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Summary:

Predicting clinical variables from whole-brain neuroimages is a high-dimensional problem that 

can potentially benefit from feature selection or extraction. Penalized regression is a popular 

embedded feature selection method for high-dimensional data. For neuroimaging applications, 

spatial regularization using the l1 or l2 norm of the image gradient has shown good performance, 

yielding smooth solutions in spatially contiguous brain regions. Enormous resources have been 

devoted to establishing structural and functional brain connectivity networks that can be used to 

define spatially distributed yet related groups of voxels. We propose using the fused sparse group 

lasso penalty to encourage structured, sparse, and interpretable solutions by incorporating prior 

information about spatial and group structure among voxels. We present optimization steps for 

fused sparse group lasso penalized regression using the alternating direction method of multipliers 

(ADMM) algorithm. With simulation studies and in application to real fMRI data from the Autism 

Brain Imaging Data Exchange, we demonstrate conditions under which fusion and group penalty 

terms together outperform either of them alone.
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1. Introduction

Since the earliest functional magnetic resonance imaging (fMRI) studies of the human brain 

were carried out in the early 1990s, there have been relatively few translations of basic 

neuroscience findings to clinical applications in psychiatry, such as the use of biomarkers for 

determining diagnosis, prognosis, or predicting treatment response (Kapur et al., 2012; Woo 

et al., 2017). The traditional mass univariate approach in neuroimaging, which fits a model 

to each voxel independently, has been successful at characterizing group-level brain 

structure and function. However, a predictive model approach, where neuroimage features 
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serve as predictors and a clinical variable is modeled as the outcome, may be better suited to 

clinical application. Predictive models are able to exploit dependencies between brain 

regions and thus can potentially explain more variability in the outcome than a mass 

univariate approach. Moreover, predictive models can yield individual-level out-of-sample 

predictions with potential clinical utility.

In this paper, we show how the fused sparse group lasso, a structured, sparse estimator, can 

incorporate prior information into a predictive model, thereby allowing researchers to 

harness results from the extensive recent research on brain structural and functional 

connectivity. Our goals include not only predictive accuracy, but also interpretable parameter 

estimates, as based on the following criteria: First, model structure entails that parameter 

values have a straightforward meaning; e.g., linear models tend to be more interpretable than 

nonlinear models. Second, models are appropriately sparse, including only relevant 

predictors, while not excluding any relevant predictors. Third, parameter estimates are 

understandable in light of existing background knowledge. In a translational neuroimaging 

context, this would mean that the brain regions implicated by the model estimates are 

neuroscientifically plausible according to existing knowledge or provide new insight into the 

neurobiological mechanism influencing the clinical outcome, and can potentially be used to 

establish biomarkers.

In Section 4, we apply fused sparse group lasso to a resting state fMRI dataset from the 

Autism Brain Imaging Data Exchange (ABIDE), a public repository of MRI datasets (Di 

Martino et al., 2014). Autism spectrum disorder (ASD) is a group of developmental 

disorders characterized by impaired social functioning and restrictive and repetitive 

behavior, and affects approximately 1% of children (Di Martino et al., 2014). Neuroimaging 

studies report abnormal functional connectivity between brain regions in ASD, although 

findings are mixed regarding the specific nature of the abnormalities (Di Martino et al., 

2014). In our application, we show that incorporating prior information about voxel spatial 

location and functional connectivity using fused sparse group lasso increases accuracy when 

predicting a continuous measure of autistic social impairment from resting state fMRI data.

Consider the linear regression model

y = Xβ + ϵ, (1)

where y ∈ ℝn is a continuous outcome (e.g., score on a clinical depression rating scale), 

X ∈ ℝn × p is a predictor matrix (e.g., neuroimage voxel values), β ∈ ℝp is an unknown 

vector of coefficients, ϵ ∈ ℝn is the error, E(ϵ) = 0, and E(ϵTϵ) = σ2In. This represents a 

high-dimensional setting where the number of subjects n is much less than the number of 

predictors p, which can be on the order of 100,000 voxels. To obtain a unique solution for β, 

we can constrain the optimization problem using the penalized least squares estimator

β = arg min
β ∈ ℝp

1
2

‖y − Xβ‖2
2 + λ J(β), (2)
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where λ ⩾ 0 is a tuning parameter controlling the level of regularization. The penalty term 

J(β) can impose both sparsity and structure, thereby constraining the solution space 

according to a priori information about relationships between elements of β. Examples of 

unstructured and structured penalties are presented in Table 1.

Simulation studies and applications to real neuroimaging datasets (mostly using fMRI) have 

shown that penalties enforcing spatial smoothness frequently outperform unstructured 

penalties (Michel et al., 2011; Fiot et al., 2014). Not only do spatially-informed penalties 

yield more interpretable estimates insofar as they select contiguous groups of voxels in 

neuroscientifically plausible brain regions, but they often show better prediction 

performance. In addition to spatial regularization, group-structured regularization has shown 

promise in predictive neuroimaging models. For example, Shimizu et al. (2015) found that 

group lasso and sparse group lasso were superior to lasso and random forest and comparable 

to SVM in terms of classification accuracy, but unlike SVM, produced sparse and more 

interpretable models.

For neuroimaging applications, we aim to incorporate two types of structure into the penalty 

term J(β) of the estimator in Equation (2): (1) local spatial information, to encourage smooth 

coefficient estimates across neighboring voxels; and (2) spatially distributed groups, such as 

those defined by functional or structural networks or anatomical regions, to allow voxels 

within the same group to be selected or shrunk to zero together. We achieve this by 

combining l1, fusion, and group lasso penalties into a fused sparse group lasso penalty. We 

found one instance of this penalty in the literature, in a multi-task learning context where 

groups consist of repeated measures of the same task and smoothing is applied across time 

points within a group (Zhou et al., 2012). To our knowledge, the fused sparse group lasso 

penalty has never been studied via simulations or used in a predictive model with voxel-level 

neuroimaging data.

In the remainder of this paper, we present the fused sparse group lasso estimator in Section 2 

and derive update steps to fit the fused sparse group lasso penalized least squares regression 

model using the alternating direction method of multipliers (ADMM) algorithm in Section 

2.3. We report methods and results of a simulation study in Section 3 and apply our method 

to resting state fMRI data from the ABIDE repository in Section 4. We make concluding 

remarks in Section 5. We provide R and MATLAB functions for fitting the fused sparse 

group lasso estimator and additional supporting information online.

2. Fused Sparse Group Lasso

2.1 Model

Suppose we observe {(x1, y1), … , (xn, yn)} from n independent subjects, indexed by i = 1, 

… , n, where y
i

∈ ℝ and x
i

∈ ℝp. In the neuroimaging context considered here, yi is a 

continuous scalar outcome for each subject such as age, depression scale score, or cognitive 

test score, and xi is a vector of voxel values from a three dimensional brain image such that 

each element of xi corresponds to one of p voxels. Assume that y = (y1, … , yn)T and the 

columns of the matrix X = (x1∣ … ∣xn) are centered, so we do not have an intercept term. 
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Furthermore, we standardize the columns of X to have unit standard deviation. We model the 

continuous outcome using standard linear regression as expressed in Equation (1).

2.2 Estimator

Since the number of voxels is typically orders of magnitude larger than the number of 

subjects, i.e., p ⪢ n, regularization is required to obtain a unique solution for β. We propose 

estimating β by minimizing the sum of the loss function and three penalty terms:

β = arg min
β ∈ ℝp L(β) + λ1‖β‖1 + λ2‖Dβ‖1 + λ3Ω𝒢(β); (3)

where L(β) is the loss function (e.g., least squares); ‖β‖1 = ∑
j = 1
p ∣ β

j
∣ the l1 norm of β; 

Dm×p is the three dimensional fusion matrix for fused lasso (see Web Appendix A for 

example), and ∥Dβ∥1 is the fusion penalty; Ω𝒢(β) = ∑
g ∈ 𝒢 p

g
‖β

g
‖2 is the l2,1 group lasso 

penalty, which applies the l2 norm, ‖β
g
‖2 = β

g
T

β
g
, to the coefficients βg for each group 

g ∈ 𝒢, each of size pg; and λ1, λ2, λ3 ⩾ 0 are regularization tuning parameters.

The three penalty terms incorporate prior information into the estimator, encouraging the 

solution to have both sparsity and a particular structure. The standard lasso l1 penalty 

encourages overall sparsity. The fusion penalty penalizes the absolute differences between 

coefficients at neighboring voxels, thereby encouraging local smoothness. The group lasso 

penalty encourages a group-level structure; entire groups may be selected or shrunk to zero 

together. For example, if groups are defined by functional networks, the penalty allows 

voxels involved in a common network to be shrunk to zero if that network is not important 

for prediction. Given the overlapping structure of brain networks, overlapping groups are 

another possibility worth considering. With appropriate weighting and a latent variable 

approach (Obozinski et al., 2011), the estimator could also accommodate overlapping 

groups.

For ease of selecting values for the tuning parameters via cross-validation, it is convenient to 

reparameterize (3) as follows:

β = arg min
β ∈ ℝp L(β) + αγλ‖β‖1 + (1 − γ)λ‖Dβ‖1

+ (1 − α)γλΩ𝒢(β),
(4)

such that λ > 0 controls the overall level of regularization, α ∈ [0,1] controls the balance 

between the two sparsity inducing penalties (lasso and group lasso), and γ ∈ [0,1] controls 

the balance between the two sparsity inducing penalties and the fusion penalty. When α =1 

and γ = 1, the estimator reduces to the standard lasso; when α = 0 and γ = 1, the estimator 

reduces to the group lasso, and so on for other subsets of the three penalty terms.

2.3 Optimization Algorithm

While a coordinate descent algorithm is often used to fit lasso penalized models, and Yuan 

and Lin (2006) proposed a blockwise coordinate descent algorithm for group lasso, 

Beer et al. Page 4

Biometrics. Author manuscript; available in PMC 2019 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



coordinate descent does not work for the fused lasso penalty. As discussed in Friedman et al. 

(2007), there are two main reasons for this: (1) the fused lasso penalty is non-separable into 

a sum of functions of the elements of β, and (2) the fused lasso penalty is not continuously 

differentiable, so coordinate descent can get stuck. The accelerated gradient method 

algorithm employed in Zhou et al. (2012) depends on the separability of the penalty term 

across groups of β, which is possible because they applied the fusion penalty only within 

groups. We wanted to allow for fusion across groups as well. Thus, for the optimization 

problem expressed in Equation 3, we chose to implement an ADMM algorithm (Boyd et al., 

2011).

For simplicity, we assume that the groups are non-overlapping and form a partition of β, so 

that each coefficient belongs to exactly one group. For applying ADMM, we follow a 

strategy similar to that employed in Huo and Tseng (2017) and exploit the fact that 

∣ β
j

∣ = β
j
2 and ∣ β

j
− β

j − 1 ∣ = (β
j
− β

j − 1)2. Then we can reformulate the lasso and fusion 

l1 penalty terms as sets of l2,1 group penalties whose groups have only one member. If there 

are p coefficients, D has m rows, and there are G groups that form a partition of β, then the 

total number of effective groups is p + m + G = N.

Using a least-squares loss function, we now write the objective function (3) as

arg min
β ∈ ℝp

1
2

‖y − Xβ‖2
2 + ∑

j = 1

N

λ jw j‖K jβ‖2, (5)

with

{λ
j
, K

j
} =

{λ1, j
j
} if j ∈ {1, …, p}

{λ2, d
j
} if j ∈ {p + 1, …, p + m}

{λ3, G
j
} if j ∈ {p + m + 1, …, p + m + G},

where λj ∈ {λ1, λ2, λ3} are the regularization parameters for the lasso, fusion, and group 

lasso penalties, respectively; wj are group weights (for group lasso typically w
j

= p
j
 where 

pj is the number of elements in group j); j
j

∈ ℝp corresponds to the jth row of the p × p 

identity matrix; d
j

∈ ℝp corresponds to the (j – p)th row of the fusion matrix D in the three 

dimensional fusion penalty; and G
j

∈ ℝ
p

j
× p

 is a sparse matrix where each row has a 1 at a 

column position corresponding to a member of group j.

For ADMM, we introduce the auxiliary variables θj = Kjβ. The optimization problem 

becomes minimize 
1
2

‖y − Xβ‖2
2 + ∑

j = 1
N

λ
j
w

j
‖θ

j
‖2, subject to θj – Kjβ = 0 for j ∈ {1,2, … , 

N}. Let K = (K1∣ … ∣KN), θ = (θ1, … ,θN)T, and µ = (µ1, … , µN)T. The augmented 

Lagrangian is 

ℒ
ρ
(β, θ, μ) =

1
2

‖y − Xβ‖2
2 + ∑

j = 1
N

λ
j
w

j
‖θ

j
‖2 + ∑

j = 1
N [μ

j
T(θ

j
− K

j
β) +

ρ

2
‖θ

j
− K

j
β‖2

2], 

where ρ > 0 is the step-size parameter and µj are the dual variables for ADMM. After 
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initialization of β, θ, and µ, the update steps for ADMM consist of the following: 

β
t + 1 = arg min

β ∈ ℝp
ℒ

ρ
(β, θ

t, μ
t); θ

j
t + 1 = arg min

θ
j

∈ ℝ
p

j
ℒ

ρ
(βt + 1, θ, μ

t); 

μ
j
t + 1 = μ

t + ρ(θ
j
t + 1 − K

j
β

t + 1). For βt+1 and θ
j
t + 1 updates, the corresponding ℒ

ρ

subgradient will equal zero at the optimal solution. Thus, the update for β is βt+1 = (XTX + 

ρKTK)−1 [XTY + KT(µt + ρθt)], and the update for θj is θ
j
t + 1 = (1 − λ

j
w

j
∕ [ρ‖η

j
‖2])+η

j
, 

Where ηj = Kjβ – µj/ρ and (·)+ = max(0, ·). We derive this and discuss how we implement 

stopping criteria and adaptive step-size in Web Appendix B.

2.4 Adaptive Fused Sparse Group Lasso

Zou (2006) showed that the lasso only exhibits consistent variable selection (i.e., identifies 

the right subset of non-zero coefficients asymptotically) under a certain nontrivial condition, 

which includes an orthogonal design matrix X and p = 2 as special cases. The adaptive lasso, 

on the other hand, achieves consistent variable selection by differentially scaling the tuning 

parameter, λ, for each coefficient by the factor ∣ β
j
∗

∣−γ, where β
j
∗
 is a consistent estimator 

for βj such as the ordinary least squares estimator, and γ > 0 (Zou, 2006). Adaptive versions 

of fused lasso (Viallon et al., 2013) and group lasso (Wang and Leng, 2008) have also been 

developed. In our application to a real neuroimaging dataset in Section 4, we implement an 

adaptive version of fused sparse group lasso using ridge regression to obtain initial 

coefficient estimates, β
ridge

= arg min
β ∈ ℝp

1
2

‖y − Xβ‖2
2 + λ

ridge‖β‖2
2. The weights, wj, 

introduced in Equation (5) are defined as

w j =

‖j jβ
ridge

‖1
−1 if j ∈ {1, …, p}

‖d jβ
ridge

‖1
−1 if j ∈ {p + 1, …, p + m}

‖G jβ
ridge

‖2
−1 if j ∈ {p + m + 1, …, p + m + G} .

(6)

3. Simulation Study

3.1 Simulation Study Methods

Our simulation study aimed to show that, for a given modeling scenario, the optimal 

weighting of the three penalty terms in the fused sparse group lasso depends on the 

underlying structure of the true coefficients. We also sought to characterize the optimal 

penalty weights for a range of different coefficient structures. Accordingly, we evenly 

divided the pixels of two dimensional 20 × 20 images into 16 groups of 25 and considered 

three spatial arrangements of the groups (Figure 1): (A) members of a group were 

completely aggregated into 5 × 5 squares; (B) groups were partially aggregated, consisting 

of one 3 × 3 square, three 2 × 2 squares, and two 1 × 2 rectangles; (C) groups were 

completely distributed such that no pixels from the same group were touching sides. For 

each of these group structures, one group was selected to have non-zero coefficients, which 

were all set equal to 3. We also considered sparse versions of the coefficients, where 40% of 
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coefficients in the active group were set to zero. Additionally, we considered three more 

scenarios under the partially aggregated group structure: an extra sparse scenario, with 80% 

of active group coefficients set to zero; a misspecified group structure, where the set of true 

coefficients was divided among several groups; and a sparse version of the misspecified 

group structure. Thus, there were nine total scenarios of true coefficients (Figure 1).

For each of n = 50 training subjects and n = 50 test subjects, we generated a vector of 400 

independent standard normal random variables to serve as predictors, where each 

corresponded to a pixel in the 20 × 20 image. The responses, y, were then computed by the 

model y = Xβ + ϵ, where each element of ϵ was independent normal with mean zero and 

variance 4. To select optimal tuning parameter values, we parameterized according to 

Equation (4). The fusion penalty was applied between coefficients of pixels that shared an 

edge, and the group penalty was applied to each of the 16 groups, as previously described. 

For each pair of α ∈ {0, 0.2, 0.5, 0.8, 1} and γ ∈ {0, 0.2, 0.5, 0.8, 1}, we performed 5-fold 

cross-validation over 50 values of λ = 10x, where values of x formed a grid on the interval 

[−3, 3], and selected the λ that resulted in the lowest cross-validation mean squared error. 

We fit the model to the entire sample of n = 50 training subjects at the given (α, γ) pair 

using this λ and calculated mean squared error of the estimated coefficients 

(MSE(β) = ‖β − β‖2
2 ∕ 400) and mean squared prediction error for the test data 

(MSE(ytest) = ‖ytest − ytest‖2
2 ∕ 50). We repeated the entire procedure 100 times for each of the 

nine scenarios. We also generated another test sample of n = 100 for the purpose of 

decomposing the mean squared error into squared bias and variance at each (α, γ) 

combination across the 100 trained models. Analyses were done using R version 3.4.0 (R 

Core Team, 2017).

We hypothesized that, on the basis of MSE(β), MSE(ytest), or both, (1) the fusion penalty 

term would perform worse and the sparsity penalty terms would perform better (i.e., optimal 

γ value would increase) as the groups became more spatially distributed; (2) the group 

penalty term would perform worse and the l1 lasso penalty term would perform better (i.e., 

optimal α value would increase) as the sparsity of true coefficients increased or with 

misspecification of group structure. We also sought to determine whether the lowest cross-

validation error would correspond to the optimal values of (α, γ).

3.2 Simulation Study Results

Figure 2 shows the distributions of cross-validation error, MSE(β), and MSE(ytest) across the 

(α, γ) combinations for true coefficient scenario 5B. Optimal (α, γ) combinations for each 

scenario are presented in Web Appendix C, Web Table C1; detailed simulation results are 

reported in Web Tables C2-C10; box plots for the other scenarios are shown in Web Figures 

C1-C3; and bias-variance decompositions of MSE(ytest) are shown in Web Figure C4.

As expected, on the basis of both MSE(β) and MSE(ytest), as groups became more spatially 

distributed, the optimal value of γ increased from 0.2 for the completely aggregated to 1 for 

the completely distributed group structure, shifting weight from the fusion penalty term to 
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the sparsity penalty terms. This pattern was similar for the complete (1A, 2B, 3C) and sparse 

(4A, 5B, 6C) group scenarios. As the sparsity of true coefficients increased in the partially 

aggregated group scenarios (2B, 5B, 7B), the optimal value of α increased from 0 for the 

complete group to 0.8 for the extra sparse group scenario, shifting weight from the group 

penalty term to the l1 lasso penalty term. When group structure was misspecified, the 

optimal α value was 1 for both scenarios (8B, 9B), putting zero weight on the group penalty 

term in favor of the l1 lasso penalty term.

The results demonstrate that the combination of penalty terms in the fused sparse group 

lasso adapt to a wide range of spatial arrangements and sparsity levels of true coefficients. In 

all seven scenarios where group structure was correctly specified, the (α, γ) combination 

yielding the most frequent lowest cross-validation error corresponded to the most frequent 

lowest MSE(β) and MSE(ytest), indicating that selecting tuning parameters based on lowest 

cross-validation error tends to correspond to the optimal model. For the misspecified group 

scenarios, cross-validation error was lowest for either the first or second most frequent 

lowest MSE(β) and MSE(ytest) (see Web Appendix C, Web Tables C8 and C9).

4. Application to Neuroimaging Data

We applied fused sparse group lasso (FSGL) penalized regression to a resting state fMRI 

dataset of ASD (n = 111) and typically developing (TD, n = 108) male participants (mean 

(SD) age 17.4 (7.5) years, see Web Appendix D, Web Table D1 for descriptive summary) 

from the ABIDE repository (Di Martino et al. (2014), see Supporting Information for URL). 

In this set of participants, Cerliani et al. (2015) used independent components analysis to 

identify 19 resting state brain networks. The authors found that autistic traits as measured by 

Social Responsiveness Scale (SRS) scores were positively associated with functional 

connectivity between a subcortical network, comprising basal ganglia and thalamus, and two 

cortical networks: (1) dorsal and (2) ventral primary somatosensory and motor cortices. The 

association was only significant in the ASD group. Given that the resting state networks 

evaluated in Cerliani et al. (2015) represent relatively large brain regions, we used FSGL 

regression to more precisely define the cortical regions whose functional connectivity with a 

subcortical seed region best predicts SRS scores.

4.1 Application Methods

Preprocessed fMRI data was downloaded from the ABIDE I Preprocessed repository 

(Craddock et al., 2013). Data were preprocessed using the Connectome Computational 

System pipeline with no global signal regression and band pass filtering (0.01 – 0.1 Hz). The 

independent component resting state network data from Cerliani et al. (2015) was 

6.Supporting Information
Web Appendices, Tables, and Figures referenced in Sections 3 and 4, and data and code for the simulation study in Section 3 and 
application to ABIDE dataset in Section 4 (including an R package and Matlab functions to fit fused sparse group lasso) are available 
with this paper at the Biometrics website on Wiley Online Library. Data and code are also available at https://github.com/jcbeer/fsgl. 
ABIDE repository website is at http://fcon_1000.projects.nitrc.org/indi/abide/, and preprocessing pipeline information is available at 
http://preprocessed-connectomes-project.org/abide/Pipelines.html. Resting state network data was retrieved from https://github.com/
sblnin/rsfnc.
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downloaded and resampled to 3×3×3 mm3 voxels to match the ABIDE data. (See 

Supporting Information for URLs.)

We partitioned the brain into 19 resting state networks by assigning each voxel to the 

maximal spatial independent component at that voxel out of the 19 components identified in 

Cerliani et al. (2015). We restricted our analyses to the three networks mentioned above: the 

basal ganglia/thalamus subcortical network and the two sensorimotor cortical networks. We 

defined a subcortical seed region by selecting the peak voxels in the subcortical network 

independent component spatial map. This yielded bilateral regions of the thalamus, with 12 

voxels centered at MNI coordinates (11, −11, 11) and 11 voxels centered at (−11, −11, 12) 

(Figure 3A). For each participant, the first eigenvariate of the seed region time series was 

extracted, and its Pearson correlation was calculated with each voxel time series in the 

cortical regions of interest to form a seed-based connectivity map. Fisher’s r-to-z 

transformation was applied to each voxel. After excluding voxels where any participants had 

missing data, this left p = 5476 voxels to serve as predictors for FSGL regression (Figure 

3B).

Participant data were divided into training (n = 175) and test (n = 44) sets. Test set data was 

put aside until all model fitting was completed. The following steps were carried out with 

the training set data:

1. For the group penalty term, voxels in the cortical regions of interest were 

partitioned into 50 groups using agglomerative hierarchical clustering on the 

voxel time series. First, for each training participant, Pearson correlations 

between time series were calculated for all possible pairs of voxels in the cortical 

regions of interest. Correlation matrices were averaged across participants, and a 

distance matrix was formed by applying the elementwise transformation 

d = 2 ∗ (1 − r). Finally, hierarchical clustering using Ward’s method was 

performed based on the distance matrix, and the resulting tree was cut to form 50 

groups which ranged in size from 43 to 268 voxels (Figure 3C).

2. A linear regression model adjusted raw SRS scores for age, full-scale IQ, site of 

acquisition, eye status at scan (open or closed), and mean framewise 

displacement. The residuals were used as the outcome for FSGL regression. (See 

Web Appendix D, Web Table D2)

3. After centering the SRS outcome and standardizing columns of the predictor 

matrix, 5-fold cross-validation was used to determine the λ value yielding the 

minimum cross-validation error at selected values of (α, γ) for the FSGL 

regression. We chose to compare (α, γ) equal to (1.0, 1.0) (standard lasso), (0.2, 

1.0) (sparse group lasso), (0.2, 0.8) (fused sparse group lasso), and (0.0, 0.8) 

(fused group lasso). Cross-validation folds were stratified to ensure that they had 

similar distributions of the adjusted SRS outcome.

4. To estimate the coefficients, the model was fit to the entire training set at the 

optimal λ for selected values of (α, γ).
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5. For adaptive FSGL regression, first ridge regression estimates were obtained 

(using R package glmnet, Friedman et al. (2010)) and adaptive weights were 

formed according to Equation 6, and then steps (3) and (4) were completed.

For the test set data, adjusted SRS scores were predicted for each participant by taking the 

dot product of the estimated FSGL regression parameters with the participant’s predictor 

variables, which were first standardized according to the training set column means and 

standard deviations. Raw test set SRS scores were adjusted using the linear regression model 

parameters estimated with the training set data. Prediction accuracy was assessed via mean 

squared error and Pearson correlation of predicted with actual adjusted SRS scores. Since 

prior studies have used resting state fMRI data to classify ASD and TD subjects into 

diagnostic groups rather than predict SRS, in order to compare our results we used receiver 

operating characteristic (ROC) curve analysis to find the best classification threshold for 

predicted SRS scores from the best-performing models and calculated the corresponding 

classification accuracies.

Analyses were done using a combination of AFNI version 17.1.03 (Cox, 1996), MATLAB 

version 9.1.0 (R2016b) (MATLAB, 2016), and R version 3.4.0 (R Core Team, 2017).

4.2 Application Results

Results for non-adaptive and adaptive fused sparse group lasso as well as for ridge and 

elastic net penalties are summarized in Table 2. The best test set prediction was achieved by 

the adaptive fused sparse group lasso with (α, γ) equal to (0.2, 0.8), which gave a mean 

squared error of 1165.2 and Pearson correlation r = 0.437 (p = 0.003) (Figure 4C; see Web 

Appendix D, Web Figure D1 for other adaptive penalties). (For comparison, Cerliani et al. 

(2015) reported correlations of r = 0.21 and 0.25 for the respective cortical networks in ASD 

participants.) Cross-validation error was in general much lower for adaptive penalties than 

for non-adaptive penalties (Figure 4A). The superior performance of adaptive, ridge, and 

elastic net penalties over the non-adaptive penalties in this particular application is likely due 

at least in part to high multicollinearity of the predictors and the influence of many small, 

weak effects of predictors on the outcome rather than a few strong effects. Estimated 

coefficient brain maps for two sets of α and γ values are shown in Figure 4B (see Web 

Appendix D, Web Figure D1 for other adaptive penalties). Higher SRS scores correspond to 

greater autistic social impairment. Thus the coefficient maps reflect multivariate thalamic 

seed connectivity patterns predictive of greater social impairment. Penalties including the 

fusion term, i.e., with γ = 0.8, resulted in larger clusters of contiguous regions, rather than 

the more scattered coefficient maps resulting when γ = 1.0.

A couple of questions arise regarding the clinical significance of the findings. First, does the 

result provide insight into the neurobiology of ASD? While the sparse, structured penalty 

succeeded in narrowing down the predictors to a smaller subset of the most predictive 

voxels, it is not immediately clear why these particular scattered regions of sensorimotor 

cortex are most informative. We invite interested readers to further explore the coefficient 

brain maps available at the URL noted in the Supporting Information Section, below. 

Second, does the result represent a good diagnostic biomarker? We consider this question in 

the following context. ASD has been associated with abnormalities in connectivity between 
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multiple brain regions (Di Martino et al., 2014). Accordingly, studies using resting state 

fMRI data to define ASD biomarkers have often summarized voxel-level data using regions 

of interest and considered connectivity between multiple regions, rather than use a focused, 

voxel-level approach as we did. Previous studies using such methods on the ABIDE dataset 

have achieved diagnostic classification (ASD versus TD) accuracies in the range of 60% to 

71% (Abraham et al., 2017; Nielsen et al., 2013; Plitt et al., 2015; Kassraian-Fard et al., 

2016), well below the classification accuracy that can be achieved using behavioral measures 

such as the SRS, which can attain accuracies of up to 95% (Plitt et al., 2015). The difficulty 

of identifying fMRI biomarkers for ASD may be due to the noisiness of fMRI data or the 

neurobiological heterogeneity of the disorder (Plitt et al., 2015). What is remarkable about 

our result is that, when we dichotomize our predicted outcomes for the purpose of diagnostic 

classification, we can achieve similar accuracies (classification accuracy of 29 to 30 out of 

44 test subjects, or 66% to 68%, for the adaptive penalties), even though we only considered 

connectivity between a single thalamic seed region and sensorimotor cortex. This may 

reflect the richness imparted by voxel-level as opposed to region of interest functional 

connectivity data. It seems possible that adding other features to the model, e.g., using not 

only a thalamic seed region, but also including voxel-level connectivity data from other seed 

regions that have shown abnormal connectivity in ASD, such as the default mode network 

and regions implicated in social cognition, would likely improve prediction performance 

further.

5. Conclusions

The fused sparse group lasso penalty offers a flexible way to incorporate pertinent structure 

into a predictive model, which can lead to more interpretable coefficient estimates and better 

predictive performance on test data. The fusion penalty term constrains coefficients that we 

expect to have similar estimated values, and we can use it to enforce local spatial 

smoothness in an image. The group penalty term groups together coefficients that we do not 

necessarily expect to have similar values, but we expect to be selected simultaneously, such 

as voxels residing in the same functional brain networks. The l1 penalty term allows sparse 

groups, and may also be useful when groups are misspecified. Cross-validation over a range 

of weights for the three penalty terms allows a data-driven way of incorporating information 

about coefficient structure into a prediction model.

In this paper we have presented an ADMM optimization algorithm to fit fused sparse group 

lasso. A simulation study featuring a range of coefficient structures demonstrated instances 

where a combination of the three penalty terms together outperforms any smaller subset, and 

showed that cross-validation is a reliable way to select optimal tuning parameter weights. On 

real fMRI data, we found that incorporating adaptive weights derived from initial ridge 

regression coefficient estimates greatly improved performance over non-adaptive fused 

sparse group lasso as well as ridge and elastic net penalties. The adaptive fused sparse group 

lasso produced the best test set prediction, and the addition of fusion and group penalty 

terms resulted in less dispersed, more clustered coefficient maps. Fused sparse group lasso, a 

generalization of lasso, group lasso, and fused lasso, has potential application not only to 

prediction problems in neuroimaging, but also to other contexts where coefficients are 

expected to be both smooth and group-structured.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Simulation study group structures (top row) and true coefficients. This figure appears in 

color in the electronic version of the manuscript.
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Figure 2. 
Simulation study results for true coefficients 5B. Values of γ ∈ {0, 0.2, 0.5, 0.8, 1} increase 

from left to right on the x-axis, corresponding to complete fusion penalty on the left (γ = 0) 

and complete sparsity penalties on the right (γ = 1). Intervals of increasing α ∈ {0, 0.2, 0.5, 

0.8, 1} values correspond to complete group penalty on the left (α = 0) and complete l1 lasso 

penalty on the right (α = 1). Vertical lines indicate (α, γ) combination yielding most 

frequent lowest error over 100 simulations. This figure appears in color in the electronic 

version of the manuscript. MSE: mean squared error.
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Figure 3. 
(A) The thalamic seed region consisted of 23 3 × 3 × 3 mm3 voxels. (B) Connectivity z-

maps of 5476 voxels for each participant served as predictors for fused sparse group lasso 

regression. (C) Voxels were partitioned into 50 groups using agglomerative hierarchical 

clustering on the training set resting state fMRI voxel time series. This figure appears in 

color in the electronic version of the manuscript.
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Figure 4. 
(A) Five-fold cross-validation was carried out over a range of λ values for several sets of α 
and γ values. (B) Correlation of predicted and actual adjusted SRS scores for selected α and 

γ values. Points are distinguished by autism spectrum disorder (ASD, red circle) and 

typically developing (TD, blue cross) diagnosis groups. (C) Estimated coefficients at the 

optimal λ for selected α and γ values. Higher coefficient values contribute to higher 

predicted Social Responsiveness Scale (SRS) scores, which indicate greater autistic social 

impairment. MNI: Montreal Neurological Institute coordinates. This figure appears in color 

in the electronic version of the manuscript.
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Table 1

Examples of unstructured and structured penalty terms

Unstructured penalties J (β)

Lasso (Tibshirani, 1996) ∥β∥1

Ridge (Hoerl and Kennard, 1970) ‖β‖2
2

Elastic net (Zou and Hastie, 2005) α‖β‖1 + (1 − α)‖β‖2
2; α ∈ [0, 1]

Structured penalties J (β)

Isotropic total variation (Rudin et al., 1992) ∥Dβ∥2,1; matrix D encodes spatial structure

Fused lasso* (Tibshirani et al., 2005) α∥β∥1 + (1 – α)∥Dβ∥1; α ∈ [0, 1]

Graph net** (Grosenick et al., 2013) α‖β‖1 + (1 − α)‖Dβ‖2
2; α ∈ [0, 1]

Group lasso (Yuan and Lin, 2006) ∑
g ∈ 𝒢 p

g
‖β

g
‖2; groups 𝒢 form a partition of β

Sparse group lasso (Simon et al., 2013) α‖β‖1 + (1 − α)∑
g ∈ 𝒢 p

g
‖β

g
‖2; α ∈ [0, 1]

*
Also known as anisotropic total variation–l1

**
Also known as sparse graph Laplacian
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Table 2

Comparison of estimators applied to ABIDE dataset

Training set (n = 175) Test set (n = 44)

Method α γ Estimator * Optimal λ CVMSE MSE r p MSE r p

Glmnet
0.0 Ridge 2627 1646.7 954.3 0.879 < 0.001 1325.8 0.285 0.060

0.01 Elastic Net 289 1661.2 935.7 0.883 < 0.001 1305.4 0.320 0.034

FSGL

1.0 1.0 Lasso 1848 1674.2 1689.1 0.159 0.036 1426.7 0.035 0.821

0.2 1.0 Sparse Group Lasso 521 1674.4 1572.0 0.383 < 0.001 1427.8 0.069 0.654

0.2 0.8
Fused Sparse Group 
Lasso

604 1673.9 1633.2 0.254 < 0.001 1434.3 0.038 0.805

0.0 0.8 Fused Group Lasso 604 1674.3 1641.2 0.232 0.002 1435.4 0.032 0.838

Adaptive FSGL

1.0 1.0 Adaptive Lasso 814 1368.1 120.1 0.986 < 0.001 1193.1 0.406 0.006

0.2 1.0
Adaptive Sparse Group 
Lasso

4041 1373.2 129.1 0.985 < 0.001 1203.1 0.397 0.008

0.2 0.8
Adaptive Fused Sparse 
Group Lasso

1097 1338.9 168.6 0.977 < 0.001 1165.2 0.437 0.003

0.0 0.8
Adaptive Fused Group 
Lasso

1424 1477.2 144.2 0.981 < 0.001 1211.6 0.394 0.008

*
Note: λ for glmnet R package is scaled by factor n−1.

Mean total sum of squares for training set = 1697.5; Mean total sum of squares for test set = 1428.0. ABIDE: Autism Brain Imaging Data 

Exchange; FSGL: fused sparse group lasso; CVMSE: cross-validation mean squared error; MSE: mean squared error; r: Pearson correlation.
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