
Zuo et al. BMC Bioinformatics  (2017) 18:99 

DOI 10.1186/s12859-017-1515-1

METHODOLOGY ARTICLE Open Access

Incorporating prior biological knowledge
for network-based differential gene expression
analysis using differentially weighted
graphical LASSO
Yiming Zuo1,2,3, Yi Cui2, Guoqiang Yu1, Ruijiang Li2 and HabtomW. Ressom3*

Abstract

Background: Conventional differential gene expression analysis by methods such as student’s t-test, SAM, and

Empirical Bayes often searches for statistically significant genes without considering the interactions among them.

Network-based approaches provide a natural way to study these interactions and to investigate the rewiring

interactions in disease versus control groups. In this paper, we apply weighted graphical LASSO (wgLASSO) algorithm

to integrate a data-driven network model with prior biological knowledge (i.e., protein-protein interactions) for

biological network inference. We propose a novel differentially weighted graphical LASSO (dwgLASSO) algorithm that

builds group-specific networks and perform network-based differential gene expression analysis to select biomarker

candidates by considering their topological differences between the groups.

Results: Through simulation, we showed that wgLASSO can achieve better performance in building biologically

relevant networks than purely data-driven models (e.g., neighbor selection, graphical LASSO), even when only a

moderate level of information is available as prior biological knowledge. We evaluated the performance of dwgLASSO

for survival time prediction using two microarray breast cancer datasets previously reported by Bild et al. and van de

Vijver et al. Compared with the top 10 significant genes selected by conventional differential gene expression analysis

method, the top 10 significant genes selected by dwgLASSO in the dataset from Bild et al. led to a significantly

improved survival time prediction in the independent dataset from van de Vijver et al. Among the 10 genes selected

by dwgLASSO, UBE2S, SALL2, XBP1 and KIAA0922 have been confirmed by literature survey to be highly relevant in

breast cancer biomarker discovery study. Additionally, we tested dwgLASSO on TCGA RNA-seq data acquired from

patients with hepatocellular carcinoma (HCC) on tumors samples and their corresponding non-tumorous liver tissues.

Improved sensitivity, specificity and area under curve (AUC) were observed when comparing dwgLASSO with

conventional differential gene expression analysis method.

Conclusions: The proposed network-based differential gene expression analysis algorithm dwgLASSO can achieve

better performance than conventional differential gene expression analysis methods by integrating information at

both gene expression and network topology levels. The incorporation of prior biological knowledge can lead to the

identification of biologically meaningful genes in cancer biomarker studies.
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Background
Typically, a differential gene expression analysis (e.g., stu-

dent’s t-test, SAM, Empirical Bayes, etc.) is performed

to identify genes with significant changes between bio-

logically disparate groups [1–3]. However, independent

studies for the same clinical types of patients often lead to

different sets of significant genes and had only few in com-

mon [4]. This may be attributed to the fact that genes are

members of strongly intertwined biological pathways and

are highly interactive with each other. Without consider-

ing these interactions, differential gene expression analy-

sis will easily yield biased result and lead to a fragmented

picture.

Network-based methods provide a natural framework

to study the interactions among genes [5]. Data-driven

network model reconstructs biological networks solely

based on statistical evidence. Relevance network is one

common data-driven network model [6, 7]. It uses corre-

lation or mutual information to measure the “relevance”

between genes and sets a hard threshold to connect high

relevant pairs. Relevance network has extensive applica-

tion due to its simplicity and easy implementation. How-

ever, its drawback becomes significant when the variable

number increases: it confounds direct and indirect asso-

ciations [8]. For example, a strong correlation for gene

pair X-Y and X-Z will introduce a less strong but prob-

ably still statistically significant correlation for gene pair

Y-Z. As a result, when the number of genes is large, rel-

evance network tends to generate over-complicated net-

works that contain overwhelming false positives. Bayesian

network is another classic data-driven network model

[9]. Unlike undirected graphs such as relevance networks,

Bayesian networks generate directed acyclic graphs, in

which each edge indicates a conditional dependence rela-

tionship between two genes given their parents. The

benefits of using Bayesian networks are: 1) By modeling

conditional dependence relationship, Bayesian networks

only identify direct associations; 2) With directions in the

graph, Bayesian networks allow to infer causal relation-

ship. However, it’s challenging to apply Bayesian networks

on high-throughput omic data since learning the struc-

ture of Bayesian networks for high dimensional data is

time-consuming and can be statistically unreliable. Addi-

tionally, Bayesian network cannot model cyclic structures,

such as feedback loops, which are common in biological

networks.

Recently, Gaussian graphical models (GGMs) have

been increasingly applied on biological network inference

[10–12]. Similar to Bayesian network, GGMs can remove

the effect of indirect associations through estimation of

the conditional dependence relationship. At the same

time, they generate undirected graphs and have no lim-

itation on modeling only acyclic structures. In GGMs, a

connection between two nodes corresponds to a non-zero

entry in the inverse covariance matrix (i.e., preci-

sion matrix), which indicates a conditional dependency

between these two nodes given the others. GGMs dates

back to early 1970s when Dempster introduced “covari-

ance selection” problem [13]. The conventional approach

to solve this problem relies on statistical test (e.g., devi-

ation tests) and forward/backward selection procedure

[14]. This is not feasible for high-throughput omic data

when the number of genes is ranging from several hun-

dred to thousands while the number of samples are only

tens to hundreds. In addition, the “small n, large p” sce-

nario for omic data (i.e., sample size is far less than the

variable number), makes maximum likelihood estima-

tion (MLE) of precision matrix not to exist because the

sample covariance matrix is rank deficient. To deal with

these issues, Schäfer et al. proposed to combine Moore-

Penrose pseudoinverse and bootstrapping technique to

approximate the precision matrix [15]. Others applied ℓ1

regularization to get a sparse network [16–18]. Taking

into account of the sparsity property of biological net-

works and the computational burden of bootstrapping,

ℓ1 regularization methods are preferred. Among various

ℓ1 regularization methods, Meinshausen et al. performed

ℓ1 regularized linear regression (i.e., LASSO) for each

node to select its “neighbors” [16]. Given all its neigh-

bors, one node is conditionally independent with the

remaining ones. Since LASSO is performed for each node,

this ‘neighbor selection’ approach may face a consistency

problem. For example, while gene X is selected as Y’s

neighbor, gene Y may not be selected as X’s neighbor

when performing LASSO for gene X and gene Y sepa-

rately. Compared with neighbor selection method, a more

reasonable approach is graphical LASSO, which directly

estimates precision matrix by applying ℓ1 regulation on

the elements of the precision matrix to obtain a sparse

estimated precision matrix [17, 18]. We will pursuit the

extension of graphical LASSO in this paper.

In additional to data-driven network models, there

are many publicly available databases such as STRING

(http://string-db.org), KEGG (http://www.genome.jp/

kegg), BioGRID(http://thebiogrid.org/), and Consen-

susPathDB (http://consensuspathdb.org/), where one

can extract various types of interactions including

protein-protein, signaling, and gene regulatory interac-

tions [19–22]. Biological networks reconstructed from

these databases have been reported useful. For example,

Chuang et al. reconstructed protein-protein interaction

(PPI) network from multiple databases to help identify

markers of metastasis for breast cancer studies using

gene expression data [23]. They overlaid the gene expres-

sion value on its corresponding protein in the network

and searched for sub-networks whose activities across

all patients were highly discriminative of metastasis.

By doing this, they found several hub genes related to

http://string-db.org
http://www.genome.jp/kegg
http://www.genome.jp/kegg
http://thebiogrid.org/
http://consensuspathdb.org/
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known breast cancer mutations, while these genes were

not found significant by conventional differential gene

expression analysis. They also reported that the identified

sub-networks are more reproducible between different

breast cancer cohorts than individual gene markers.

However, databases are far from being complete. Net-

works constructed purely based on the databases have a

large number of false negatives. In addition, databases are

seldom specific to a certain disease, so the interactions

that exist in the databases may not be reflective of the

patient population under study. In contrast, data-driven

models are likely to have a large number of false positives

due to background noise. Considering this, an appropri-

ate approach to integrate the prior biological knowledge

from databases and data-driven network model is desir-

able for more robust and biologically relevant network

reconstruction [24].

Previously, prior biological knowledge has been incor-

porated into the neighbor selection method [25]. It

relies on the Bayesian interpretation of LASSO and

assigns two different prior distributions for connections

that are present in the database and those are not.

Recently, weighted graphical LASSO (wgLASSO) has

been proposed to incorporate prior biological knowl-

edge into graphical LASSO by assigning different weights

to the entries of precision matrix [26]. In this work,

we extend the original wgLASSO algorithm, explain this

idea from a Bayesian perspective, and perform compre-

hensive comparisons between wgLASSO and compet-

ing data-driven network models (e.g., neighbor selection,

graphical LASSO). Additionally, exploring the topological

changes between biological disparate groups may lead

to new discoveries that cannot be identified by con-

ventional differential gene expression analysis [27–29].

For example, high-degree nodes (i.e., hubs) that only

exist in one of the biologically disparate groups may

indicate the regulatory rule of the hub genes only in

that group. Knowledge-fused differential dependency net-

work (KDDN) is a recently proposed method to con-

struct knowledge incorporated network that can show the

rewiring connections between two groups [29]. An open-

source Cytoscape app is available for easy implementation

[30]. In this paper, we propose a novel algorithm called

differentially weighted graphical LASSO (dwgLASSO) for

network-based differential gene expression analysis. This

is achieved by building separate networks for biologically

disparate groups using wgLASSO, exploring the topolog-

ical changes between different groups, and prioritizing

significant gene list from conventional differential gene

expression analysis as shown in Fig. 1. Other previously

reported methods include those that focus on integrat-

ing prior biological knowledge into data-driven network

model to identify sub-networks that are related to the dis-

ease under study [31, 32]. Our work differs with these

methods since we compute a differential network score

for each gene and prioritize them for subsequent analy-

sis rather than outputting a sub-network list for biological

interpretation. Also, methods that directly incorporate

gene networks or prior biological knowledge into statis-

tical models for classification and regression tasks have

Fig. 1 An overview of dwgLASSO. The input is gene expression data (e.g., Microarray, RNA-seq data, etc.) and the output is a prioritized list based on

the differential network (DN) score defined within dwgLASSO
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been reported [33, 34]. The rationale is that functionally

linked genes tend to be co-regulated and co-expressed,

and therefore should be treated similarly in the statistical

model. Our work leaves the statistical model untouched.

Instead, it focuses on using the best set of gene biomark-

ers as an input to the statistical model. This is considered

to have advantages over providing multiple linked genes

from the network whose expression values have simi-

lar patterns. We show the application of dwgLASSO on

two independent microarray datasets from breast can-

cer patients for survival time prediction, and on TCGA

RNA-seq data acquired from patients with hepatocellular

carcinoma (HCC) for classification task between tumor

samples and their corresponding non-tumorous liver

tissues.

The rest of the paper is organized as follows. “Methods”

section introduces the extended wgLASSO algorithm and

the proposed dwgLASSO for network-based differential

gene expression analysis. “Results and discussion” section

presents the results of wgLASSO and dwgLASSO based

on simulation, microarray and RNA-seq data. Finally,

“Conclusion” section summarizes our work and discusses

possible future extensions.

Methods

Network inference using wgLASSO

Consider a centered and scaled data matrix

Xn×p

(

i.e.,
∑n

i=1 xij = 0,
∑n

i=1 x
2
ij = 1

)

, it measures the

intensities of p genes on n samples, from a p-dimensional

Gaussian distribution with zero means on each dimen-

sion and positive definite covariance matrix �p×p (i.e.,

X ∼ N (0,�)). Suppose the sample size n is far less

than the variable number p (i.e., n ≪ p), then the

MLE of the precision matrix (i.e., � = �−1) does

not exist since the sample covariance matrix S is rank

deficient. If we further assume � is sparse, then a ℓ1

regularization term can be added to the negative log-

likelihood function f (X|�) = − log det� + tr(S�) for

a sparse precision matrix estimation as shown in Eq. (1).

Graphical LASSO is an algorithm to efficiently solve

Eq. (1) by using block coordinate descent [8, 9]. Once

the sparse precision matrix �̂ is obtained, a non-zero

element in �̂ (i.e., θ̂ij �= 0) indicates a conditional depen-

dence between xi and xj given the others. For network

G = {(i, j); 1 ≤ i < j ≤ p}, we have Ĝ = {(i, j) : θ̂ij �= 0}.

arg min
�≻0

− log det� + tr(S�) + λ ‖�‖1 (1)

where � is the precision matrix, � ≻ 0 is the constraint

that � has to be positive definite, S is the sample covari-

ance matrix, tr denotes the trace, the sum of the diagonal

elements in a matrix, ‖�‖1 represents the ℓ1 norm of �,

the sum of the absolute values of all the elements in�, and

λ is the tuning parameter controlling the sparsity of �.

LASSO based estimates have a Bayesian interpretation

[35]. �̂ is the maximum a posteriori (MAP) estimate for

the posterior distribution p(�|X) with a Laplacian prior

distribution p(�) as shown in Eq. (2). The LASSO term

λ ‖�‖1 in Eq. (1) is now part of p(�) = exp(−λ ‖�‖1)

with zero means and a scaling parameter λ. From the

Bayesian perspective, p(�) encodes the prior knowledge

of the network topology. For a database that contains

only binary information (connecting or not) for a given

gene pair, a natural way is to assign two different scal-

ing parameters λ1 and λ2 for connecting pairs and those

are not connected, as shown in Eq. (3). For connecting

pairs, their Laplacian prior distribution is diffused, while

for non-connecting pairs their Laplacian prior distribu-

tion is concentrated (i.e., λ1 ≫ λ2). In another word, a

larger penalty will be assigned to non-connecting pairs to

increase the chance of their corresponding entries in �

to shrink to zero. In reality, tuning λ1 and λ2 at the same

time involves two dimensional grid search, which is quite

time-consuming for high-dimensional data. An extreme

solution to set λ2 = 0 links all the connecting gene pairs

from the database in the graph, neglecting the fact that the

databasemight contain some spurious connections for the

disease under study.

p(�|X) =
p(X|�)p(�)

p(X)

∝exp(log det� − tr(S�))×exp(−λ ‖�‖1) (2)

p(�) = exp(−λ1

∑

‖�non−con‖1)−λ2

∑

‖�con‖1) (3)

Instead of using the binary information, a continuous

confidence score is more suitable to incorporate prior bio-

logical knowledge into graphical LASSO. The confidence

score can be obtained from multiple resources. For exam-

ple, an estimated functional association score for PPIs

is provided by STRING database. We scale this confi-

dence score into the range [0,1] and create a weight matrix

Wp×p. In W, 1 indicates a complete trust for a gene pair

to be connected, 0 represents that no evidence supports a

gene pair to be connected. In this way, we can assign dif-

ferent penalties to different gene pairs as shown in Eq. (4).

Compared to Eq. (3), (4) also gives larger penalty for less

likely connecting gene pairs, but now there is only one

tuning parameter λ. For a fixed λ, R package glasso can

solve Eq. (4) efficiently givenW [17].

arg min
�≻0

− log det�+ tr(S�)+λ ‖(1 − W) ∗ �‖1 (4)

where 1 is all 1 matrix,W is the weight matrix containing

the confidence score for each gene pair and ∗ represents

the element-wise multiplication between two matrices.

For LASSO based optimization problem as shown in

Eq. (4), tuning the parameter λ is crucial since it con-
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trols the sparsity of the output �̂. Typically, λ is tuned

by cross-validation, Akaike information criterion (AIC),

Bayesian information criterion (BIC), or stability selec-

tion [36]. Considering that AIC and BIC often lead to

data under-fitting (i.e., over-sparse network) and stability

selection requires extensive computational time, we pre-

fer to use cross validation with one standard error rule

to select the optimal tuning parameter λopt . By using one

standard error rule, we can achieve the simplest (most

regularized) model whose error is within one standard

deviation of the minimal error. Our wgLASSO algorithm

is shown below.

Algorithm 1 wgLASSO

Input:

A centered and scaled data matrix Xn×p;

A weight matrixWp×p;

A regularization parameter set �;

A cross validation fold number k.

Output:

Estimated precision matrix �̂.

1: Randomly and equally divide X into k folds, given by

X̃1, X̃2,. . . , X̃k .

2: for each λ ∈ � do

3: for eachm ∈ {1, 2, . . . , k} do

4: Run graphical LASSO algorithm with input

Xin =[ . . . , X̃m−1, X̃m+1, . . . ], and regularization

parameter λ × (1 − W) to obtain the estimated

precison matrix �̂
λ

m.

5: Calculate the negative log-likelihood function

as the model fitting error f
(

X̃m|�̂
λ

m

)

=

− log det �̂
λ

m + tr
(

S̃m�
λ
m

)

.

6: end for

7: Calculate the standard error for f
(

X̃1|�̂
λ

1

)

,

f
(

X̃2|�̂
λ

2

)

,. . . , f
(

X̃k|�̂
λ

k

)

as SE(�̂
λ
) =

√

var
(

f
(

X̃1|�̂
λ

1

)

,...,f
(

X̃k |�̂
λ

k

))

k
.

8: Compute the average model fitting error

f (X|�̂
λ
) =

∑k
l=1 f

(

X̃l|�̂
λ

l

)

k
.

9: end for

10: Obtain λmin that achieves the minimal model fitting

error λmin = {λ : min
λ∈�

f (X|�̂
λ
)}.

11: Move λ in the direction of increasing regularization

until reaching to one standard error limit λopt = {λ :

f (X|�̂
λ
) = f (X|�̂

λmin

) + SE(�̂
λmin

)}.

12: Run graphical LASSO algorithm with input X and

regularization parameter λopt × (1−W) to obtain the

final estimated precision matrix �̂.

Network-based differential gene expression analysis using

dwgLASSO

Figure 2 shows the framework of the proposed

dwgLASSO algorithm for network-based differential gene

expression analysis. dwgLASSO prioritizes the significant

list obtained from the conventional differential gene

expression analysis based on the topological changes

between the group-specific networks built by wgLASSO.

Specifically, dwgLASSO first performs differential gene

expression analysis to obtain a list of significant genes

whose expression values differ between the two biolog-

ically disparate groups. Then based on these significant

genes, dwgLASSO builds group specific networks

using wgLASSO. After the networks are constructed,

dwgLASSO calculates a differential network score for

each gene in the significant list based on the topological

changes between the two group-specific networks. In

calculating the differential network score, dwgLASSO

first computes the node degree for each gene in both

networks, meaning the number of neighbors each gene is

connected with. Then considering the size of the two net-

works are different, the node degrees are scaled into the

range [0,1]. At last, the differential network score for one

gene is computed as the absolute value of the difference

between the two associated scaled node degrees from

different groups. Finally, with the differential network

scores, dwgLASSO prioritizes the significant list from

the conventional differential gene expression analysis

in a decreasing order. The prioritized gene list is used

for subsequent analysis such as building classification

or regression models. We believe dwgLASSO can help

classification or regression models to achieve better pre-

diction performance since the prioritized list integrates

information at the gene expression and network structure

levels. More than that, the incorporation of prior bio-

logical knowledge is more likely to identify biologically

meaningful genes. Detailed algorithm for dwgLASSO is

shown below.

Results and discussion

Simulation data

Biological networks are reported to be scale-free, which

means the degree distribution of the network follows a

power law [37]. We considered this scale-free property

of biological network in generating simulation data using

R package huge [38]. Using huge, a scale-free network

was built by inputting the node number p. The sparsity

of the network s is fixed, depending on p. For exam-

ple, when the node number is 100, the sparsity of the

network is 0.02, indicating only 2% of all possible con-

nections (i.e.,
p×(p−1)

2 ) exist in the scale-free network.

Once the scale-free network is built, huge creates the true

precision matrix �true based on the network topology

and the positive definite constraint �true ≻ 0 so that
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Algorithm 2 dwgLASSO

Input:

The raw data matrix Xraw
n×p;

A weight matrixWp×p.

Output:

Prioritized significant list LdwgLASSO.

1: Perform conventional differential gene expression

analysis on Xraw to obtain a significant list L.

2: Get two centered and scaled group specific data

matrix X
(1)
n1×psig

and X
(2)
n2×psig

from Xraw and L, picking

out only the significant genes.

3: Build group specific networks G(1) and G(2) by

running wgLASSO algorithm with {X(1),W} and

{X(2),W} as inputs.

4: for each i ∈ L do

5: Compute the node degree d
(1)
i and d

(2)
i from G(1)

and G(2), respectively.

6: end for

7: for each i ∈ L do

8: Compute the scaled node degree sd
(1)
i and sd

(2)
i as

sd
(1)
i =

d
(1)
i −min

j∈L

(

d
(1)
j

)

max
j∈L

(

d
(1)
j

)

−min
j∈L

(

d
(1)
j

) ,

sd
(2)
i =

d
(2)
i −min

j∈L

(

d
(2)
j

)

max
j∈L

(

d
(2)
j

)

−min
j∈L

(

d
(2)
j

) .

9: Compute the differential network score dnsi =

|sd
(1)
i − sd

(2)
i |.

10: end for

11: Prioritize L based on the differential network score in

a decreasing order to obtain LdwgLASSO.

�true = (�true)
−1 exists. At last, simulation data Xn×p ∼

N (0,�true) was generated.

We created simulation datasets with various p and n,

as seen in Table 1. The weight matrix W, which con-

tains prior biological knowledge, was constructed based

on �true. In reality, databases may also contain spurious

connections for the disease under study. To evaluate how

the incorrect connections inW will impact wgLASSO, we

introduced an additional metric, acc. When acc = 60%,

we randomly reassigned 40% incorrect connections inW.

Specifically, W was created as follows. Initially, for zero

entries in �true, the corresponding entries in W were

also zero; for non-zero entries in �true, the corresponding

entries in W were randomly generated from the uniform

distribution U(0, 1). Then, we randomly assigned incor-

rect connections into W based on the acc value while

keeping the total connections in W the same as those in

�true. Under the assumption that incorrect entries in W

should have lower confidence scores compared to those

of correct entries, we generated incorrect entries from the

uniform distribution U(0, 0.5).

We estimated the true network topology by using

neighbor selection, graphical LASSO, and the proposed

wgLASSO methods. For neighbor selection method, two

strategies were applied to deal with the inconsistency

problem. Neighbor selection with “or” operator accepted

inconsistent connections while neighbor selection with

“and” operator rejected them. To make a fair comparison,

we tuned the regularization parameter in each method to

ensure the output network has the same sparsity as the

true network (i.e., s = 0.02 for p = 100, s = 0.004 for p =

500). For each n and p scenario, we regenerated Xn×p 100

times, calculated the false positives and false negatives of

connections for each method, and listed their means and

standard deviations in Table 1. To evaluate how the incor-

rect connections in W would impact the performance of

wgLASSO, we randomly reassigned 40% (acc = 60%) and

60% (acc = 40%) incorrect prior biological knowledge in

W. From Table 1, we can conclude that the estimated net-

work from wgLASSO has much less false positives and

false negatives, compared with those from neighbor selec-

tion and graphical LASSO methods. A decrease of acc in

W would lead to more false positives and false negatives

from wgLASSO, but it still outperforms neighbor selec-

tion and graphical LASSO methods when the acc in W is

only as moderate as 40%.

To make more comprehensive comparison, we plot-

ted precision recall curve to evaluate the performance

of neighbor selection, graphical LASSO and wgLASSO

methods.We ran the abovemethods with p = 100, n = 50

and acc = 40% in W, computed the precision and recall,

and generated the plot as shown in Fig. 3. From Fig. 3,

wgLASSO displays a clear improvement over neighbor

selection and graphical LASSOmethods. This agrees with

our expectation since wgLASSO considers whether the

connection has supporting evidence from database and

how well it fits the data in the model.

Microarray data

We applied the proposed dwgLASSO algorithm on two

breast cancer microarray datasets: Bild et al. and van de

Vijver et al. datasets [39, 40]. The former includes 158

patients with all their survival records, and was used

for training. We excluded patients with less than 5-year

follow-up time. Among the remaining patients, 42 with

less than 5-year survival during the follow-up time were

considered to form high risk group while the other 60

formed the low risk group. van de Vijver et al. dataset

contains 295 breast cancer patients, together with their

survival records, and was used for independent testing.

Both datasets are available at PRECOG website (https://

precog.stanford.edu), an online repository for querying

cancer gene expression and clinical data, and have been

https://precog.stanford.edu
https://precog.stanford.edu
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Fig. 2 Framework for dwgLASSO

preprocessed for subsequent statistical analysis [41]. The

raw Bild et al. and van de Vijver et al. datasets are also

available at Gene Expression Omnibus (GSE3143) and R

package seventyGeneData, respectively [42].

Our interest is to obtain a prioritized significant gene

list based on dwgLASSO for more accurate survival time

prediction. The workflow is shown in Fig. 4. We first per-

formed univariate analysis on Bild et al. dataset to select a

list of statistically significant genes based on concordance

index between the expression value and survival time [43].

This lead to a total of 58 genes whose adjusted p-values

were less than 0.05. The inflation of Type I error caused

by multiple testing was controlled by the false discovery

rate (FDR) using the Benjamini-Hochberg procedure. The

total 58 significant genes are included in Additional file 1:

Table S1 along with their associated adjusted p-values.

We then applied wgLASSO algorithm to build two sepa-

rate networks using the total 58 significant genes for the

high risk and low risk groups, respectively. The weight

matrixWwas constructed based on the confidence scores

from STRING database after inputting the 58 significant

genes to investigate the PPIs among them. For gene pairs

with no confidence scores from STRING, we assigned the

corresponding entries in W to zeros. In wgLASSO, we

performed 10-fold cross validation and chose the opti-

mal tuning parameter λopt by one standard error rule.

Fig. 5 shows our chose of λopt : λopt = 0.223 for high

risk group and λopt = 0.184 for low risk group. From the

Table 1 The mean and standard deviation (in parenthesis) of false positives (FP) and false negatives (FN) for connections from

neighbor selection (NS), graphical LASSO (gLASSO) and weighted graphical LASSO (wgLASSO) methods under different node number

(p) and sample size (n) scenarios

p n
NS (or) NS (and) gLASSO wgLASSO (acc = 60%) wgLASSO (acc = 40%)

FP FN FP FN FP FN FP FN FP FN

100 50 150 (17) 151 (10) 166 (15) 157 (10) 154 (23) 148 (11) 112 (17) 104 (11) 129 (18) 122 (11)

100 113 (16) 111 (15) 132 (17) 122 (16) 114 (20) 112 (15) 82 (15) 74 (13) 93 (16) 87 (12)

200 69 (13) 59 (18) 78 (15) 72 (21) 79 (17) 63 (19) 51 (11) 39 (14) 58 (13) 50 (15)

500 250 707 (42) 679 (77) 758 (43) 738 (82) 710 (48) 681 (77) 480 (36) 451 (66) 549 (39) 526 (60)

500 425 (30) 453 (129) 473 (42) 493 (134) 431 (40) 468 (129) 277 (26) 290 (87) 330 (31) 313 (106)

1000 175 (22) 164 (117) 189 (27) 177 (118) 199 (28) 186 (126) 109 (18) 110 (76) 130 (21) 135 (88)

The best performance is marked in bold
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Fig. 3 Precision recall curves for neighbor selection, graphical LASSO

and weighted graphical LASSO methods under p = 100, n = 50 and

acc = 40%

networks, we calculated the node degree for each gene in

two groups
(

dhi , d
l
i

)

, scaled them based on the network

size
(

sdhi , sd
l
i

)

, and computed the differential network

score
(

dnsi = |sdhi − sdli|
)

. At last, we prioritized the 58

significant genes based on the network differential scores

in a decreasing order.

To evaluate whether dwgLASSO could lead to more

accurate survival time prediction, we tested the prioritized

gene list using different methods on the independent van

de Vijver et al. dataset. The 295 patients were divided

into high risk and low risk groups according to the risk

scores calculated using multivariate Cox regression from

the top 10 significant genes based on dwgLASSO, a

competing prior knowledge incorporated network anal-

ysis method (i.e., KDDN), and conventional differential

gene expression analysis (i.e., concordance index). Unlike

dwgLASSO that builds group-specific networks, KDDN

generates only one network with all rewiring connec-

tions. From the network constructed by KDDN, we com-

puted the node degree for each gene to help prioritize

the significant gene list. Kaplan-Meier survival analy-

sis was then performed to evaluate the performance of

the above three scenarios. The resulting survival curves

are shown in Figs. 6a, b, and d. To evaluate how much

the incorporation of prior biological knowledge con-

tributes to the improved performance of dwgLASSO, we

tested the top 10 significant genes selected based on

dwgLASSO with no prior biological knowledge incor-

porated (i.e., W = 0). The resulting survival curve is

shown in Fig. 6c. As expected, dwgLASSO with no prior

biological knowledge incorporated is equivalent to using

graphical LASSO in building group specific networks

(Fig. 4). As illustrated in Fig. 6, the top 10 significant

genes from dwgLASSO with prior biological knowledge

incorporated yielded the best performance (p − value =

7.01 × 10−7, hazard ratio = 3.325), compared to the

top 10 significant genes from KDDN (p − value =

7.46 × 10−7, hazard ratio = 3.304), the top 10 significant

Fig. 4Workflow of dwgLASSO for more accurate survival time prediction on microarray data
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Fig. 5 Error curves to choose optimal tuning parameter λopt using 10-fold cross validation by one standard error rule. The blue line indicates the one

standard error for λmin in the direction of increasing regularization

genes based on dwgLASSO with no prior biological

knowledge incorporated (p − value = 0.00031, hazard

ratio = 2.316), and the top 10 significant genes based on

concordance index (p − value = 0.002, hazard ratio =

2.037). We believe the improved performance achieved by

dwgLASSO and KDDN are due to the extra information

provided from the topological changes between high risk

and low risk groups. Also, dwgLASSO and KDDN benefit

from incorporating prior biological knowledge to obtain

more reliable and biologically relevant genes shared across

independent datasets, leading to better prediction perfor-

mance than those that do not use prior biological knowl-

edge (Fig. 6). Table 2 presents the top 10 significant genes

selected based on concordance index and dwgLASSO

with prior biological knowledge incorporated, together

with their adjusted p-values. The top 10 genes from

the other methods are presented in Additional files 2:

Table S2.

Among the top 10 significant genes based on

dwgLASSO in Table 2, UBE2S has been reported to be

over-expressed in breast cancer [44]. The authors showed

UBE2S knockdown suppressed the malignant character-

istics of breast cancer cells, such as migration, invasion,

and anchorage-independent growth. SALL2 has also

been reported as a predictor of lymph node metastasis in

breast cancer [45]. Unlike UBE2S, SALL2 was identified

as a tumor suppressor gene that can suppress cell growth

when over-expressed [46]. Additionally, XBP1 has been

Fig. 6 Survival curves. a top 10 significant genes based on dwgLASSO with prior biological knowledge incorporated, b top 10 significant genes

based on KDDN, c top 10 significant genes based on dwgLASSO with no prior knowledge incorporated, d top 10 significant genes based on

concordance index
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Table 2 The top 10 significant genes based on conventional differential gene expression analysis (i.e., concordance index) and

dwgLASSO with prior biological knowledge incorporated, along with their adjusted p-value

Top 10 significant genes based on concordance index Top 10 significant genes based on dwgLASSO

Gene symbol Adjusted p-value Gene symbol Adjusted p-value

BTD 0.000167029 SALL2 0.018149333

FKTN 0.000424976 UBE2S 0.015577505

LRRC17 0.000424976 RAB11FIP5 0.001638818

RAB11FIP5 0.001638818 KIAA1467 0.005012636

EMX2 0.002384716 XBP1 0.005019825

HNRNPAB 0.002384716 KIAA0922 0.021163875

TKT 0.002805234 EMX2 0.002384716

LANCL1 0.003481701 OAZ2 0.040090787

TFF3 0.003481701 NDC80 0.030630047

USF2 0.004094746 CCT5 0.048116117

Common genes are marked in bold

reported to be activated in triple-negative breast cancer

and has a pivotal role in the tumorigenicity and progres-

sion of this breast cancer subtype [47]. KIAA0922 has

also been reported as a novel inhibitor of Wnt signaling

pathway, which is closely related to breast cancer [48].

None of UBE2S, SALL2, XBP1 and KIAA0922 is among

the top 10 significant genes based on concordance index

according to Table 2.

In Fig. 7, we showed the neighbors of UBE2S and

SALL2 in the high risk and low risk groups based on the

networks created by wgLASSO from Bild et al. dataset.

UBE2S is over-expressed in the high risk group while

SALL2 is under-expressed. This agrees with that UBE2S

is a promoting breast cancer gene while SALL2 is a sup-

pressor breast cancer gene [44, 46]. Additionally, UBE2S

has higher scaled node degree in the high risk group

while SALL2 has higher scaled node degree in the low

risk group
(

sdhUBE2S = 0.286, sdlUBE2S = 0.778, sdhSALL2 =

1.0, sdlSALL2 = 0.444
)

. This shows, as a promoting breast

cancer gene, UBE2S is more actively connected with its

neighbors in the high risk group while, the suppressor

breast cancer gene, SALL2 is more actively connected

with its neighbors in the low risk group. In Fig. 7, yellow

edges represent connections that have been supported

from STRING database. We can see that these connec-

tions based on prior biological knowledge are not always

showing up from the output of wgLASSO. This is a nice

property since prior biological knowledge only provides

evidence. We still need the support from the data to

make a connection. Therefore, by integrating prior bio-

logical knowledge into data-driven models, we expect

to build more robust and biologically relevant networks.

Table 3 shows the survival time prediction performance

when the top 5, top 10 and top 15 significant genes

are selected by each of the four methods as the inputs

to the multivariate Cox regression model (Fig. 6). In

all three cases, the proposed dwgLASSO algorithm with

prior biological knowledge incorporated achieved the best

performance, followed by KDDN and dwgLASSO with-

out prior biological knowledge incorporated. The method

that relies purely on concordance index had the least

performance.

RNA-seq data

Using UCSC Cancer Genomics Browser, we obtained

TCGA RNA-seq data (level 3) acquired from patients

with HCC [49]. The RNA-seq data was acquired by anal-

ysis of 423 liver tissues, including 371 primary tumor,

50 solid normal and 2 recurrent tumor samples based

on Illumina HiSeq 2000 RNA Sequencing platform and

mapped onto the human genome coordinates using UCSC

cgData HUGO probeMap. Among the 371 primary tumor

samples, 50 of them can find its corresponding solid nor-

mal samples. To evaluate dwgLASSO on RNA-seq data,

we apply a workflow shown in Fig. 8. We first picked

out the 100 samples whose tumor tissues and their cor-

responding non-tumorous tissues can both be found.

Randomly, we selected 60 of them (30 tumor samples

and their corresponding normal samples) as the training

dataset. The remaining 40 samples (20 tumor samples and

their corresponding normal samples) were used as test-

ing dataset 1. Considering testing dataset 1 only contains

40 samples, we created testing dataset 2 by combining the

above 40 samples and the remaining 321 tumor samples

whose corresponding normal samples cannot be found.

With testing datasets 1 and 2, we evaluated the perfor-

mance of dwgLASSO on both balanced and large sample

size datasets. Specifically, we preprocessed RNA-seq data

using R package DESeq2 on the training dataset [50].
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Fig. 7 Neighbors of UBE2S and SALL2 in two groups. a neighbors of UBE2S in the high risk group, b neighbors of UBE2S in the low risk group,

c neighbors of SALL2 in the high risk group, d neighbors of SALL2 in the low risk group. Label colors represent over- (red) or under- (green) expression

in the high risk group. Node shapes indicate unique (circle) or shared (rectangle) genes between the two groups. Node colors show the significance

of the gene expression value between the two groups. Yellow edges represent interactions recorded in the STRING database. Thickness of the edge

indicates the strength of the interaction

From DESeq2, we selected statistically significant genes

whose adjusted p-values were less than 0.01 for subse-

quent analysis. At this step, the number of significant

genes is typically between 1000 and 2000. We prioritized

the significant gene list based on dwgLASSO. From the

prioritized gene list, the top 5 genes were selected to train

a logistic regression classifier to distinguish tumor and

normal samples. The trained logistic regression classifier

was finally evaluated on testing datasets 1 and 2. To com-

pare dwgLASSO with other methods, we also prioritized

the significant gene list based on adjusted p-value from

DESeq2, dwgLASSO without prior biological knowledge

incorporated and KDDN, built logistic regression clas-

sifier using the top 5 genes on the prioritized list and

evaluated the trained classifier on the testing datasets 1

and 2.

Table 3 The survival time prediction performance (p-value and hazard ratio) for the top 5, top 10 and top 15 significant genes based

on concordance index: DEA, dwgLASSO with no prior biological knowledge incorporated: dwgLASSO (no prior), KDDN, and dwgLASSO

with prior biological knowledge incorporated: dwgLASSO (prior)

Methods
Top 5 significant genes Top 10 significant genes Top 15 significant genes

p-value Hazard ratio p-value Hazard ratio p-value Hazard ratio

DEA 0.0073 1.851 2.00E-03 2.037 4.00E-04 2.274

dwgLASSO (no prior) 0.0066 1.864 3.10E-04 2.316 4.60E-06 2.969

KDDN 0.0022 2.028 7.46E-07 3.304 8.04E-06 2.889

dwgLASSO (prior) 0.0013 2.104 7.01E − 07 3.325 9.37E − 07 3.25

The best performance is marked in bold when the gene number is fixed



Zuo et al. BMC Bioinformatics  (2017) 18:99 Page 12 of 14

Fig. 8Workflow of dwgLASSO for more accurate classification prediction on RNA-seq data

The above procedure was repeated 100 times and the

means and standard deviations for sensitivity, specificity

and area under curve (AUC) were calculated using test-

ing datasets 1 and 2 as shown in Table 4. In agreement

with microarray data, network-based methods with prior

biological knowledge incorporated yielded the best per-

formance, followed by network-based method without

prior biological knowledge incorporated, and the con-

ventional differential gene expression analysis method

was the worst. This is expected since both dwgLASSO

and KDDN methods take into account of the changes of

genes at gene expression and network topology levels, and

incorporate prior biological knowledge into their network

models.

Conclusion
In this paper, we apply a novel network inference method,

wgLASSO to integrate prior biological knowledge into a

data-driven model. We also propose a new network-based

differential gene expression analysis method dwgLASSO

for better identification of genes associated with bio-

logically disparate groups. Simulation results show that

wgLASSO can achieve better performance in building

biologically relevant networks than purely data-driven

models (e.g., neighbor selection and graphical LASSO)

even when only a moderate level of information is avail-

able as prior biological knowledge. We demonstrate the

performance of dwgLASSO in survival time prediction

using two independent microarray breast cancer datasets

previously published by Bild et al. and van de Vijver et

al. The top 10 genes selected by dwgLASSO based on

the dataset from Bild et al. dataset lead to a significantly

improved survival time prediction on the dataset from

van de Vijver et al., compared with the top 10 signif-

icant genes obtained by conventional differential gene

expression analysis. Among the top 10 genes selected by

Table 4 The mean and standard deviation (in parenthesis) of sensitivity, specificity and area under curve (AUC) calculated for

conventional differential gene expression analysis: DEA, dwgLASSO with no prior biological knowledge incorporated: dwgLASSO (no

prior), KDDN, and dwgLASSO with prior biological knowledge incorporated: dwgLASSO (prior)

Methods
Testing dataset 1 Testing dataset 2

Specificity Sensitivity AUC Specificity Sensitivity AUC

DEA 0.950 (0.07) 0.913 (0.06) 0.951 (0.04) 0.950 (0.07) 0.941 (0.04) 0.983 (0.01)

dwgLASSO (no prior) 0.988 (0.03) 0.888 (0.11) 0.972 (0.02) 0.988 (0.03) 0.956 (0.05) 0.990 (0.01)

KDDN 0.963 (0.08) 0.950 (0.04) 0.980 (0.02) 0.963 (0.08) 0.939 (0.03) 0.989 (0.01)

dwgLASSO (prior) 0.988 (0.03) 0.950 (0.07) 0.982 (0.03) 0.988 (0.03) 0.965 (0.03) 0.994 (0.01)

The best performance is marked in bold
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dwgLASSO, UBE2S, SALL2, XBP1 and KIAA0922 have

been previously reported to be relevant in breast can-

cer biomarker discovery study. We also tested dwgLASSO

using TCGA RNA-seq data acquired from patients with

HCC on tumors samples and their corresponding non-

tumorous liver tissues. Improved sensitivity, specificity

and AUC were observed when comparing dwgLASSO

with conventional differential gene expression analysis

method. Future research work will focus on applying

dwgLASSO on other omic studies such as proteomics and

metabolomics.

Additional files

Additional file 1: Table S1: The total 58 significant genes along with their

associated adjusted p-values. (CSV 1.09 kb)

Additional file 2: Table S2: The top 10 significant genes based on KDDN

and dwgLASSO without prior biological knowledge incorporated.

(CSV 4.00 kb)
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