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Species distribution models (SDMs) correlate species occurrences with environmental 
predictors, and can be used to forecast distributions under future climates. SDMs 
have been criticized for not explicitly including the physiological processes under-
lying the species response to the environment. Recently, new methods have been 
suggested to combine SDMs with physiological estimates of performance (physiology-
SDMs). In this study, we compare SDM and physiology-SDM predictions for select 
marine species in the Mediterranean Sea, a region subjected to exceptionally rapid 
climate change. We focused on six species and created physiology-SDMs that incor-
porate physiological thermal performance curves from experimental data with species 
occurrence records. We then contrasted projections of SDMs and physiology-SDMs 
under future climate (year 2100) for the entire Mediterranean Sea, and particularly 
the ‘warm’ trailing edge in the Levant region. Across the Mediterranean, we found 
cross-validation model performance to be similar for regular SDMs and physiology-
SDMs. However, we also show that for around half the species the physiology-SDMs 
substantially outperform regular SDM in the warm Levant. Moreover, for all species 
the uncertainty associated with the coe�cients estimated from the physiology-SDMs 
were much lower than in the regular SDMs. Under future climate, we �nd that both 
SDMs and physiology-SDMs showed similar patterns, with species predicted to shift 
their distribution north-west in accordance with warming sea temperatures. However, 
for the physiology-SDMs predicted distributional changes are more moderate than 
those predicted by regular SDMs. We conclude, that while physiology-SDM predic-
tions generally agree with the regular SDMs, incorporation of the physiological data 
led to less extreme range shift forecasts. �e results suggest that climate-induced range 
shifts may be less drastic than previously predicted, and thus most species are unlikely 
to completely disappear with warming climate. Taken together, the �ndings emphasize 
that physiological experimental data can provide valuable supplemental information to 
predict range shifts of marine species.
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Introduction

Global climate change is strongly a�ecting terrestrial and 
marine biota, evident in species range shifts and changes 
in phenology (Parmesan 2006, Elith  et  al. 2010, IPCC 
2014, Sunday  et  al. 2015). As temperatures are expected 
to continue rising in the oceans, species must either adapt 
in-situ or respond to the changing climate by continuously 
shifting their distribution to preserve their climatic niche 
(Lawler  et  al. 2006, Coll  et  al. 2012, Marras  et  al. 2015, 
García Molinos et al. 2016). Forecasting how species distri-
butions will shift with climate change is critical for under-
standing the potential fate of the oceans and for creating 
decision making support tools for biodiversity management 
(Lawler et al. 2006, Bates et al. 2013, Guisan et al. 2013).

Species distribution models (SDMs) are being increas-
ingly used to predict distributional responses to changing 
climate (Guisan and �uiller 2005, Kearney and Porter 
2009). �ese models typically correlate species occurrence 
(sometimes including absences) or abundance with environ-
mental predictors (Elith and Leathwick 2009). �e model is 
developed using the current distribution of the studied spe-
cies, the realized niche, which can be extrapolated in space or 
time to forecast the changes in species distributions caused 
by climatic changes (Morin and Lechowicz 2008, Fitzpatrick 
and Hargrove 2009, Woodin  et  al. 2013). SDMs are rela-
tively easy to apply and can be used for any species as long 
as there are su�cient data on their distribution and the rel-
evant environmental predictors (Elith and Leathwick 2009). 
However, SDMs have been criticized in that they do not take 
into account the physiological processes behind species range 
shifts (Lawler et al. 2006, Kearney et al. 2010, �uiller et al. 
2013). SDMs are most useful when species realized niches 
are representative of their fundamental niche, shaped by the 
underlying physiological constraints. However, if the funda-
mental and realized niches diverge, correlative SDMs may 
be inaccurate in predicting the future distribution of species 
(Elith et al. 2010, Parravicini et al. 2015, Rilov et al. 2019).

An alternative strategy for understanding and predicting 
species distributional response to climate change is based on 
species physiology (Cooke et al. 2013), i.e. the fundamental 
niche (Morin and Lechowicz 2008). Physiological models 
take into account the biological mechanism behind the species 
response to the changing environment, and thus can be used 
more con�dently for forecasting the response to novel envi-
ronmental conditions (Kearney et al. 2010, Cabral and Kreft 
2012, Cheaib et al. 2012, Cooke et al. 2013, Levy et al. 2016). 
�e simplest form of these models utilizes a physiological 
threshold, such as temperature, to predict species future distri-
butions (Martínez et al. 2014). Complex physiological models 
require data on the relationship between the species environ-
mental conditions and its performance (Buckley et al. 2011,  

Childress and Letcher 2017). However, physiological models, 
being based on the fundamental niche, tend to over-estimate 
the distribution of target species, thereby a�ecting model per-
formance (Pearson and Dawson 2003).

Given the shortcomings of each method alone, it has 
been recommended that physiological estimates of species 
performance under varying climatic conditions should be 
incorporated into correlative SDMs (Woodin  et  al. 2013, 
Martínez et al. 2014, Talluto et al. 2016). SDMs that com-
bine occurrences and physiological data can provide more 
robust forecasts of species distributions when extrapolating to 
novel climate scenarios (Kearney and Porter 2009). However, 
most attempts so far to combine SDMs with physiology have 
been based on overlying two separate models (Martínez et al. 
2014). Due to lack of appropriate methods and data require-
ment constraints, a simple integration of correlative SDMs 
and species physiology has been di�cult to achieve (Kearney 
and Porter 2009, Cheung  et  al. 2012, Talluto  et  al. 2016, 
Chapman et al. 2017, Chefaoui et al. 2019, Rodríguez et al. 
2019). Recently, a new modeling technique has been sug-
gested that uses a Bayesian approach to integrate physiology 
into correlative SDMs within a single framwork (Talluto et al. 
2016). Applications of this method are, however, still scare.

In this study, we combined correlative SDM and physio-
logical data to predict future distributions of indigenous and 
non-indigenous species in the Mediterranean (Albouy et al. 
2013). Satellite data have suggested that the average sea sur-
face temperature in the Levant region (the eastern part of the 
Mediterranean Sea along the coasts of Turkey, Syria, Lebanon, 
Israel, Egypt and Cypress) has increased by about 1.1 degrees 
in the past century, and it is predicted to increase by a fur-
ther 2.3–2.9°C by the end of this century (Somot  et  al. 
2008, Nykjaer 2009, Rilov 2016, Ozer  et  al. 2017). �e 
marine biota in the Mediterranean Sea is reacting to this by 
changes in life cycles, demography and distribution (Ben Rais 
Lasram et al. 2010, Rivetti  et al. 2014, Marbà et al. 2015, 
Rilov 2016, van Rijn  et  al. 2017, Shapiro Goldberg  et  al. 
2019, Yeruham et al 2019). In addition to its response to ele-
vated water temperatures, the Levant biota is rapidly chang-
ing due to the in�ux of hundreds of invasive species from 
the Red Sea through the Suez Canal (Bianchi 2007, Rilov 
and Galil 2009, Marras et al. 2015). It has been postulated 
that these mostly thermophilic invaders may be able to bet-
ter resist the rising temperatures and hence be less a�ected, 
or even facilitated, by warming waters (Lejeusne et al. 2010, 
Bates et al. 2013, Marras et al. 2015).

Several studies have used correlative SDMs to fore-
cast the fate of Mediterranean species faced with warming 
climate (Ben Rais Lasram  et  al. 2010, Albouy  et  al. 2013, 
2015, Azzurro et al. 2013). �ese models have typically fore-
cast extreme range contractions of indigenous species, with 
species disappearing from the trailing ‘warm’ edge of their 
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distribution. Many indigenous species occupying the Levant, 
which represents the warmest part of their distribution, may 
live close to their upper thermal limit. �ese species will be 
highly sensitive to increased ocean temperatures and could 
disappear with further warming (Yeruham et al. 2015). Other 
species may be further away from their thermal limit and will 
probably endure longer as climate changes (Rilov and Treves 
2010). Correlative SDMs cannot di�erentiate between these 
scenarios, making predictions at the trailing edge of a species 
distribution highly uncertain (Morin and Lechowicz 2008, 
�uiller et al. 2008).

In this study, we use a recently proposed Bayesian approach 
that combines SDMs with physiological data (Talluto et al. 
2016) in order to forecast the e�ects of ocean warming on 
six coastal Mediterranean marine species. We expected that 
combining physiological information on the species with 
correlative SDMs would enable more accurate predictions, 
especially for the warm trailing-edge of species distributions.

Methods

Study species

We focused on both indigenous and non-indigenous shallow 
rocky-shore taxa covering a wide taxonomic range, including 
seagrass, macroalgae and bivalves, in order to allow �ndings 
that would be as general as possible. We �rst screened the lit-
erature to compile a list of species for which solid experimen-
tal data of physiological thermal response curves are available. 
�is greatly restricted the pool of species we could use. We 
further excluded species with uncertain taxonomic status in 
the Levant. For the remaining selected species, we gathered 
occurrences data from both primary and gray literature and 
open-access occurrence databases (Supplementary material 
Appendix 1 Table A1). Data were visually checked and dupli-
cate points and unreasonable locations were removed. �e 
entire range of the species was used to better represent the 
conditions in which the species could survive (Parmesan et al. 
1999). Our �nal species list (six species) was restricted to 
those possessing both su�cient occurrence records (the spe-
cies with the minimal number of occurrences contained 227 
records) and relevant physiological information (Table 1). 
Most species could be clearly de�ned as either indigenous or 
non-indigenous, and we discuss the implications of the origin 
of the species on the results in the discussion.

Environmental predictors

Environmental predictors used for the SDMs comprised 
annual maximum and minimum sea surface temperature 
(maxSST and minSST, respectively). We focused on tem-
perature because we are interested in the species reaction to 
the warming of the Mediterranean Sea. In addition, tempera-
ture is the most commonly assessed predictor in physiologi-
cal experiments, allowing us to incorporate the physiological 
data within the SDMs. We tested the relative importance of 

maxSST and minSST in relation to other environmental pre-
dictors such as current velocity and productivity for which we 
did not have corresponding physiological data. �ese other 
predictors had low variable importance relative to maxSST 
and minSST (Supplementary material Appendix 1 Table A2) 
and hence excluding them from the models did not likely 
impact the results. It is possible to add additional predic-
tors into the combined physiological and correlative SDMs, 
even those with no physiological data (using vague priors, 
see model structure below). However, adding environmental 
predictors for which we do not have physiological data could 
risk diluting the physiological information. Since we are 
explicitly interested in examining the impact of the addition 
of physiology to predictions, we chose to retain only maxSST 
and minSST for which we had physiology-based priors. We 
chose maxSST and minSST, and not mean SST, in order to 
assess the species response under extreme temperatures that 
are likely to limit its distribution. �e correlation between 
maxSST and minSST was 0.63, which is su�ciently low to 
use both within a single model (see below).

Within large scale occurrence data, uncertainty in sam-
pling location is common. For coastal species this uncertainty 
in sampling locations can translate into very large di�erence 
in depth estimates (e.g. a 1 km can sometimes include loca-
tions of both depths of zero and depths > 100 m). Due to 
this uncertainty in depth estimates we did not use depth as a 
predictor. However, depth was used as a masking layer with a 
depth threshold of 300 m as a cuto�.

Environmental predictors were obtained from Global 
Marine Environment Datasets (GMED) at �ve arcmin reso-
lution (Basher et al. 2014). In order to predict future distribu-
tion we used future minSST and maxSST for the year 2100 
using the RCP scenarios (Assis et al. 2018) also at �ve arc-
min resolution. �ese scenarios were based on the CCSM45 
(Community Climate System Model 4), HadGEM2-ES 
(Hadley Centre Global Environmental Model 2) and 
MIROC55 (Interdisciplinary Research on Climate 5) cli-
matic models. �e results from the RCP4.5 scenario (a mod-
erate scenario where concentration levels stabilize) and the 
RCP8.5 scenario (increasing emissions over time leading to 
high greenhouse concentration levels) are described here. 
�e RCP6.0 scenario showed intermediate results and are 
not presented. All environmental predictors were upscaled to 
a resolution of 20 arcmin for analyses due to the location 
uncertainty associated with the occurrence records.

Species distribution model (SDM)

Species occurrences were related to environmental predic-
tors using Bayesian generalized linear models (GLMs). 
Like with most SDMs, we focused on large scale environ-
mental e�ects and ignore the potential in�uence of species 
interactions and local human anthropogenic impacts. As 
our occurrence data are based on presence only, we �rst cre-
ated pseudo-absence data for each species. �e selection of 
pseudo-absence data may have strong implications for model 
performance (Barbet-Massin et al. 2012). To overcome this 
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limitation, we employed the three-step method (Senay et al. 
2013, Iturbide et al. 2015). In this method pseudo-absences 
are selected outside the realized niche by taking into account 
the environmental variables, but in accessible geographic 
areas that potentially could be reached by dispersal. �is pro-
vides a balance between using the spatial and environmental 
space for the selection of pseudo-absence points and has been 
shown to outperform other methods (Iturbide et al. 2015). 
�e �rst step consists of de�ning environmentally unsuit-
able areas using a presence-only support vector machine 
algorithm. �e second step consists of building SDMs using 
pseudo-absences generated for di�erent sized bu�ers around 
known presence locations but within the unsuitability back-
ground zones de�ned in the �rst step. �e third step consists 
of selecting the optimum bu�er extent from the models gen-
erated in step 2. For the �nal output, we ran 50 models based 
on di�erent sets of pseudo-absence data.

After the selection of pseudo-absences, the relationship 
between presence or absence and the predictors was esti-
mated using Bayesian GLMs, in which species occurrences 
were treated as Bernoulli trials, where p is the probability 
of �nding the species. We chose to focus on this method in 
order to facilitate direct comparison with the SDM com-
bined with physiological data (see below). We used minSST 
and maxSST and their quadratic forms (to account for uni-
modal responses and non-linearities) as predictors. As a prior 
for the regression coe�cients, we used a non-informative 
normal distribution (µ = 0, sigma = 10 000). �e model was 
run using a burn-in period of 4000 samples. Following this, 
4000 additional MCMC samples were used to estimate the 
posterior distribution of regression coe�cients. �ese 4000 
samples of the posterior distribution were taken from all 50 
models containing di�erent sets of pseudo-absence data and 
hence encompass the uncertainty associated with pseudo-
absence generation. Using the model, we predicted for each 
20 arcmin cell in the Mediterranean (overall 7992 cells) spe-
cies suitability and the uncertainty associated with this esti-
mate, both under current climate and climate for the year 
2100. For cross validation, we used 70% of the data (presence 
and pseudo-absence occurrences) to train the model, and the 
remaining 30% was used as testing data. �e splitting into 
training and testing was performed 100 times.

Physiological data

We collected data on the temperature dependence of impor-
tant physiological responses for use within the combined phys-
iological and correlative SDMs (hereafter physiology-SDMs). 
�ese data were obtained from published studies (Padilla-
Gamiño and Carpenter 2007, Garval 2015, Georgiou et al. 
2016, Guy-Haim  et  al. 2016, Guy-Haim 2017). For each 
species we used a response variable that is hypothesized to be 
directly associated with its �tness, and known to respond to 
changes in temperature (Angilletta 2009, Cooke et al. 2013), 
such as photosynthetic rates, growth rates (McGraw and 
Caswell 1996) and clearance rates which are directly asso-
ciated with assimilation rates and are often used as a proxy 

for �tness through their e�ect on survivorship and fecundity 
(Angilletta 2009, Sinclair et al. 2016). �e response variables 
(Table 2) were assessed using di�erent proxy parameters, as 
follows: growth rates were measured in Halophila stipulacea 
as the change in leaf area (Georgiou et al. 2016); photosyn-
thetic rates were measured as oxygen production per biomass 
per time (Padilla-Gamiño and Carpenter 2007, Garval 2015, 
Guy-Haim et al. 2016); and clearance rate was measured in 
the bivalve Striarca lactea as clearance rate of its microalgal 
food (Guy-Haim 2017).

Physiological model

We used the framework of Talluto et al. (2016) in order to 
combine the physiological information with the geographical 
occurrence data. �is was done by �rst choosing a model to 
represent the temperature response curve of the physiological 
data. �e posterior distribution, from the physiological sub-
model, was then used as a prior for each of the SDM coef-
�cients (Fig. 1). �us, each coe�cient in the SDMs received 
a prior mean and the standard deviation from the matching 
coe�cient in the physiological sub-model. For example, if 
maxSST is used as a predictor within the GLM, the prior 
for this coe�cient was based on the coe�cient of the rela-
tionship between the physiological variable and temperature 
estimated from the physiological response curve. See Fig. 1 
for a schematic overview of the modeling stages.

�e physiological data used here, as typically obtained in 
most experiments, is expressed in units that must be con-
verted to probability (i.e. that vary between zero and one) in 
order to be used as priors with the physiology-SDM. To do 
this necessitates two steps. First, we had to decide a threshold 
above which the physiological parameter indicates positive 
habitat suitability. For example, it is likely that given herbiv-
ory and other processes in natural communities, experimen-
tally estimated photosynthetic rates have to be above a certain 
threshold to translate into non-zero habitat suitability. �is 
issue is less of a problem in cases, such as those described in 
Talluto et al. (2016), for which the physiological data consists 
of population level growth rates estimates. To overcome this 
limitation, we applied a cuto� above which the physiologi-
cal parameter values translate into positive habitat suitabil-
ity. For the main text we show results for a thresholds set 
at the 10th quantiles of the measured physiological param-
eter data. However, results were robust to threshold choice 
(Supplementary material Appendix 1 Fig. A6).

Second, following Talluto et al. (2016) we translated the 
physiological data into probabilities that vary between zero 
and one. For this, we assumed that at a speci�c temperature 
the experimental physiological data follow a normal distri-
bution. �en, based on the mean and standard deviation of 
the experimental data, we calculated the probability of the 
physiological parameter being positive at that temperature 
(Talluto  et  al. 2016). For example, if at 25°C growth rate 
measured in an experiment was 20 mm2 leaf−1 d−1 but the 
experimentally estimated standard deviation was 10, the esti-
mated probability of growth rate to be positive at 25°C was 
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lower than in an experiment with a similar growth rate but a 
standard deviation of 1.

After conducting these two steps, we ran the physiologi-
cal sub-models to estimate how the physiological data, trans-
formed to relative suitability, changes with temperature. For 
the physiological sub-model we used Bayesian beta regres-
sion, with temperature as a predictor and the relative suitabil-
ity, based on physiological data, as a response (Talluto et al. 
2016). �e physiological sub-model coe�cients were given 
Gaussian priors, with the mean taken from the maximum 
likelihood estimation to improve convergence, and a vague 
prior was set on the variance (set at 1000).

SDM combined with physiological data  
(physiology-SDM)

�e mean and variance of the posterior distribution of the 
coe�cients estimated from the physiological sub-model were 
used as priors in the physiology-SDM to produce a SDM 
informed by the physiological data (Talluto et al. 2016). In 
cases where we had strong con�dence in the physiological 
data, evident by low variance in the posterior distribution 
of the physiological sub-model coe�cients, this could sub-
stantially change the physiology-SDM results in comparison 
to the SDM results. However, in cases where the posterior 

Table 2. Physiological information used in this study. DW = dry weight. Photos for Striarca lactea, Ellisolandia elongata and Padina pavonica 
were taken from Tamar Guy-Haim, and for Halopteris scoparia from Tal Garval. Non-indigenous species names are marked by asterisk.

Species
Phylum/class 

(common name)
Physiological 

variable Units

Experimented 
temperature 
range (°C) Source Image

Striarca lacteal Bivalivia (bivalve) Clearance rate %conc. tetraselmis h−1 15–35 Guy-Haim 2017

Halopteris 

scoparia

Ochrophyta 
(brown algae)

Gross 
photosynthesis

µmol O2 g DW−1 h−1 15–35 Garval 2015

Ellisolandia 

elongata

Rhodophyta  
(red algae)

Gross 
Photosynthesis

µmol O2 g DW−1 h−1 15–35 Guy-Haim et al. 
2016

Padina 

pavonica

Ochrophyta 
(brown algae)

Gross 
photosynthesis

µmol O2 g DW−1 h−1 15–35 Guy-Haim 2017

Halophila 

stipulacea*
Monocots 

(seagrass)
Growth rate mm2 leaf−1 d−1 10–30 Georgiou et al. 

2016

Asparagopsis 

taxiformis*
Rhodophyta  

(red algae)
Maximum net 

photosynthesis
mg O2 g DW−1 h−1 10–35 Padilla-Gamiño 

and 
Carpenter 
2007
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distributions of the physiological sub-model coe�cients con-
tain a lot of uncertainty, the physiology-SDM and SDM may 
be very similar.

We �tted the physiology-SDM using Bayesian GLMs, 
similar to the regular SDMs. �us, species occurrences were 
treated as Bernoulli trials, where p is the probability of �nding 
the species. However, the posterior distribution of the coef-
�cients relating relative suitability to temperature, retrieved 
from the physiological sub-model, were used as informative 
priors. Here too, we used 4000 MCMC samples for burn-
in, and estimated the posterior distribution using 4000 addi-
tional samples. We visually examined convergence, using a 
convergence plot for model parameters, and found that the 
models for all species adequately converged. We applied 
prior weights of one to the physiological sub-model, so that 
the physiological data was given equal weight as the occur-
rence data. However, the results did not qualitatively change 
when other weights were chosen (Supplementary material 
Appendix 1 Fig. A3, A4).

Model performance and overlap calculations

For both the SDMs and physiology-SDMs we estimated 
cross-validation model performance from the training data 
to the testing data using the Boyce index (Hirzel et al. 2006). 
�e Boyce index ranges from −1 to 1, where 0 means the 
model does not di�er from random and 1 indicates a per-
fect �t to the data (Hirzel  et  al. 2006). We also sought to 
quantify the degree to which species distribution changes 

between: 1) current and future climate, and 2) regular 
SDMs and physiology-SDMs. �ese changes were quanti�ed 
using the Schoener’s D and Hellinger’s I matrices of overlap 
(Warren et al. 2008). �e D and I matrices measure the over-
all match between the species distributions and range from 0, 
no overlap, to 1, identical distributions (Warren et al. 2010, 
Broennimann et al. 2012).

We were speci�cally interested in the Levant region, where 
the Mediterranean Sea is warmest, strongly a�ected by cli-
mate change, and where range contractions are likely to be 
the largest (Coll et al. 2010). �us, in addition to the entire 
Mediterranean, we examined model performance and overlap 
for the trailing edge of the species distribution in the Levant. 
�is was done by dividing the Mediterranean into the Levant 
region and the Mediterranean excluding the Levant, and  
re-calculating the above indices for each.

Results

Physiological response curves

Focusing on the physiological response curves, the relative 
performance of a species at a certain temperature converted 
to probabilities, we found that most species demonstrated 
a unimodal response to temperature (Supplementary mate-
rial Appendix 1 Fig. A1). Moreover, most species showed 
a decline in their suitability beyond 30°C (Supplementary 
material Appendix 1 Fig. A1). �e cryptic bivalve,  

Figure 1. Schematic representation of the stages in the construction of the physiology-SDMs. (a) Experimental data was collected on the 
temperature dependence of important physiological responses. (b) We chose the model that best represents the temperature response curve 
of the physiological data. (c) Environmental data and species occurrence records were compiled. (d) Species occurrences were related to 
environmental predictors using Bayesian generalized linear models (GLMs). (e) �e posterior distribution from the physiological sub-
model was then used as a prior for each of the GLM coe�cients. �us, each coe�cient in the SDMs received a prior mean and the standard 
deviation from the matching coe�cient in the physiological sub-model. (f ) �e �nal models were used to predict species distribution under 
current and future environmental conditions.
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Striarca lactea was an exception as its suitability generally 
increased towards high temperatures, which may suggest that 
it is not strongly limited by the highest temperature exam-
ined here of 35°C.

SDM and physiology-SDMs coefficient estimates

Using the posterior distribution of the coe�cients esti-
mated from the physiological thermal response curves, we 
constructed the physiology-SDMs and compared them to 
SDMs based on environmental data only. We found that 
while for some species the posterior distribution for the 
parameters examined (minSST and maxSST and their qua-
dratic forms) were similar between the regular SDMs and 
physiology-SDMs, for other species the estimates diverged, 
especially for minSST (Fig. 2). However, for all species the 
uncertainty associated with the coe�cients estimated from 
the physiology-SDMs were much lower than in the regular 
SDMs (Fig. 2). When comparing the predicted temperature 
response curves from the SDM and the physiology-SDM for 
each species, we found a generally similar pattern, especially 
for minSST (Fig. 3). However, the physiology-SDM for most 
species showed less uncertainty, especially for maxSST at high 
temperatures (e.g. Ellisolandia elongata and Padina pavonica 
in Fig. 3). �ese results suggest that the physiological data 
were informative and had a substantial impact on constrain-
ing the modeled results.

Current distributions

�e global distribution of the examined species predicted 
using physiology-SDMs under the current climate change be 
seen in Supplementary material Appendix 1 Fig. A4 and the 
Mediterranean distribution can be seen in Fig. 4, 5. Overall 
measures of cross-validated model performance indicated 
good �t of the SDM (Boyce = 0.77 ± 0.26; Table 3). �ese val-
ues are slightly, but not signi�cantly, lower than those found 
for the physiology-SDMs (Boyce = 0.82 ± 0.27; Table 3), sug-
gesting a slight advantage for the physiology-SDMs.

When looking at model performances in the Levant region 
– the warm trailing edge of the species distribution – we 
found variable model performance, at least partially due to 
the low number of occurrences in this region for some species  
(Table 1). Regular SDMs generally presented low values which 
indicate an extremely poor �t (Boyce = −0.40 ± 0.46; Table 
3). Overall, physiology-SDMs in the Levant also performed 
poorly (Boyce = −0.08 ± 0.75; Table 3), but for three species 
the improvement in model performance for the physiology-
SDM compared to regular SDMs was substantial. �us, for 
Asparagopsis taxiformis the Boyce index increased from 0.34 
to 0.65, for Halophila stipulacea from −0.14 to 0.94, and 
for Ellisolandia elongata from −0.80 to −0.01 when using 
physiology-SDMs (Table 3). �ese �ndings support our 
hypothesis that physiology-SDMs can provide more accurate 
predictions at the edges of the distributions, although they do 
not unequivocally prove it.

Figure 2. Comparison of the posterior distributions for the SDMs 
and physiology-SDMs. �e coe�cients correspond to linear (col-
umns one and three) and quadratic (columns two and four) e�ects 
of minSST and maxSST on relative habitat suitability. Cyan – regu-
lar SDM, red – physiology-SDM. Non-indigenous species are 
marked by an asterisk.
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�e predicted distributions for the SDMs and physiol-
ogy-SDMs under the current climatic conditions showed 
a high general overlap (Supplementary material Appendix 
1 Table A5, I = 0.98 ± 0.01 (mean ± SD across species), 
D = 0.87 ± 0.05). Regular SDM predictions suggest that most 
species have higher suitability in the western Mediterranean 
(Fig. 4, Supplementary material Appendix 1 Fig. A2). In 
contrast, the physiology-SDMs (Fig. 4, 5) suggest that the 
probabilities of occurrence are much more homogeneously 
distributed throughout the Mediterranean, with high prob-
abilities even in warm regions like the Levant (Fig. 5).

Future distribution

Under future climate (year 2100, scenarios RCP4.5, 
PCR8.5), we forecast that most species will undergo range 
contractions and shift their distribution to the north-west 
(Fig. 4, Supplementary material Appendix 1 Fig. A2). �is is 
true for both SDMs and physiology-SDMs, which showed a 
high general overlap with current conditions under scenario 
RCP4.5 (Supplementary material Appendix 1 Table A3, for 
regular SDMS: I = 0.96 ± 0.02, D = 0.77 ± 0.05) but a more 
pronounced shift resulting in lower overlap under scenario 
RCP8.5 (Supplementary material Appendix 1 Table A3, for 
regular SDMS: I = 0.77 ± 0.85, D = 0.46 ± 0.01). However, 
the overlap between current and future predictions was 
higher for the physiology-SDMs than for regular SDMs 
(Supplementary material Appendix 1 Table A3, di�erence in 
mean overlap between models for RCP8.5: ∆I = 0.14 ± 0.07; 
∆D = 0.22 ± 0.13). Hence, when using physiology-SDMs 
species are predicted to display less change in their distribu-
tion, as seen in the general blue colors in Fig. 6.

Discussion

Regular SDMs predict that by the year 2100, all four of the 
indigenous species examined will have disappeared from 
the Levant, the warmest region of the Mediterranean, and 
shifted their distribution north-west. �is adds to other stud-
ies that have predicted widespread loss of indigenous species 
from the Levant and a transformation of the local marine 
biota (�omas  et  al. 2004, Ben Rais Lasram  et  al. 2010, 
Albouy  et  al. 2013, 2015, Rilov 2016, Givan et  al. 2018). 
However, by incorporating physiological data into the SDMs 
we show that: A) the uncertainty associated with the coe�-
cient estimates decreases, hence increasing con�dence in the 
results (Fig. 2); B) overall cross-validated model performance 
was slightly higher for the physiology-SDMs (Table 3); and 
C) despite low number of occurrences, in the warm trailing 
edge of the species distribution physiology-SDMs substan-
tially outperformed regular SDMs in three out of the six spe-
cies (Table 3). �ese results suggest an overall advantage for 
the physiology-SDMs. �e di�erences between SDMs and 
physiology-SDMs become more apparent when used to pre-
dict future distributions, as the overlap between current and 
future distributions was higher for the physiology-SDMs 

Figure 3. �e relative suitability of a species to a certain tempera-
ture, obtained by �xing the other predictor at the median value, for 
the regular SDMs and the physiology-SDMs. �e left column is for 
minSST and the right column for maxSST. Non-indigenous species 
names are marked by an asterisk.
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than for regular SDMs (Supplementary material Appendix 
1 Table A3). �is means that when using physiology-SDMs 
species are predicted to display less change in their distribu-
tion (Fig. 6), demonstrating that range shifts may be less dra-
matic than previously predicted. �us, many species may be 
able to survive in the Levant even when water temperatures 
increase substantially.

�e use of physiological data combined with SDMs for 
predicting species distributions is a new but rapidly develop-
ing methodology. �e simplest approach is to integrate basic 
physiology into SDMs, by using the physiological data as a 
threshold to delineate the range of environmental conditions 
within which the species can survive. Using this method, 
Martínez et al. (2014) indicated that one Atlantic algae spe-
cies would become extinct at its southern range while another 
would increase its occupancy as climate warms. �is approach 
uses physiology only to delineate range margins and hence 
does not take advantage of the wealth of available data. More 
sophisticated hybrid models may directly combine correlative 
and mechanistic models (Gallien et al. 2010, �uiller et al. 

2013, Evans et al. 2016). For example, Dynamic Bioclimate 
Envelope Models (DBEM) identify ‘environmental prefer-
ence pro�les’ for each species and then transform changes 
in climate into changes in life history, growth and carrying 
capacity (Cheung et al. 2011, 2012). DBEMs are complex 
and rely on several assumptions that are di�cult to verify for 
most species (Lefevre et al. 2017). Here, we used the frame-
work suggested by Talluto  et  al. (2016), which enables a 
straightforward and transparent integration of physiological 
data into the SDMs. �is opens up the possibility of tak-
ing advantage of the large number of experimental studies 
that have produced physiological response curves in order to 
improve model projections. While this approach is promis-
ing, it has not, to our knowledge, been applied and tested for 
marine species.

Many studies, based largely on SDMs, predict dras-
tic changes in species ranges under future climates both 
for Mediterranean marine species (Ben Rais Lasram  et  al. 
2010, Albouy  et  al. 2013, 2015) and for other taxa and 
regions (Beaumont and Hughes 2002, �omas et al. 2004, 

Present predictions

Future predictions RCP4.5

(a) SDM (b) Physiology-SDM (c)Difference between maps B and A

(d) SDM (e) Physiology-SDM (f) Difference between maps E and D

c. Halopteris scoparia d. Halopteris scoparia

Future predictions RCP8.5

(g) SDM (h) Physiology-SDM (i) Difference between maps g and h

Figure 4. Predicted habitat suitability for one species, Halopteris scoparia, in the Mediterranean Sea. Top – under current environmental 
conditions. Middle – forecasted under future (2100) environment for RCP4.5. Bottom – forecasted under future (2100) environment for 
RCP8.5. (a), (d) and (g) are based on regular SDMs. (b), (e) and (h) are based on physiology-SDMs. (c), (f ) and (i) represent the di�erence 
between the physiology-SDMs and the SDMs. Blue colors indicate regions where physiology-SDMs predict higher suitability than SDMs. 
�e empty circles in (a) and (b) are the observed occurrences of the species.
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Figure 5. Relative suitability for each species across the Mediterranean Sea using the physiology-SDMs. �e empty circles mark the occur-
rences of the species. Left – current climate. Middle – forecasted under future (2100) environment for RCP4.5. Right – forecasted under 
future (2100) environment for RCP8.5. Non-indigenous species names are marked by an asterisk.
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Araujo et al. 2006). Here we have shown, by incorporating 
physiological data into SDMs, that those forecasts may be 
too extreme, at least for the Mediterranean. Using regular 
SDMs we found that the suitability for most species in the 
warm trailing edge was extremely low (Supplementary mate-
rial Appendix 1 Fig. A2); whereas the physiology-SDMs usu-
ally predicted a higher suitability for both the current and 
future climate (Fig. 5, 6). Nevertheless, even with physiology-
SDMs habitat suitability for most species becomes low under 
extreme warming scenarios such as RCP8.5.

We expected the physiology-SDMs to perform better 
than SDMs in the Levant region, which is the warm trail-
ing end of the distribution of indigenous species. In general, 
we obtained poor cross-validated model performances in the 
Levant regardless of the type of model used (SDMs or phys-
iology-SDMs). �ere are two possible reasons for this. First, 
it may indicate that the physiology-SDMs were simply not 
bene�cial in improving the models. We show, however, that 
the coe�cient estimates from the physiology-SDMs are more 
constrained than the estimates obtained for regular SDMs 
(Fig. 2). Moreover, for three out of six species cross-validated 
model performance in the Levant for the physiology-SDMs 
was much higher than for the regular SDMs (Table 3). �is 
suggests that adding physiology into the SDMs did have 
clear advantages and has the potential to provide more accu-
rate predictions at the edges of the distribution. Second, for 
many species there are currently few occurrence points in the 
Levant (< 10 in three out of the six species), which can a�ect 
model performance (Table 1). �us, although we did not see 
unequivocal improvement in model performance within the 
Levant, we believe that with more occurrence data the physi-
ology-SDMs may clearly perform better than regular SDMs.

We found that both SDMs and physiology-SDMs pre-
dicted north-west shifts in distribution, with a correspond-
ing decrease in occurrence in the Levant. �is pattern was 
highly pronounced in the indigenous species Padina pavon-
ica, which in the Levant region is predicted to decrease 
substantially under future climate (Fig. 5, Supplementary 
material Appendix 1 Fig. A2). Figure 3 and Supplementary 
material Appendix 1 Fig. A1, indicate that this species can-
not physiologically survive high temperatures. An exception 
to this north-west distributional shift is the non-indigenous 
Halophila stipulacea, for which we predicted a high suitability 
throughout the Mediterranean Sea under both current and 
future climates (Fig. 5, Supplementary material Appendix 

1 Fig. A2). �is is in line with Georgiou  et  al. (2016) 
who suggest that this species has a wide thermal tolerance. 
Nonetheless, although this species has been found in the 
Mediterranean for over a century (Georgiou et al. 2016) its 
distribution remained highly restricted and patchy, suggest-
ing that other factors are limiting its spread beyond the sites 
where it currently occurs.

�e forecasted distributional shifts di�ered in magnitude 
between model types. For most species, it can be seen that reg-
ular SDMs predicted larger changes than physiology-SDMs 
(Fig. 6). �is may be due to over-�tting by regular SDMs, 
compared to physiology-SDMs (Fig. 3). Over-�tting may 
be reduced in physiology-SDMs by the external constraints 
imposed by the species physiological response. Species pole-
ward distributional shifts due to climate change have been 
repeatedly described (Parmesan 2006) and predictions may 
bene�t from models that incorporate species physiology.

We a-priori assumed that the tropical non-indigenous spe-
cies would perform better under high temperatures, as they 
naturally encounter higher temperatures across their native 
range (Lejeusne et al. 2010, Bates et al. 2013, Marras et al. 
2015). �is prediction is complicated by the possibility that 
these species are not at equilibrium with their environment, 
and hence not constrained by environmental factors, and the 
possibility of niche shifts (Parravicini et al. 2015). �e two 
non-indigenous species examined here (Halophila stipulacea 
and Asparagopsis taxiformis) revealed temperature response 
curves that are not very di�erent from those of the indig-
enous species (Supplementary material Appendix 1 Fig. A1). 
Nevertheless, both the SDMs and physiology-SDMs support 
our prediction as we found that these non-indigenous spe-
cies have higher habitat suitability in the Levant compared 
to indigenous species, under both current and future climate 
(Fig. 5, Supplementary material Appendix 1 Fig. A2). We 
further found that the increase in cross-validated model per-
formance attained by using physiology-SDMs was highest 
for the two non-indigenous species (Table 3). �is contra-
dicts our prediction that performance improvement of the 
physiology-SDMs would be higher for indigenous species, as 
non-indigenous species may have additional occurrence from 
their native range that correspond to locations that represent 
their upper thermal tolerance. Examining the temperature 
response curves, it is evident that the increase in mode perfor-
mance for the two non-indigenous species is associated with 
both higher con�dence in the estimates (Fig. 2) and modi�ed 

Table 3. Cross-validation estimates of the Boyce index for each species, using both regular SDM and physiology-SDM, for the entire 
Mediterranean and for the Levant region only. Non-indigenous species names are marked by asterisk.

Species SDM Physiology-SDM Levant SDM Levant physiology-SDM

Striarca lactea 0.93 0.96 −0.31 −0.48
Halopteris scoparia 0.86 0.95 −0.78 −0.81
Ellisolandia elongata 0.89 0.87 −0.80 −0.01
Padina pavonica 0.79 0.99 −0.75 −0.80
Halophila stipulacea* 0.26 0.28 −0.14 0.97
Asparagopsis taxiformis* 0.90 0.86 0.34 0.65
Mean ± SD 0.77 ± 0.26 0.82 ± 0.27 −0.40 ± 0.45 −0.08 ± 0.75
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Figure 6. �e di�erence between physiology-SDMs and SDMs for each period. Hence, positive (blue colors) values mean that physiology-
SDMs predict higher suitability than SDMs. Left – current climate. Middle – forecasted under future (2100) environment for RCP4.5. 
Right – forecasted under future (2100) environment for RCP8.5. Note, that for most species, in the Levant region under current climate 
physiology-SDMs predict higher suitability than regular SDMs. An exception is the invasive Halophila stipulacea for which regular SDMs 
return higher suitability in the Levant. Non-indigenous species names are marked by an asterisk.
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response curves (Fig. 3). Nonetheless, the two tested species 
may not necessarily represent the majority of non-indigenous 
species, and more species need to be tested to determine if 
physiology-SDMs are generally more useful when modelling 
non-indigenous species.

While we have demonstrated here the utility of the phys-
iology-SDM, this approach also has several drawbacks. First, 
we examined species that dwell in di�erent habitats ranging 
from intertidal pools to shallow subtidal reefs. Some of these 
species may not directly experience the sea surface tempera-
tures estimated from remote sensing data, which may under-
estimate true temperatures by 2°C (Rilov 2016). Moreover, 
species dwelling in intertidal pools may experience very dif-
ferent temperatures to those that dwell in the subtidal. While 
in regular SDMs these inaccuracies may not be critical as the 
models are designed to predict relative habitat suitability, for 
physiology-SDMs this mismatch between remote sensing 
based climate data and physiological data may compromise 
model performance. In our case, it means that species may be 
experiencing higher temperatures than those predicted by the 
environmental layers for shallow water and tide pool species, 
but lower temperatures than predicted by the environmental 
layers for burrowing or deeper subtidal species. Hence, future 
change in suitability for a species in the Levant may be either 
larger or smaller than estimated here.

Second, the way the measured physiological data corre-
spond with habitat suitability is not straightforward. Even if 
parameters such as population growth rate (r) can be mea-
sured experimentally in controlled environments, it remains 
unclear if this can be scaled up to re�ect large-scale natural 
populations. �is is even more of a problem for the physio-
logical parameters used in this study such as leaf growth rate, 
clearance rate and photosynthesis rate. For the physiology-
SDM, we assume higher performance in these parameters, 
e.g. high leaf growth rate, corresponds to higher habitat suit-
ability as estimated from SDMs. While this seems like a rea-
sonable assumption, instances in which this assumption fails 
can be easily envisioned (Osorio-Olvera et al. 2019). Another 
issue to consider is the value of the physiological parameters 
which correspond to positive growth rates and habitat suit-
ability. For the parameters used here, it is clear that negative 
values will entail death over the long term. However, many 
organisms may remain alive for long periods even without 
acquiring nutrition through �ltering or photosynthesis. In 
addition, positive values do not guarantee positive habitat 
suitability. It may be that an individual with positive leaf 
growth rate or positive photosynthesis rate will not grow fast 
enough to produce positive population growth rates within 
a speci�c habitat. We tackle this problem by applying di�er-
ent thresholds to the physiological sub-models above which 
the physiologically estimate values can be translated to habi-
tat suitability greater than zero. We show that the results are 
robust to di�erent thresholds used (Supplementary material 
Appendix 1 Fig. A6), but this will have to be assessed on a 
case by case basis in future studies.

�ird, the weight applied to the physiological sub-model 
relative to the SDM, here set at one, is somewhat arbitrary. 

Ideally, the weight should re�ect the relative con�dence in 
the physiological data and should increase with better experi-
mental evidence, e.g. if a wide range of temperatures are 
examined, if sample design is adequate, and if several di�er-
ent populations are tested. Similarly, the cuto� used before 
applying the physiological sub-model, here set to 10% of 
the data, is also arbitrary, although it should ideally re�ect 
physiological knowledge of the conditions under which spe-
cies have positive growth rates. Nonetheless, we show that 
our results are generally robust to variation in these weights 
(Supplementary material Appendix 1 Fig. A3, A5). In future 
studies, it would be desirable to produce guidelines for select-
ing an objective weighting scheme for the physiological 
sub-models.

Fourth, the physiological response of species to environ-
mental gradients may not be stationary in time or space. 
Acclimation, epigenetic responses and local adaptation can 
all produce variation in the temperature response curve 
(�uiller et al. 2013). Here, for lack of data, we do not assess 
this variation, but argue that for most species it is likely to be 
small relative to interspecies di�erences in the temperature 
response curve. With more information accumulating for 
each species, this intraspeci�c variation may be empirically 
assessed, with limits to the local adaptation being incorpo-
rated into models.

Finally, physiological data are typically collected within 
controlled tank or mesocosm experiments. Experimental 
properties such as volume, duration and complexity (e.g. 
inclusion of environmental �uctuations, system openness) can 
a�ect the magnitude and direction of the measured response. 
Species may also show di�erent temperature response curves 
in the �eld in the presence of predators, competitors and 
variation in other environmental factors (Helmuth  et  al. 
2006, Childress and Letcher 2017). Moreover, physiologi-
cal data are estimated for the adult stage only. However, 
adults can survive temperatures that larval stages may not 
(Levy et al. 2016). �is stresses that physiological data should 
be obtained from experiments conducted under conditions as 
close as possible to those in nature. For example, mesocosms 
that mimic natural temperature, salinity and irradiance in 
both mean and daily ranges (Guy-Haim 2017). Such types of 
experiments will probably produce better physiology-SDMs 
than the more controlled tank experiments used here.

In conclusion, there is a need to incorporate more realism 
into SDMs in order to improve predictions of distribution 
changes, such as species interactions and direct estimated 
of human anthropogenic impact (Urban  et  al. 2016, 
Record et al. 2018). We have shown here that incorporating 
species physiology data into SDMs changes species distribu-
tion predictions. Importantly, we found that while SDMs 
predicted that indigenous species are likely to decline in the 
Levant as the climate warms, physiology-SDMs predicted a 
milder reduction in suitability. We also found some support 
for physiology-SDMs performing better at the environmen-
tal range edges (the trailing end of the species distribution) 
where regular SDMs often fail. However, this initial �nd-
ing requires further support from more species with more 
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occurrence data. �e framework proposed by Talluto  et  al. 
(2016), and employed here, is easy to implement on other 
species and regions using already available physiological data. 
Although physiological data for marine species have typically 
been limited and scattered, emerging technologies posture 
to modernize methods for obtaining these data (Pimm et al. 
2015, Wolfert et al. 2017), while complementary new data-
bases (Bennett  et  al. 2018, Farley  et  al. 2018) will catalog 
and maintain the data for future investigations such as the 
physiology-SDMs approach presented here. �ese models 
can inform biodiversity management programs and help to 
preserve threatened marine biota.
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