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SUMMARY

In randomized studies with missing outcomes, non-identifiable assumptions are required to hold for
valid data analysis. As a result, statisticians have been advocating the use of sensitivity analysis to evaluate
the effect of varying asssumptions on study conclusions. While this approach may be useful in assessing
the sensitivity of treatment comparisons to missing data assumptions, it may be dissatisfying to some
researchers/decision makers because a single summary is not provided. In this paper, we present a fully
Bayesian methodology that allows the investigator to draw a ‘single’ conclusion by formally incorporating
prior beliefs about non-identifiable, yet interpretable, selection bias parameters. Our Bayesian model
provides robustness to prior specification of the distributional form of the continuous outcomes.
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1. INTRODUCTION

In randomized studies with missing outcomes, it is well known that non-identifiable assumptions (e.g.
missing at random; Rubin, 1976) are required to hold for valid data analysis. The degree to which these
untestable assumptions are believed can have a substantial impact on study conclusions. With this in
mind, statisticians have been advocating the use of sensitivity analysis to evaluate the effect of varying
assumptions on study conclusions. For example, Rotnitzkyet al. (1998, 2001), Scharfsteinet al. (1999),
Robinset al. (2000) adopted a selection modeling approach; while Rubin (1977), Little (1994) and Daniels
and Hogan (2000) used a pattern-mixture formulation. These approaches rely heavily on expert opinions
about plausible ranges for non-identifiable, yet interpretable, sensitivity analysis parameters.

While the above methodological developments are useful in assessing the sensitivity of treatment
comparisons to missing data assumptions, it may be dissatisfying to some researchers/decision makers
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because a single summary is not provided. A fully Bayesian analysis allows the investigator to draw
a ‘single’ conclusion by formally incorporating prior beliefs about model parameters. For categorical
outcomes, Robinset al. (1999) and Raab and Donnelly (1999) developed fully Bayesian selection
modeling approaches, while Forster and Smith (1998) developed a pattern-mixture approach. For
continuous outcomes, Lee and Berger (2001), building on the work of Bayarri and Degroot (1987) and
Bayarri and Berger (1998), developed a semiparametric Bayesian selection modeling approach, which
places strong distributional assumptions on the outcome and weak distributional assumptions on the
selection mechanism. In this paper, we consider the continuous outcome setting but take an opposite
tack from Lee and Berger (2001). That is, we place strong prior restrictions on the selection mechanism,
but relax the distributional restrictions on the outcome. Our tack is motivated by the fact that, in the
clinical trial setting, investigators may have firmer beliefs about the selection mechanism as opposed to
the distributional form of the outcome. The flexibility we seek makes the problem challenging. As a
result, we restrict ourselves to the setting in which additional covariate information is ignored. By closely
examining this scenario, we will gain insight into the more difficult and realistic setting, in which covariate
information is utilized. This latter setting will be addressed in a sequel.

The paper is organized as follows. In Section 2, we describe an AIDS clinical trial which will provide
context for the methods discussed throughout. In Section 3, we formalize the data structure of the AIDS
study. In Section 4, we review the frequentist, non-parametric sensitivity analysis approach of Rotnitzky
and colleagues. This review provides a backdrop for our flexible Bayesian approach, developed in Section
5. In Section 6, we analyze the AIDS data from both the frequentist and Bayesian perspective and compare
results. Section 7 is devoted to a discussion.

2. ACTG 175

ACTG 175 was a randomized, double-blind trial designed to evaluate nucleoside monotherapy versus
combination therapy in HIV-infected individuals with CD4 counts between 200 and 500 mm−3. 2467
subjects were randomized to one of four treatment arms: 619 to AZT (600 mg a day) alone, 613 to AZT
(600 mg a day) + ddI (400 mg a day), 615 to AZT (600 mg a day) + ddC (2.25 mg a day), and 620 to
ddI (400 mg a day) alone (Hammeret al., 1996). CD4 counts were scheduled to be collected at baseline,
week 8, and then every 12 weeks thereafter. Additional baseline characteristics were also collected. In the
interest of space, we focus attention on the AZT+ddI and ddI treatment arms. Also, we ignore all recorded
information except the CD4 count to be measured at week 56.

One goal of the investigators was to compare the treatment-specific distributions of CD4 cell count
at week 56 had all subjects remained on their assigned treatment through that week. Thus, it is useful to
define a completer as a subject who stays on therapy and is measured at week 56; otherwise, we define the
subject as a drop-out. In this paper, we do not distinguish between the multiple causes of drop-out. The
percentage of drop-outs in the AZT+ddI and ddI arms is 33.6% and 26.5%, respectively. To address the
above objective, a completers-only analysis is usually performed. The mean CD4 count at week 56 for
completers (standard error) is 384.96 (8.53) and 359.59 (7.67) in the AZT+ddI and ddI arms, respectively.
The difference in means is 25.36 and the associated 95% confidence interval is (2.87, 47.85); a test of the
null hypothesis of no treatment difference has an associatedp-value of 0.027, taken to be evidence of the
superiority of AZT+ddI over ddI. The above estimates of the means, under full completion, are only valid
if the completers and drop-outs are similar on measured (ignored) and unmeasured characteristics (i.e.
missing at random). This latter, non-identifiable assumption is unlikely to hold, as it is well known from
other studies that drop-outs tend to be very different than completers. Our goal is to present two alternative
and complementary analysis strategies for the ACTG 175 data. The first approach is frequentist, while the
second is Bayesian.
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3. DATA STRUCTURE AND NOTATION

Wefocus on an individual treatment group. We letY denote the CD4 count that would be observed at
week 56 under full compliance with assigned therapy. LetR be the completion indicator, so thatR = 1
if the subject is a completer andR = 0 if he is adrop-out. Thus,Y is observed whenR = 1 and missing
whenR = 0. Ignoring all other recorded information, we think ofC = (R, Y ) andO = (R, Y : R = 1)

as the complete and observed data for an individual, respectively. We assume that{Ci = (Ri , Yi ) : i =
1, . . . , n} and{Oi = (Ri , Yi : Ri = 1) : i = 1, . . . , n} ≡ O are sets ofn independent and identically
distributed (iid) copies ofC andO, respectively.

Let f be the probability density function (pdf) ofY , f1 be the conditional pdf ofY among completers,
and f0 be the conditional pdf ofY among drop-outs. LetF , F1, andF0 be the corresponding cumulative
distribution functions (cdf). Letp = P[R = 1]. With this notation, note that the observed data law,G O ,
is characterized byp andF1.

The goal is to useO to draw inference about a functional ofF , µ(F). The main functional of interest
is E[Y ] (µ(F) = ∫

y dF(y)).

4. FREQUENTIST INFERENCE

Here, we review the main results of the non-parametric, sensitivity analysis methodology of Rotnitzky
and colleagues. Our exposition is intended to provide background and motivation for the Bayesian
development in Section 5.

4.1 Identifiability, non-parametric models, and sensitivity analysis

It is well known that the lawG O of the observed dataO is not sufficient to identify the distribution of
Y ( f ) or any of its functionals. This is because (1)f can be expressed as a mixture of the conditional
distributions ofY for completers (f1) and drop-outs (f0), weighted by the probability of completion (p)
and (2) the distribution ofY among drop-outs (f0) is not identified fromG O .

One way to identify the distribution ofY is to place just enough restrictions on the complete data laws
to identify f , without restricting the laws of the observed data. Towards this end, Rotnitzky and colleagues
assume a relationship betweenf0 and f1. In particular, they specify a functionq and postulate that

f0(y) = f1(y)
exp(q(y))∫ ∞

−∞ exp(q(s)) dF1(s)
∀ y. (1)

It is important to recognize that implicit in the above relationship is the non-identifiable assumption that
the support of the distribution ofY among completers is the same as that for drop-outs.

For anyG O and eachq, (1) identifies a unique law of the complete dataC , GC , which marginalizes to
G O . That is, (1) generates a one-to-oneq-dependent mapping betweenG O andGC , whereGC satisfies
(1). Since this holds for anyG O , positingq in (1) places no restrictions on the laws of the observed data.
Thus, for eachq, assumption(1) is a non-parametric model for the observed data. Also, the functionq
is not identified fromG O since the same observed data likelihood is generated for allq. Under (1) with
specifiedq, the marginal cdf ofY is identified via the following formula:

F(y) = F1(y)p +
∫ y
−∞ exp(q (s)) dF1(s)∫ ∞
−∞ exp(q (s)) dF1(s)

(1 − p) ≡ �q(p, F1)(y) ∀ y. (2)
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The restriction that(1) places on the laws of the complete data is identically equivalent to the following
logistic regression restriction:

logit P[R = 0|Y ] = η + q(Y ) (3)

whereη is an unknown scalar parameter. Thus, there exists a one-to-oneq-dependent mapping between
G O andGC , whereGC satisfies (3).

In the frequentist paradigm, there is thought to be one true functionq which generated the complete
data. However, the observed data contain no evidence about this functionq. Within the context of
this paradigm, Rotnitzky and colleagues recommended repeating the analysis over a range ofq judged
plausible by field experts. The following section discusses the two ways in whichq can be interpreted.
This may help in the elicitation of reasonable ranges from the experts. Finally, it is important to note that
q would be partially or wholly identified if additional modeling assumptions were imposed. For example,
suppose that it is assumed that the marginal distribution ofY was symmetric. Then, whenq is a constant
function, f1 must be symmetric. If the empirical distribution ofY among completers is skewed, then we
have evidenceq is non-constant. In Section 6, we show that assuming log(Y ) follows a normal distribution
is sufficient to identify the magnitude of selection bias. Our belief is that it is rare that one would have
such stronga priori knowledge about the distribution ofY that it should be used to identifyq.

4.2 Interpretation and parametrization of q

From (1), we see thatq indicates how the distribution ofY among completers relates to the distribution
of Y among drop-outs. Equation (3) tells us thatq quantifies the influence of the outcomeY on the odds
that subjects drop out. From this latter interpretation, we refer toq as a selection bias function.

Positing thatq = 0 isequivalent to missing at random, which in this setting is the same as the missing
completely at random assumption (Rubin, 1976). This equivalence follows since the selection model (3)
does not then depend on the observed data. Using the pattern mixture representation(1), q = 0 says
that the distribution ofY among drop-outs is the same as that of completers. From the selection bias
representation,q = 0 says thatY has no influence on a subject’s completion probability. Whenq is
non-constant, the outcomeY is said to be missing not at random.

There are obviously an infinite number of choices forq. In conducting a sensitivity analysis, it is
useful to restrict attention to a simple class of selection bias functions, which include missing at random. In
addition, subject-matter experts need a clear and meaningful parametrization of the selection bias function
in order to encode their beliefs. The dimension of the parametrization needs to be relatively low, because
otherwise researchers may be hard pressed to encode their beliefs in high dimensions. While some analysts
may feel uncomfortable focusing on a particular parametrization, it is important to recognize that the aim
is not to find the ‘truth’ (since it is unknowable without random follow-up sampling), but to report an
analysis which reasonably reflects an expert’s beliefs about selection bias.

In our data analysis, we consider the class of functionsQ = {α log(Y ) : α ∈ R}, indexed by a selection
bias parameterα (note that we could have considered alternative parametrizations to reflect additional non-
linearities considered plausible by experts, e.g. piecewise linear). InQ, α = 0 is equivalent to missing at
random andα �= 0 is equivalent to missing not at random. For givenα, we denote the mapping from the
observed data distribution to the complete data distribution by�α. From (3), the parameterα is interpreted
as the log odds ratio of drop-out between subjects who differ by one unit of log(Y ). So,α > 0 (< 0)
indicates that subjects with higher (lower) CD4 counts under full compliance are more likely to drop-out.
For example,α = 0.5(−0.5) implies that ak-fold (k > 1) increase in CD4 count at week 56 leads to a
k0.5-fold increase (decrease) in the odds of drop-out. From (1), we see thatα > 0 (< 0) indicates that
the distribution ofY among drop-outs is more (less) heavily weighted towards high values ofY than the
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distribution ofY among completers. To make this more concrete, in Figure 1 we present the treatment-
specific imputed distributions forY among drop-outs for various values ofα. These distributions were
found by plugging the empirical histogram ofY among completers into the right-hand side of (1). We see
that whenα = 0, the imputed distribution is, as expected, exactly equal to the distribution ofY among
completers. Whenα is negative (positive), we see that the imputed distribution is more heavily weighted
towards low (high) CD4 counts, indicating that sicker (healthier) subjects are the ones who are dropping
out. The degree of weighting increases asα becomes more extreme. Based on previous studies, it has been
observed that sicker subjects tend to drop out (i.e.α < 0).

4.3 Estimation and large sample theory

To estimateF , under restriction(1, 3), weuse non-parametric maximum likelihood. We estimateF(y) by
Fn(y) = �q(pn, F1,n)(y), whereF1,n(y) = 1

n

∑n
i=1 Ri I (Yi � y)/pn and pn = 1

n

∑n
i=1 Ri , Then,µ(F)

is estimated byµ(Fn). This estimator is asymptotically equivalent to constructing an estimator ofµ using
the followingα-specific procedure: (a) estimatef1 by its empirical histogram, (b) plug this histogram into
the right-hand side of (1) to compute an estimator off0 (see Figure 1), (c) compute an estimator off by
taking a average of the histograms in (a) and (b), weighted by the empirical proportion of completers, and
(d) compute an estimator ofµ by evaluating the mean associated with the histogram in (c).

It is straightforward to prove that
√

n(µ(Fn) − µ(F)) converges to a mean zero normal distribution
with influence curve

I Cµ(O; G O) =
{

RY − p
∫ ∞

−∞
y dF1(y)

}
− (R − p)

{∫ ∞
−∞ y exp(q(y)) dF1(y)∫ ∞
−∞ exp(q(y)) dF1(y)

}

+ (1 − p)

p
∫ ∞
−∞ exp(q(y)) dF1(y)

{
Y −

∫ ∞
−∞ y exp(q(y)) dF1(y)∫ ∞
−∞ exp(q(y)) dF1(y)

}
{R exp(q(Y ))}

The asymptotic variance ofµ(Fn) is then equal toσ 2
µ(G O) = E[I Cµ(O; G O)2] and it can be estimated

by σ 2
µ(G O,n) = En[I Cµ(O; G O,n)2], whereG O,n = (pn, F1,n) and En[·] is the empirical expectation

operator.

5. BAYESIAN I NFERENCE

To proceed with a Bayesian analysis, an expert must specify his/her prior beliefs about the model
parameters. In light of the pattern-mixture model (1) and its selection model analog (3) whereq(Y ) =
α log(Y ), we can parametrize the model by either (a) (α, p, F1) or (b) (α, η, F). Our goal is to estimate
the posterior distribution ofµ = µ(F). We denote this posterior distribution byπ(µ|O). We know that
the posterior forµ can be written as

π(µ|O) =
∫

π(µ|O, α)π(α|O) dα. (1)

Furthermore, under parametrization (a),π(α|O) can be written as

π(α|O) =
∫

π(α|p, F1, O)π(p, F1|O) dν(p, F1) (2)

and under parametrization (b),π(α|O) can be written as

π(α|O) =
∫

π(α|η, F, O)π(η, F |O) dν(η, F).
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From (5), note that the posterior distribution forα will be exactly equal to the prior distribution onα (i.e.
π(α|O) = π(α)) if and only if the prior beliefs forα are independent of the prior beliefs aboutp and
F1 (i.e. π(α, p, F1) = π(α)π(p, F1)). We do not believe that such prior independence is substantively
plausible based on our queries of three knowledgeable physicians. Specifically we asked these physicians
whether seeing a higher than expected mean CD4 count in completers (a function ofF1) would influence
their belief as to the magnitude of selection bias encoded inα. All agreed that a higher than expected mean
observed CD4 count would indicate that there was probably a substantial degree of selection bias, with
subjects with low CD4 counts being preferentially censored. Thus, to encode the beliefs of these experts,
one would need to directly specify a dependent prior, which may be a difficult task. In contrast, the
experts felt thatα and(F, η) might bea priori independent. Thus, the second set of parameters,(α, η, F)

will be the parameters on which we specify our priors. But, it is important to note that specifying such
independence actually induces the desired dependence between the prior forα and(p, F1). To see this,
remember that in Section 4.1, we showed that for eachα (i.e. q(Y ) = α log(Y )), there is a one-to-one
mapping between(p, F1) and (η, F). That is, there exists a function�α(·, ·), indexed byα, such that
(η, F) = �α(p, F1) and (p, F1) = �−1

α (η, F). Thus, specifying independent priors forα and (η, F)

induces a joint prior for(α, p, F1) = (α, �−1
α (η, F)) andα is not independent of(p, F1) = �−1

α (p, F).
This implies that the posterior forα will not be the same as the prior forα. In the next two sections, we
discuss prior specification and a sampling algorithm to obtain the posterior forµ.

5.1 Priors

To complete the model, we need to specify prior distributions forα, η, and F . We specify independent
priors for each:

π(α, η, F) = π(α)π(η)π(F).

In particular, we will assume an informative prior onα, a relatively non-informative prior onη, and a
Dirichlet process prior onF , with known degrees of freedom,d f (precision), and known base measure,
H(θ), with unknown parameter vector,θ (Antoniak, 1974). A hyper-prior onθ must also specified. In
our analysis of the ACTG 175 data, we took the base measure of the Dirichlet process to be log-normal
with parameter vectorθ = (γ, τ2)—the log-normal distribution is a common model for CD4 counts (see,
for example, DeGruttola and Tu, 1994). By settingd f small, we allow the prior dispersion around the
base measure to be large. This is consistent with our view that it is rare to have strong prior beliefs about
the distributional form ofY . Regardless of this view, however, our sampling scheme in the next section
can be applied to situations whered f is taken to be large and/or the prior onα is taken to be relatively
non-informative.

To elicit a prior onα, one can ask an expert about the odds of drop-out for a proportional change in
response. If the expert is comfortable with a parametric form for the prior, a most likely value might be
specified along with several quantiles to uniquely determine the prior distribution. An alternative approach
would be to use a non-parametric prior for which the expert would provide a best guess and then attach
weights to intervals around that guess to form a histogram. The histogram might then be smoothed to
facilitate inference. For a good discussion of elicitation of priors, see Chaloner (1996).

As a word of caution, we note that when informative priors on bothα and F are chosen, we may
observe situations where the priors, taken together, are not ‘compatible’ with the observed data. For
example, suppose in our analysis of the ACTG 175 data, we assumed a left-skewed parametric family for
F and assumed thatα has most of its probability mass between−2.0 and−1.0. Given the observed data
(α = 0 in Figure 1), a sampling algorithm would like to impute large values ofY for the missing data based
on the distributional form onF , while from the assumptions aboutα, the algorithm would like to impute
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small values ofY for the missing data. This can result in bi-modal posterior distributions for(α, η, µ(F)).
We believe such a scenario would be viewed as a problem and unsatisfactory for inferences. To avoid the
bi-modality, we suggest that the experts re-evaluate their priors by reducing the ‘informativeness’ of one
of them.

5.2 Sampling from the posterior distribution

To sample from the posterior distribution of(α, η, F, θ), we will use a Gibbs sampling algorithm with
Metropolis–Hastings steps (Smith and Roberts, 1993). We will also include a data augmentation step
(Tanner and Wong, 1987) which will greatly simplify the algorithm by making it a complete data problem
upon inclusion of the augmented data. Each of theK iterations of the algorithm will proceed as follows:

1. sample fromπ(F, θ|α, η, Ymiss, O)

2. sample fromπ(α, η|F, θ, Ymiss, O)

3. sample fromπ(Ymiss |α, h, F, θ, O)

whereYmiss is vector of outcomes for drop-outs. We now provide details on each step.
To sample fromπ(F, θ|α, η, Ymiss, O) in Step 1, we will proceed in several substeps. We first note

that if we place conjugate priors onθ, the full conditional distribution of each component will have known
forms, after integrating outF (Doss, 1994). If we were to sample directly fromπ(θ|F, α, η, Ymiss, O),
the conditional distribution ofθ is not of closed form and we would need to use another Metropolis–
Hastings algorithm and evaluate a discrete approximation to the Dirichlet process prior when computing
the acceptance ratio. Since sampling from the conditional distribution ofθ with F integrated out is easier,
we consider the following factorization:

π(F, θ|α, η, Ymiss, O) = π(F, θ|Ymiss, O) = π(θ|Ymiss, O)π(F |θ, Ymiss, O).

We propose to sample from the distributions of each component ofθ conditional on(Ymiss, O), which
will have known forms. We do this 10–20 times to obtain a single sample point from the joint distribution
of theθ. Then, conditional onθ, wesample from the full conditional distribution ofF , with details below,
to obtain a sample point from the joint full conditional of(F, θ). To sample from the full conditional of
F , we need to do a discrete approximation to the infinite-dimensional distribution. The posterior ofF
will be a Dirichlet process prior with base measure a mixture ofH(θ) and point masses at the observed
and missingY with weightd f/(d f + n) associated with the former part of the mixture. The algorithm,
adapted from Doss (1994), is as follows:

1a. Fix J to be a large integer
1b. DrawB1, . . . , BJ i.i.d. from aBeta(1, d f + n)

1c. DrawV1, . . . , VJ i.i.d. using the following scheme. For each j, drawU j ∼ Uniform(0, 1).

1c.1 If U j < d f/(d f + n), drawVj from H(θ).
1c.2 Otherwise, drawVj from the empirical cdf ofY (i.e. mass 1/n at eachYi )

1d. FormFJ = ∑J
j=1 PjδVj , wherePj = B j

∏ j−1
r=1(1 − Br ) andδa is the probability measure giving

unit mass at the pointa. This will be an approximate sample from the full conditional.

To sample from the full conditional distribution of(α, η) in Step 2, we will use a Metropolis–Hastings
algorithm with candidate distribution a normal- ort-approximation to the full conditional distribution.
With the augmented data, this is equivalent to sampling the coefficients in a Bayesian logistic regression
model.

To sample fromπ(Ymiss |α, η, F, θ, O) in Step 3, we can use the following approach for each missing
value,Ymiss ,:
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3a. Draw an observation,Ycand , from F , using an inverse cdf approach.
3b. DrawU ∼ Uniform(0, 1).
3c. If U < exp(η + α log(Ycand))/(1+ exp(η + α log(Ycand))), then setYmiss = Ycand . Otherwise, go

to step 3a.

By ‘imputing’ the missing data in this way, we can work with the simpler complete data problem.

5.3 Large sample approximation theory

With d f << n andn large, a semiparametric version of the Bernstein–von Mises theorem (van der Vaart,
2000) suggests that the posterior ofµ(F) givenα will be well approximated by a normal distribution with
meanµ(Fn; α) and varianceσ 2

µ(G O,n; α)/n, whereµ(Fn; α) andσ 2
µ(G O,n; α) are the estimated mean

and estimated asymptotic variance whenq(Y ) = α log(Y ). In addition, it can be shown thatπ(α|O) =
π(α|G O = G O,n) + oP (1). In light of (4), the posterior ofµ(F) will then be well approximated by a
mixture of a Normal(µ(Fn; α), σ 2

µ(G O,n; α)/n) over π(α|G O = G O,n). Sinceπ(α|G O) is not closed
form under our prior specifications, we need to use the sampling algorithm in the previous section.

Whend f >> n, n is large, and we specify relatively non-informative priors forα, η, θ, the model is
approximately equivalent to a frequentist model in which (3) holds withq(Y ) = α log(Y ), α unknown,
Y ∼ H(θ), andθ unknown. AssumingH(θ) induces enough restrictions, all of the parameters in the
frequentist model will be well identified. Thus, a parametric version of the Bernstein–von Mises theorem
tells us that the posterior ofµ(F) is well approximated by the distribution of the maximum likelihood
estimator for the mean ofY in the frequentist model.

5.4 Checking convergence

Whend f is small and the sample sizen is large, we saw in the previous section that givenα and the
data O, the distribution ofµ(F) should be approximately normal with meanµ(Fn; α) and variance
σ 2

µ(G O,n; α)/n. Now, our sampling scheme producesK draws from the joint posterior ofα and F ,

(α(1), F (1)), . . . , (α(K ), F (K )). Thus, givenα, we can check the convergence of our posterior sampling
scheme by plotting a smoothed histogram of theµ(F (k)), for which the associatedα(k) fall within a small
interval aroundα. If convergence is reached, then this histogram should be approximately normal with
meanµ(Fn; α) and varianceσ 2

µ(G O,n; α)/n. This can be repeated for variousα.
As a more generic check, we suggest the multiple chains approach of Gelman and Rubin (1992). This

approach will also help diagnose bi-modality of the posterior distribution.

5.5 Model checking

The fit of the model to the observed data is the only way to assess the adequacy of the model. This is
especially important whend f is taken to be large. A simple way to check the model here is to see how
well the posterior distribution ofF1 matches up with the empirical cdf of the observed data. We can use
the posterior predictive checking approach of Gelman, Meng, and Stern (1996). That is, we sample a new
set of observedY from their posterior predictive distribution, using the same approach that we used to
sampleYmiss . For each sample, we compute an empirical cdf based on the new set of observedY and
plot. By overlaying the empirical cdf of the actual observed data, we can see whether it is consistent with
what the model is predicting.
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6. ANALYSIS OF ACTG 175

6.1 Parametric selection model analysis

One approach that has been proposed in the statistical literature is to specify parametric models for both
the conditional distributional ofR given Y and the marginal distribution ofY (Diggle and Kenward,
1994). For ACTG 175, it might be assumed thatY is log-normal with parameter vectorθ = (γ, τ2) and
the conditional distribution ofR given Y follows (3) with q(Y ) = α log(Y ). Due to the log-normal
assumption,α is identified. Inference could then proceed by maximum likelihood. By lettingd f be
very large and assuming relatively non-informative priors onα, η, andθ, we know that the posterior
distributions ofα andµ = exp(γ + τ2/2) will approximate the marginal distributions of their maximum
likelihood estimators. We performed such an analysis by lettingd f = 10 000,π(α) ∼ N (0, 10.0),
π(η) ∼ N (0, 100), π(γ ) ∼ N (5.5, 1.0) andπ(1/τ2) ∼ G(1, 10), where N (a, b) denotes a normal
distribution with meana and varianceb andG(c, d) denotes a gamma distribution with scalec, shape
d, meancd and variancecd2. The prior mean forγ was chosen based on the observed overall mean of
log CD4 cells at baseline and the fact that the overall health of the cohort was expected to decline over
the study period; the prior mean ofτ2 was set equal to the inverse of the overall variance of log CD4
cells at baseline; the prior variances ofγ andτ2 were chosen large enough so that the data and modeling
assumptions would ultimately determine the posterior distributions ofγ andτ2.

In Figure 2, we present the treatment-specific posterior distributions ofα andµ (dashed lines), based
on K = 10 000 iterations (first 1000 iterations discarded; overall acceptance rate in Step 2 of the algorithm
was72.6% and 74.8% in the AZT+ddI and ddI arms, respectively). The approximate maximum likelihood
estimates (standard errors; 95% credible intervals) forα are−2.58 (0.24; [−3.00, −2.09]) and−2.76
(0.26; [−3.25, −2.22]) for the AZT+ddI and ddI arms, respectively. Under the log-normality assumption,
we would reject the treatment-specific null hypothesis of missing at random. The corresponding estimates
for µ are 303.42 (13.63;[277.67,331.20]) and 296.68 (13.51;[271.49,324.17]). The posterior distribution
of the difference between the means in the AZT+ddI and ddI arms is displayed in Figure 3. The
approximate maximum likelihood estimate of the difference is 6.74(19.27; [−30.89, 43.92]), suggesting
no significant treatment effect. To check the model fit, we use the posterior predictive checking approach
described in Section 5.5. The first row of Figure 4 displays the empirical distribution of the observed CD4
counts at week 56 (solid line) along with 100 empirical distribution functions of observed outcomes drawn
from its posterior predictive distribution. As the the figure illustrates, the model does not fit the observed
data well. To achieve a better fit, we tried two alternative models for the marginal distribution ofY . In
particular, we let the cube root and square root ofY be normally distributed. These models fit slightly
better than the log-normal, but still did not fit the observed data well. Under these alternative models,
the approximate maximum likelihood estimates and confidence intervals forα were of similar order of
magnitude as the log-normal model.

6.2 Frequentist non-parametric sensitivity analysis

When the distribution of the CD4 count at week 56 is left unspecified, we saw in Section 4 thatα is
not identified. In the absence of such distributional information, the best that can be achieved from a
frequentist perspective is to perform a sensitivity analysis. In Figure 5, we present the treatment-specific
estimated overall mean CD4 count at week 56 (with 95% confidence intervals) as a smooth function of the
selection bias parameterα (α ranges from−2.0 to 2.0). Note how the sampling variability (as indicated
by the width of the confidence intervals) is dominated by the uncertainty inα. That is, the width of any
given confidence interval is approximately 40–50 CD4 cell counts, while the range of estimated means
acrossα is approximately 200–300 CD4 cell counts. Common statistical practice is to simply report one
of these confidence intervals which can grossly misrepresent treatment efficacy.
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Fig. 2. Treatment-specific posterior distributions forα andµ. Dashed lines (Model withd f = 10, 000, π(α) ∼
N (0, 10), π(η) ∼ N (0, 100), π(γ ) ∼ N (5.5, 1.0) andπ(1/τ2) ∼ G(1, 10)); Solid lines (Model withd f = 1,
π(α) ∼ N (−0.5, 0.252), π(η) ∼ N (0, 100), π(γ ) ∼ N (5.5, 1.0) andπ(1/τ2) ∼ G(1, 10)). Dotted line (Prior
π(α) ∼ N (−0.5, 0.252)).

In Figure 6, we present a contour plot of theZ -statistic (estimated difference in means divided by
standard error of the difference) associated with the test of the null hypothesis of no treatment difference
as a function of treatment-specific selection bias parameters. On the horizontal (vertical) axis, we vary the
selection bias parameter for the AZT+ddI (ddI) arm. Regions marked with a treatment label indicate that,
for selection bias parameter combinations in the region, a 0.05 level test of the null hypothesis would be
rejected in favor of that treatment. The solid point in the contour plot indicates the result from the missing
at random assumption in both treatment groups. The conclusion from this contour plot is that with mild
levels of differential selection bias in the treatment arms (e.g.α = 0 in theddI arm andα = −0.025 in the
AZT+ddI arm), we would change the conclusion based on the default analysis. As a result, the evidence in
favor of AZT+ddI appears to be ‘weaker’ than that based on missing at random. As we see, this sensitivity
analysis may be viewed as limited in its use since it does not provide an overall quantification of the
strength of evidence, accounting for uncertainty in beliefs about selection bias.

6.3 Flexible Bayesian analysis

When a decision is required, the flexible Bayesian methodology described in Section 5 can be used
to summarize the treatment efficacy in the presence of the uncertainly regarding the distribution of the
outcome and the level of selection bias.
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Fig. 3. Posterior distribution forµ(AZ T + dd I ) − µ(dd I ). Dashed lines (Model withd f = 10, 000, π(α) ∼
N (0, 10), π(η) ∼ N (0, 100), π(γ ) ∼ N (5.5, 1.0) andπ(1/τ2) ∼ G(1, 10)); Solid lines (Model withd f = 1,
π(α) ∼ N (−0.5, 0.252), π(η) ∼ N (0, 100), π(γ ) ∼ N (5.5, 1.0) andπ(1/τ2) ∼ G(1, 10))

For each treatment group, we assumed that the distribution ofY , F , followed a Dirichlet process
mixture prior with precisiond f = 1, and log-normal base measure with parameter vectorθ = (γ, τ2).
Weassumed that the hyper-priors forγ andτ2 were independent. In particular, we letπ(γ ) ∼ N (5.5, 1),
π(1/τ2) ∼ �(1, 10). In addition, we assumed an independent, non-informative, normal prior onη, i.e.
π(η) ∼ N (0, 100). Forα, we useπ(α) ∼ N (−0.5, 0.252). That is, the prior belief is that subjects with
lower CD4 counts (under full compliance) at week 56 are more likely to drop out. Specifically, the prior
states that there is a 95% chance that the odds ratio of drop-out for subjects with a two-fold change in
CD4 cells at week 56 is between 1 and 2, with a most probable value around 1.4.

Figure 2 displays the treatment-specific posterior distributions ofα and µ (solid lines), based on
K = 10 000 iterations (first 1000 iterations discarded; acceptance rate in Step 2 of the algorithm was
80.0% and 80.3% in the AZT+ddI and ddI arms, respectively). The prior distribution ofα is the dotted
line and demonstrates the difference between the prior and posteriors. The posterior means (95% credible
intervals) forα are−0.50 ([−0.90, −0.14]) and−0.49 ([−0.83, −0.15]) for the AZT+ddI and ddI arms,
respectively. For comparison, the prior mean (95% credible interval) forα was −0.50 ([−1.0, 0.0])
for both treatment arms. The treatment-specific posterior distributions ofα are tighter than the prior
distributions, indicating a weak level of induceda priori dependence betweenα and(p, F1). The posterior
means (95% credible intervals) forµ are 368.24 ([342.43, 390.57]) and 348.00 ([330.40, 365.40]) for
the AZT+ddI and ddI arms, respectively. Figure 3 displays the posterior distribution of the difference
betweenµ(AZ T + dd I ) andµ(DDI ) (solid line). The posterior mean (95% credible interval) is 20.24
([−11.12, 48.63]). The posterior probability thatµ(AZ T + dd I ) is greater thanµ(DDI ) is 90.76%.
After accounting for prior beliefs regarding selection bias, there appears to be relatively strong evidence
in favor of combination therapy.

In Figure 7, we display the treatment-specific convergence diagnostic described in Section 5.4 for
α = −0.8, −0.65, −0.5, −0.35, −0.2. The solid line is the estimated distribution ofπ(µ|O, α) based
on our non-parametric maximum likelihood results of Section 4 and the dotted line is the estimated
distribution based on the Gibbs sampling scheme. The two estimates are quite close, providing support for
convergence. The second row of Figure 4 displays the empirical distribution of the observed CD4 counts
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Fig. 4. Model checking: empirical distribution function of observed CD4 counts at week 56 (solid line) versus 100
draws from the posterior predictive distribution of the empirical cumulative distribution function of observed CD4
counts at week 56 (dashed lines). The first row corresponds to the fully parametric selection model and the second
row corresponds to the flexible semiparametric selection model.

at week 56 (solid line) along with 100 empirical distribution functions of observed outcomes drawn from
its posterior predictive distribution. As the the figure illustrates, the model, as expected, fits the observed
data well.

6.4 Summary and comparison of approaches

In evaluating treatment effects in the presence of missing data, the analyst usually starts with the default
missing at random analysis. Under missing at random, the estimated means are 385 and 360 in the
AZT+ddI and ddI arms, respectively. The difference in means is 25 CD4 cells and the null hypothesis
of no treatment difference is rejected.

Recognizing that missing at random is likely to fail, the analyst might consider a parametric selection
model analysis, similar to the one conducted in Section 6.1. There are two important lessons to be learned
from this analysis. The first lesson is that model selection is difficult and model checking is critical. In our
analysis, we found that some of the models typically used to fit CD4 count data did not fit the observed
data well. To achieve better fits, one needs to either use a more flexible model for the distribution ofY or fit
a more flexible form for the selection bias functionq(Y ). The second lesson is that the distributional form
of Y can determine the magnitude of selection bias and one must make sure that the level of selection bias
is substantively plausible. Using the log-normal assumption, the estimated value ofα is −2.58 and−2.76
in the AZT+ddI and ddI arms, respectively. Missing at random is rejected in both treatment arms. These
levels of selection bias are enormous; the imputed distribution ofY among drop-outs is more extreme
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Fig. 5. Treatment-specific estimated mean CD4 count at week 56 (with 95% confidence intervals) as a function of the
selection bias parameterα.

than the left-most histograms in Figure 1. They correspond to the belief that for two subjects who have a
two-fold difference in CD4 cells at week 56, the sicker subject is 6.0 and 6.7 times as likely to drop out
in the AZT+ddI and ddI arms, respectively. These levels of selection bias are highly implausible. With
these levels, the estimated means are 303 and 297 for the AZT+ddI and ddI arms. This is a huge reduction
from the estimated means under missing at random. The difference in means is 6.7 CD4 cells and is not
statistically significant. Similar results were observed in the alternative models we considered. While one
can argue that these levels of selection bias are due to ill-fitting models, we conjecture that one can posit
a more flexible model for the marginal distribution ofY which fits the data well but nevertheless still
identifies a highly implausible level of selection bias.

The frequentist non-parametric analysis in Section 6.2 suggested that evidence in favor of AZT+ddI
is weaker than that provided by the missing at random analysis. However, the drawback of the sensitivity
analysis is that a single answer is not provided and the level of uncertainty is not quantified. Using
treatment-specific informative priors onα, the flexible Bayesian analysis of Section 6.3 provides a
quantification of uncertainty through posterior distributions. In this analysis, the treatment-specific
distributions forα are slightly narrower than the prior specifications, indicating that, within the context
of our fully Bayesian model, the data provide relatively little information aboutα. The estimated means
are 368 and 348 in the AZT+ddI and ddI arms, which are, as expected, lower than the missing at random
means, and more plausible than those from the fully parametric analysis. The posterior distributions (solid
lines in Figure 3) indicate the degree of uncertainty regarding the treatment-specific means. The degree of
uncertainty is comparable to that provided by parametric analysis and much larger than that of the missing
at random analysis. The estimated mean difference is 20 CD4 cells and the posterior distribution for the
difference (solid line in Figure 4) indicates the level of uncertainty as reflected by the span of the 95%
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credible interval and the 91% chance that AZT+ddI is superior to ddI. This is a concise representation of
the strength of evidence regarding the treatment effect. As this analysis incorporates prior beliefs about
selection bias and fits the observed data well, it may be more plausible than the missing at random analysis.

7. DISCUSSION

In our view, the fully parametric approach above should only be used when there is strong scientific
evidence to support the use of particular parametric models for the distribution of the outcomeand the
selection mechanism. When there are only strong prior beliefs about the distribution of the outcome, the
approach of Lee and Berger (2001) or our approach with large weight given to the base measure of the
prior distribution for the outcome and a high-dimensional parametrization of the selection bias function
with vague priors can be used. In situations where informative prior beliefs about the selection bias can be
quantified, our flexible Bayesian approach is an attractive way of summarizing the treatment effect and its
associated uncertainty. If a flexible Bayesian analysis is implemented, we feel that it should be conducted
in conjunction with the sensitivity analysis, as this latter analysis provides informal and formal checks for
the former. Finally, if experts cannot agree on the distributional form or on the nature of selection bias,
then the only objective analysis is to present worst-case bounds.

In the ACTG 175 data, missingness of the outcome occurred for multiple reasons (i.e. non-compliance,
skipped clinic visits, and loss to follow-up). In our selection model, we did not distinguish between these
various causes of missingness, which could very well have different relationships with the outcome of
interest. It is not difficult to extend our approach to this setting. Specifically, one could re-defineR to have
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Fig. 7. Treatment-specific convergence diagnostic.
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unique values corresponding to each major type of missingness and a unique value for completion. Then,
one would fit a polytomous logistic regression with type-specific intercepts and selection bias functions.
To allow for differential relationships, these functions would have to be parameterized separately in order
to elicit priors.

In most randomized trials, the data structure is much more complicated than the one handled in this
paper. Specifically, baseline information is usually collected and the primary outcomes may be failure
times or repeated measures. The sensitivity analysis ideas have been extended to deal with these more
realistic settings. In future work, we will focus on the extensions of our flexible Bayesian approach. The
task will be considerably more difficult, as more information implies more modeling and greater prior
specifications. For example, if we were to consider high-dimensional baseline prognostic factorsX as
part of our observed data, then the analog of our model (3) would be, say,

logit P[R = 0|X, Y ] = h(X) + q(X, Y )

whereh(X) is some unknown function ofX andq(x, y) is a specified function ofx andy. We would then
need to specify an informative prior forq, and flexible priors forh(X) and the conditional distribution of
Y given X . Flexible priors are important here to prevent identification ofq in ways that are unintended.
In addressing even this simple extension, substantial dimension reduction will be required and the
computational complexity of the sampling algorithm will increase substantially.

Future work will also focus on developing (1) techniques for elicitation of prior beliefs for the selection
bias parameter, (2) faster sampling algorithms, and (3) formal proofs of the large sample properties of our
flexible Bayesian procedure.
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