θ is a phase ma-

trix. However, in contrast to the assumption made by the

algorithms described above, the mixture spectrogram is not

generally the sum of source spectrograms:

|X| 6=
∑

r

|Sr| (5)

Instead, the mixture spectrogram is a function of the source

spectrograms and the phase difference between them:

|X|
2

=
∑

qr

|Sq||Sr| cosΘqr (6)

where Θqr is the phase difference, Θq −Θr, between Sq and

Sr. Notice that if only one source, Sr, is active, |X|
2

= |Sr|
2
,

and if all sources have the same phase,

|X|
2

=
∑

qr

|Sq||Sr| =

(

∑

r

|Sr|

)2

. (7)

4. NON-NEGATIVE MATRIX FACTORIZATION

Non-negative matrix factorization is a technique for estimat-

ing a non-negative K × T matrix V as the product of a non-

negative K × R matrix W and a non-negative T × R matrix

H:

V ≈ WHT (8)

If V is a spectrogram, it has K frequency bins and T sam-

ples. The R source components are estimated by minimizing

a distance metric between V and WHT such as the square of

the Euclidian distance:

‖V − WHT ‖2 =
∑

kt

(

Vkt −
[

WHT
]

kt

)2

(9)

Minimizing this function using gradient descent under the

constraint of non-negativity leads to a solution for W and

H [11].

When applied to a mixture spectrogram, the columns of

W, wr, represent spectral shapes and the columns of H, hr,

represent amplitude envelopes. The source and mixture spec-

trograms are given by |Sr| = wrh
T
r and |X| = V, respec-

tively. This approach optimizes one possible configuration

of phase. By incorporating the true distribution of phase, we

improve the estimates of W and H.

5. PROBABILISTIC REPRESENTATION OF PHASE

We consider the phase at each time-frequency point of each

source to be a uniformly distributed random variable. We

simplify the notation for the case of two components so that

v = |Xkt|, a = |[S1]kt|, b = |[S2]kt|, and θ = [Θ12]k,t for

a particular value of k and t. The magnitude of the sum of

two complex numbers is a function of the magnitude of each

number and the phase difference between them:

v =
√

a2 + b2 + 2ab cos θ (10)

Because of the circularity of phase, the difference in two uni-

formly distributed random phases is also a uniformly distrib-

uted random variable, θ = U(−π, π). Because v is a function

of θ, v is also a random variable with the following probabil-

ity density function given a and b:

p(v|a, b) =
2v

π
√

−(v+a+b)(v+a−b)(v−a+b)(v−a−b)
(11)

The roots of the polynomial inside the square root are v =
±a± b. The function is defined in the interval (|a − b|, a+ b)
and approaches infinity as v approaches |a − b| and a + b.

Figure 1 plots p(v|a, b) with a = 2 and b = 1.

In our problem, the mixture spectrogram is known, and

the source spectrograms need to be estimated. Therefore, we

maximize the likelihood in Equation 11 as a function of a and

b. Figure 2 shows the surface of p(v|a, b) with v = 1. The

dark lines on the ab-plane are intersections of the asymptotic

planes.

For values of a and b inside the region defined by the

asymptotes in Figure 2, maximizing p(v|a, b) for every time-

frequency point is equivalent to minimizing the following:

argmin
a,b

∣

∣(v+a+b)(v+a−b)(v−a+b)(v−a−b)/v2
∣

∣ (12)
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Fig. 1. Likelihood function for v when a = 2 and b = 1.
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Fig. 2. Energy function for a and b when v = 1.

The absolute value avoids imaginary values for points outside

this region. Notice that each of the roots defines an asymptote

in Figure 2 and the function reaches a minimum of zero when

(a, b) falls on an asymptote. (One asymptote is not visible

because it does not intersect the positive a or b axis, namely

v = −a − b.) In order to take advantage of the efficiency

and convergence properties of the squared Euclidian distance

function, we propose estimating a and b by minimizing the

following function:

argmin
a,b

((v + a − b)(v − a + b)(v − a − b)/v2)2 (13)

which reaches a minimum of zero for the same points, (a, b),
as Equation 12, specifically at the asymptotes in the positive

ab-plane.

6. UPDATE RULES

We minimize the function D, which is the sum of Equation 12

across all time-frequency points:

D =
1

2

∑

kt

P2

ktQ
2

ktR
2

kt/V
4

kt (14)

where V = |X|, A = |S1|, B = |S2|, P = V + A − B,

Q = V − A + B, R = V − A − B, and all the operations

are element-wise. Taking the derivative of D with respect to

each of the columns of W and H yields:

∂D

∂w1

=

(

PQ2R2 − P2QR2 − P2Q2R

V4

)

h1 (15)

∂D

∂h1

= wT
1

(

PQ2R2 − P2QR2 − P2Q2R

V4

)

(16)

∂D

∂w2

=

(

−PQ2R2 + P2QR2 − P2Q2R

V4

)

h2 (17)

∂D

∂h2

= wT
2

(

−PQ2R2 + P2QR2 − P2Q2R

V4

)

(18)

where the operations inside the parentheses are element-wise

with a matrix-vector product on the outside. We randomly

initialize W and H, and minimize D using gradient descent.

7. RESULTS

In order to compare our probabilistic phase algorithm against

standard non-negative matrix factorization we construct source

and mixture spectrograms as follows:

Wkr = |N(0, 1)| Htr = |N(0, 1)|
[Θ1]kt = U(−π, π) [Θ2]kt = U(−π, π)

S1 =
(

w1h
T
1

)

ejΘ1 S2 =
(

w2h
T
2

)

ejΘ2

X = S1 + S2 V = |X|

Ŵinit

kr = |N(0, 1)| Ĥinit

tr = |N(0, 1)|

We chose K = T = 100, R = 2, and ran both algorithms

for 1000 trials, each time drawing new source spectrograms

and initializing NMF with random matrices Ŵinit and Ĥinit.

We initialize our approach with the NMF solution. The scat-

ter plot of time-frequency bins from one representative trial

is shown in Figure 3a-c. Each point represents one time-

frequency point of the source spectrograms. The position of

each point is normalized to the v = 1 scale. That is, the posi-

tion of each time-frequency bin is at (a/v, b/v). Notice that

our approach (Figure 3c) more closely resembles the actual

scatter plot (Figure 3a) than traditional NMF (Figure 3b). Fig-

ure 3d-f shows the combined histograms for all trials. Notice

that our approach (Figure 3f) has visible tails along v = a− b
and v = b− a similar to the correct histogram, whereas NMF

(Figure 3e) does not. We compute the mean square error be-

tween the estimated and true W and H after normalizing the

columns of each to unit L2 norm as follows:

MSE =
1

KR

∑

kr

(

Ŵkr−Wkr

)2

+
1

TR

∑

tr

(

Ĥtr − Htr

)2

(19)

Over the 1000 trials, the mean square error for NMF was

3.37e-4, whereas our approach attained a mean square error

of 2.43e-4 for an improvement of 28%.
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Fig. 3. Scatter plot of bins for one trial (a-c) and histogram for all trials in units of 105 (d-f).

8. CONCLUSION AND FUTURE WORK

We have shown that phase plays an important role in the de-

termination of the mixture spectrogram from a number of

source spectrograms. By incorporating a probabilistic repre-

sentation of phase, we propose an improvement on NMF that

more closely follows the true distribution of mixture spectro-

gram points given the source spectrograms. Our integrated

approach provides a substantial improvement on traditional

NMF, warranting further work in this area. Future work in-

cludes leveraging a probabilistic representation of phase for

mixtures of more than two source spectrograms.
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