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ABSTRACT

New DNA sequencing technologies have achieved
breakthroughs in throughput, at the expense of
higher error rates. The primary way of interpreting
biological sequences is via alignment, but standard
alignment methods assume the sequences are
accurate. Here, we describe how to incorporate
the per-base error probabilities reported by seq-
uencers into alignment. Unlike existing tools for
DNA read mapping, our method models both
sequencer errors and real sequence differences.
This approach consistently improves mapping
accuracy, even when the rate of real sequence dif-
ference is only 0.2%. Furthermore, when mapping
Drosophila melanogaster reads to the Drosophila
simulans genome, it increased the amount of
correctly mapped reads from 49 to 66%. This
approach enables more effective use of DNA reads
from organisms that lack reference genomes, are
extinct or are highly polymorphic.

INTRODUCTION

The major approach to interpreting biological sequences is
to align them to other sequences. As a result, alignment
algorithms such as BLAST are important and ubiquitous.
Standard alignment algorithms assume that the sequences
are accurate, and ignore per-base quality data that is
typically available from DNA sequencing instruments.
Recent sequencing technologies, however, have achieved
breakthroughs in throughput, at the expense of higher
error rates. It has thus become more important to
consider the quality data during the initial analysis step,
which is nearly always some form of alignment.

Surprisingly, we can find no previous method that
systematically incorporates quality data into sequence
alignment. Several methods for mapping DNA reads to

genomes do use quality data, but they lack scoring
matrices that model differences other than sequencing
errors [e.g. (1,2)]. Instead, a limited form of alignment is
employed, which assumes that the sequences are (almost)
identical apart from sequencing errors. A publication by
Malde describes alignment using quality data, but this also
replaces the scoring matrix with quality-derived scores
instead of combining the two (3). The work of Na et al.
(4) does combine a standard score matrix with quality
scores, but has some serious drawbacks that we describe
later in this article.
In this article, we provide an effective solution for the

task of xeno-mapping, the mapping of reads onto a refer-
ence genome which may differ from the genomic source
of the reads. Xeno-mapping is important for several
reasons. First, the vast majority of species currently lack
reference genome sequences. If we obtained DNA reads
from (say) zebra, the best way to interpret them would
probably involve mapping them to the horse genome.
It might take a decade before all 5000 mammal species
are sequenced, and longer if ever for the millions of
insect species, only a fraction of which have even been
described. Second, sequencing extinct organisms is
fascinating, but assembling genomes from their meager
DNA is at best hard and at worst impossible, and so
modern genomes are typically used as ‘scaffolds’, e.g.
mammoth reads versus the elephant genome (5). Finally,
many wild organisms are highly polymorphic–extreme
examples being Ciona intestinalis (1.2%) and Ciona
savignyi (4.6%) (6) – so that real sequence differences
are frequent even when aligning sequences from the
same organism.

Traditional sequence alignment

Traditional sequence alignment methods (e.g. BLAST)
allow for sequence differences by using a scoring
scheme: matching bases in an alignment get positive
scores, and mismatches and gaps receive negative scores.
More generally, they use a scoring matrix S, where Sxy

(x,y2fa,c,g,t}) specifies the score for aligning the
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nucleotides x and y. The scoring matrix can be interpreted
as a log likelihood ratio:

Sxy ¼ T� lnðRxyÞ, ð1Þ

where T is an arbitrary scaling factor, and Rxy is the like-
lihood ratio:

Rxy ¼
PðxyjAÞ

PðxÞPðyÞ
: ð2Þ

Here, P(xy|A) is the probability of observing x aligned to
y in a probabilistic model of aligned sequences, and P(x)
and P(y) are the probabilities of observing x and y
individually.
The probabilities P(xy|A) are called the ‘target

frequencies’ of the scoring matrix (7). A scoring matrix
is optimal for distinguishing related sequences from
chance similarities when its target frequencies equal
those in an accurate alignment of related sequences
(7,8). For example, to construct an optimal scoring
matrix for 90% identical sequences of uniform composi-
tion, we would set the match and mismatch frequencies to:

PðxyjAÞ

¼
0:9=4 for the four match frequencies ðx ¼ yÞ

0:1=12 for the twelve mismatch frequencies ðx 6¼ yÞ:

�

ð3Þ

The 12 kinds of mutations are, however, not equally
frequent: usually, the four types of transitions (A , G
and T , C) occur more often than the eight types of
transversions. If 60% of substitutions are transitions, we
would use these mismatch frequencies:

PðxyjAÞ ¼
0:1� 0:6=4 for transitions
0:1� 0:4=8 for transversions.

�
ð4Þ

In short, we know how to construct optimal scoring
matrices for sequences with a known degree of divergence.

Sequencer error probabilities

DNA sequencing instruments can report a probability
that each sequenced base is erroneous. These probabilities
are usually reported in a log-transformed form, called
‘phred score’ or ‘quality score’:

quality score ¼ �10 log10ð"Þ: ð5Þ

Here, e is the error probability. So, for example, an
error probability of 0.01 is reported as a quality score of
20. The following variant is sometimes used instead:

quality score ¼ �10 log10ð"=ð1� "ÞÞ: ð6Þ

Sometimes, four quality scores are reported per base,
which reflect the probability that the base is a, c, g or t.
There are a few common file formats for sequence
qualities, including FASTQ (one quality score per base)
and PRB (four quality scores per base).

Median and mean error probabilities for two sets of
Illumina reads are shown in Figure 1. They exhibit a
typical pattern where error rates increase toward the end
of the read. In the first data set, the median error proba-
bility is <1% for all but the last six bases. The mean error
rates tend to be much higher than the medians, due to the
skewed distributions (i.e. most of the error probabilities
are low, but a few are much higher). In the second data
set, there was clearly a problem with the 32nd base, since
the average reported error probability is exactly 1: this
phenomenon is not unusual (1). These two data sets are
not especially atypical (Supplementary Figure S1).

In this study, we describe a way to merge sequence
quality data into the traditional sequence alignment
framework. This means that we model both sequencer
errors and real sequence differences at the same time.
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Figure 1. Estimated error rates for two DNA short-read data sets. (A) Error rates for a set of 36-bp reads from the Solexa 1G Genome Analyzer
(the first 100 000 reads of SRR001981). (B) Error rates for a set of 51-bp reads from the Illumina Genome Analyzer II (the first 100 000 reads of
SRR016157). For both panels, the error rates were obtained from FASTQ files in the NCBI Short Read Archive.
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We apply the method to simulated DNA reads (where we
know the correct mapping locations), and show that it
improves mapping accuracy compared with modeling
either only sequencer errors or only real sequence differ-
ences. Finally, we show a dramatic improvement in
mapping of real Drosophila melanogaster reads to the
Drosophila simulans genome (which simulates mapping
mammoth reads to the elephant genome or the like).

MATERIALS AND METHODS

In this section, we show how quality scores can be used for
aligning sequences and mapping DNA reads to genomes.
While these techniques are described in sufficient detail to
be incorporated into any alignment software, we also give
a brief summary of a publicly available system called
LAST that includes these features.

Incorporating sequence quality data into alignment

We wish to extend the standard scoring matrix derivation
to take sequencing error probabilities into account. In our
scenario, one sequence (the read) has per-base error
probabilities, and the other sequence (the genome) does
not. We assume that the sequencing instrument estimates
P(y|d), the probability that a base is y (where y2fa,c,g,t})
based on some observed data d (e.g. image intensities).
Following the likelihood-ratio principle, we define a gen-
eralization of standard substitution scores:

R0xd ¼
PðxdjAÞ

PðxÞPðdÞ
ð7Þ

This formula can be rearranged by observing,

Pðd Þ ¼
X

y2fa,c,g,tg

PðyÞPðdjyÞ,

PðxdjAÞ ¼
X

y2fa,c,g,tg

PðxyjAÞPðdjyÞ
ð8Þ

and by Bayes formula,

PðdjyÞ ¼
Pðyjd ÞPðdÞ

PðyÞ
ð9Þ

to obtain:

R0xd ¼
PðxdjAÞ

PðxÞPðdÞ
¼

P
y
PðxyjAÞPðdjyÞ

PðxÞ
P
y
PðyÞPðdjyÞ

¼

P
y
PðxyjAÞPðyjdÞPðd Þ=PðyÞ

PðxÞ
P
y
PðyÞPðyjd ÞPðdÞ=PðyÞ

ð10Þ

Simplifying, we obtain:

R0xd ¼

P
y
PðxyjAÞPðyjdÞ=PðyÞ

PðxÞ
P
y
PðyjdÞ

¼
X
y

PðxyjAÞPðyjdÞ

PðxÞPðyÞ
¼
X
y

RxyPðyjdÞ
� � ð11Þ

Finally, we define scores by the usual log transformation:

S0xd ¼ T� ln R0xd
� �

ð12Þ

This scoring scheme can be implemented efficiently by
converting each length n read to a 4 � n position-specific
scoring matrix, which holds the scores for aligning a, c, g
and t to each position in the read. Details of how our
software performs these calculations are provided in the
Supplementary Data.

Comparison with expected score method

Na et al. (4) proposed a method for combining quality
scores with traditional scoring matrices. Although pre-
sented in a more general form, which allows for
mismatch and indel sequencing errors in both sequences,
overall their method is similar to ours. They consider
aligning two sequences, each one represented as a 4 � n
matrix, holding the probability of each base at each
position. Unfortunately, their method suffers from two
problems. First, the computation is not well justified the-
oretically, and second, the method breaks down when very
similar sequences are aligned.
In their notation, the score of an alignment column is

defined as:

�Pm þ �Pn þ �Pg ð13Þ

where g, d and m represent the traditional score matrix
score for matches, mismatches and gaps, respectively,
and Pm, Pn and Pg represent the probability, given the
sequencer data, of each of those three cases. We submit
that the following equation, which corresponds to our R0xd
[equation (11)], would be more justified:

e�=TPm þ e�=TPn þ e�=TPg ð14Þ

This follows from that fact that (i) Pm, Pn and Pg are
the probabilities of disjoint events (indeed Pm + Pn +
Pg�1), (ii) as pointed out in equation (1), eg/T, ed/T

and em/T are proportional to the probabilities of
matches, mismatches and gaps in the ‘real’ sequences
and (iii) the reasonable assumption that sequencer error
is independent of real sequence differences.
This is not just a theoretical point, but makes a signif-

icant difference in practice. Consider the case of aligning
two sequences expected to be identical except for
sequencing error. In this case, the appropriate value for
d and m would be T� ln(0) =�1, and thus by equation
(13), any column involving a non-zero sequencer error
probability would be assigned the same score of �1.
On the other hand, equation (14), or equivalently R0xd,
would assign a score proportional to Pm, which is the
probability assigned by the sequencer that the two bases
match each other.

Mapping probabilities

In traditional sequence alignment, we simply report align-
ments with significantly high scores, and it does not matter
if one query sequence has more than one high-scoring
alignment. For read mapping, on the other hand, we
suppose that each read comes from just one place in the
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genome. Since genomes contain many duplications and
simple repeats, though, it is common for one read to
have multiple high-scoring alignments.
This problem can be addressed by calculating mapping

probabilities (1,2). Suppose that one read has high-scoring
alignments at several genome locations. The alignment
score at location i is denoted as Si. The mapping proba-
bility is:

pðread maps to iÞ ¼ eSi=T
�X

j

eSj=T
� �

: ð15Þ

This formula can be derived from probabilistic align-
ment models (Supplementary Data). Thus, if a read has
a much higher alignment score at one location than any
other, we can be confident that it comes from there. If it
has nearly equal alignment scores at many locations, we
cannot confidently map it.
This calculation assumes that the read certainly comes

from one of the locations found by the alignment proce-
dure. This is a very dubious assumption in practice, for
several reasons:

(i) The read might not come from the genome at all
(i.e. it might be a contaminant).

(ii) The read might come from part of the genome that
is not present in the reference sequence. (Many ref-
erence sequences are incomplete.)

(iii) The alignment algorithm might miss some
high-scoring alignments. Because of the large size
of the data sets, heuristic algorithms are normally
used which may miss some alignments.

Therefore, these mapping probabilities should not be
trusted absolutely. Nevertheless, they prove useful.

Implementation

We expect that many existing read-mapping tools could be
modified to incorporate the scoring scheme defined above.
To demonstrate our method, we have incorporated it into
our own large-scale alignment tool, LAST.
Since we intend to describe LAST in detail in a separate

publication, we only give a minimal description here.
LAST follows the same three steps as BLAST (9). It finds
seeds (exact matches), extends gapless alignments from the
seeds and finally extends gapped alignments. We incorpo-
rated the new scoring scheme into the last two phases,
since the seed-finding phase does not use scores at all.
The main innovation of LAST is its use of adaptive

seeds whose length adapts to the repetitiveness of the
sequence. This makes it much faster for genomic data.
Specifically, it finds exact matches of any length that
occur no more than (say) 10 times in the genome. These
can be found efficiently using enhanced suffix arrays (10).
LAST can also use spaced seeds (11). Finally, LAST can
use seeds that are both spaced and adaptive: in fact, this is
the default algorithm in this study (Supplementary Data).
LAST is freely available at: http://last.cbrc.jp/.

Alignment parameter settings

In this study, the gapless and gapped score thresholds of
LAST (-d and -e) were set to 120, and the gapless

max-drop parameter (-y) was set to 99 999 (effectively
infinite). Gapped alignment was used only when aligning
reads to the D. simulans genome. When mapping 51-bp
reads, a score threshold of 150 was used instead of 120.
When modeling sequencer errors only, the mismatch cost
(-q) was set to 1 million (effectively infinite). To clarify:
despite the infinite mismatch cost, mismatches were
tolerated due to the modeling of sequencer errors.

Finding all alignments with up to two mismatches

For part of our analysis, we wished to avoid using
adaptive seeds, and instead guarantee to find all align-
ments with up to two mismatches (and score �120). We
did this with LAST using spaced seeds. We first found all
matches of length 26 between each read and the genome,
requiring only 18 out of the 26 bases to match. The posi-
tions required to match are indicated by ‘1’s in the follow-
ing pattern: 11111011000111110110001111. Any
length 36 read with up to two mismatches (and no gaps)
is guaranteed to have a match using this pattern.
Moreover, this pattern is optimal for this problem, in
that no pattern with >18 ‘1’s provides this guarantee.
The LAST documentation includes a table of optimal
spaced seeds for various read lengths and mismatch
limits, obtained using algorithms from others (12,13).
Finally, as usual, we extended alignments from every
seed match, and reported those with alignment score
�120.

Mapping DNA reads to Drosophila genomes

We obtained the genome sequences of D. melanogaster
(dm3 excluding chrUextra) and D. simulans (droSim1)
from the UCSC genome database. We only tested reads
that could be confidently mapped to the D. melanogaster
genome (53 748 reads in default mapping mode; 51 898
reads in two-mismatch guarantee mode). We considered
a read confidently mapped if it has alignment score �150
and mapping probability �0.99. (Alignments with score
�120 were used to calculate the mapping probabilities.)
To cross-reference the mappings, we used the genome
alignment file dm3.droSim1.all.chain from UCSC (14).

RESULTS

Our results show the effectiveness of combining quality
scores with sequence alignment by applying LAST within
two experiment settings: the first with synthetic data and
the second with real data based on cross-species mapping.

Test with simulated DNA reads

In our first experiment, we employ simulated reads since
we are able to know exactly where they should map to. We
began by sampling 100 000 random 36-bp fragments from
human chromosome 1 (hg19, both strands). To simulate
real sequence differences, we made random substitutions
at a low level (0.2, 0.5, 2 or 5%). These substitutions con-
sisted of 60% transitions and 40% transversions: a realis-
tic proportion (6). To keep this initial test simple, we did
not introduce any insertions or deletions. Finally,
we assigned 100 000 real quality score strings (those
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summarized in Figure 1A) to the simulated reads, and
randomly mutated each base according to the correspond-
ing error probability.

We then aligned the reads to chromosome 1, and
checked whether or not they mapped back to their
original locations. The ‘real’ sequence differences were
modeled by using suitable alignment score parameters
for each level of divergence (Table 1). We obtained align-
ments with score �120 (equivalent to 20 error-free
matching bases), then calculated mapping probabilities,
and kept alignments with mapping probability �0.99.
Figure 2 shows the relationship between the number of
correctly and incorrectly mapped reads, as the score
threshold is varied between 216 (the maximum possible)
and 120. As the score threshold approaches 120, falsely
mapped reads increase dramatically: this is because the
mapping probabilities become less reliable since they fail
to account for alignments with scores �119. In all cases,
however, mapping accuracy improves (i.e. we obtain more
correctly mapped reads for a given number of incorrectly
mapped ones) when we model both sequencer errors and
‘real’ substitutions. If we model only sequencer errors,

there is the potential to do worse than traditional align-
ment, where only substitutions are modeled.
To check whether these conclusions hold for a different

read length and quality score distribution, we repeated the
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Figure 2. Mapping accuracy for 100 000 simulated 36-bp reads. The reads differ from the genome by a certain rate of ‘real’ substitutions (0.2, 0.5,
1 or 2%) plus sequencer errors. Each line shows the relationship between the number of correctly and incorrectly mapped reads as the alignment
score cutoff is varied. Circles indicate a score cutoff of 150. Dotted lines show the accuracy when we model the substitutions but not the sequencer
errors. Dashed lines show the accuracy when we model the sequencer errors but not the substitutions. Solid lines show the accuracy when we
model both.

Table 1. Alignment score parameters for DNA with various substitu-

tion rates

Substitution
Rate (%)

Match
score

Mismatch
costa

Ta Transition
costb

Transversion Tb

costb

0 6 1 4.32809 1 1 4.32809
0.2 6 26 4.33391 23 28 4.33441
0.5 6 22 4.34295 19 24 4.34425
1 6 19 4.35838 16 21 4.36106
2 6 16 4.39082 13 18 4.39646
5 6 12 4.50212 10 14 4.49125
10 6 9 4.73387 7 12 4.65864
15 6 8 4.88281 6c 9c 4.92305c

aApplies when there is no transition/transversion bias (i.e. one in three
substitutions are transitions).
bFor the case where 60% of substitutions are transitions.
cFor the case where 45% of substitutions are transitions.
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test using simulated reads of size 51 (Figure 3). The main
conclusion still applies: mapping accuracy is improved by
modeling both sequencer errors and substitutions. This
time, however, traditional alignment performs worse
relative to modeling sequencer errors only. The reason,
presumably, is that the error probabilities used here are
higher on average than those used for the 36-bp reads
(Figure 1): so it becomes more important to model
sequencing errors.
It might be argued that, since we used a particular

mapping algorithm (with adaptive seeds), the conclusions
may not apply to other mapping techniques. To address
this concern, we repeated the experiment using LAST in a
different mode, where it guarantees to find all alignments
with up to two mismatches (and score �120). (Many
alignments with more than two mismatches are also
returned in this mode.) This resembles several popular
mapping methods. The main conclusions are unchanged:
mapping accuracy is improved by modeling both
sequencer errors and substitutions, and in some cases
modeling only sequencer errors is less accurate than tra-
ditional alignment (Figure 4).

The mapping algorithm does make a difference, though
(Figures 2 and 4). The default adaptive seed method gives
only a few hundred false mappings for 60 000–70 000
correctly mapped reads, but the two-mismatch guarantee
method gives yet fewer false mappings – only a handful –
for 50 000–60 000 correctly mapped reads. On the other
hand, it ultimately gets fewer correctly mapped reads. In
our simulation, all of the reads actually come from the
reference sequence, and the two-mismatch guarantee
method will never miss the correct alignment if the read
has at most two differences: this is why there are so few
false mappings. Real data is less clean than this, and we
would expect more false mappings (see below).

In a further test, we mapped the simulated reads using
a simple match/mismatch scoring matrix while also
modeling the sequencer errors. This means that we accu-
rately modeled the level of divergence, but ignored
the difference between transitions and transversions.
This approach works almost, but not quite as well as
when we model transitions and transversions
(Supplementary Figure S2). This is worth knowing,
because match/mismatch scoring schemes are simpler to
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Figure 3. Mapping accuracy for 100 000 simulated 51-bp reads. See legend of Figure 2. Circles indicate a score cutoff of 180.
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implement and slightly faster than general score matrices
(Supplementary Data).

Test by xeno-mapping real DNA reads

We wished to test our approach with real (not simulated)
reads, but we need a case where we can at least estimate
whether the mappings are correct. To accomplish this,
we mapped reads of D. melanogaster DNA (those in
Figure 1A) to the genome of D. simulans, a closely
related organism. This cross-species mapping exemplifies
xeno-mapping and mapping to highly polymorphic
genomes.

To estimate correctness, we first mapped the reads to
the D. melanogaster genome, which can presumably
be done much more accurately, and then used the
D. melanogaster / D. simulans genome alignment from
the UCSC database to cross-reference the mappings.
The genome alignment no doubt has errors, but it
should be much more accurate than short-read mapping
because it can leverage the context provided by long
sequences.

In order to construct a suitable alignment scoring
scheme, we examined the divergence between
D. melanogaster and D. simulans. In the UCSC ‘net’ align-
ments, 15% of aligned bases are mismatches, and 45% of
these are transitions. There is about one gap per 101
aligned bases, and the average gap size is 6.67. These sta-
tistics suffice to construct a scoring scheme (Table 1,
Supplementary Data).
In this test, mapping accuracy was greatly improved by

modeling real sequence differences in addition to
sequencing errors (Figure 4). At a score cutoff of 150,
we get 35 667 correctly mapped reads (66% of the 53 748
that could be mapped confidently to D. melanogaster) and
197 falsely mapped reads. If we model sequencing errors
only, we get 26 569 correctly mapped reads (49%) and 194
falsely mapped reads.
If we model real sequence differences without gaps, the

accuracy is only slightly lower than when we do allow gaps
(Figure 5). So it is not important to model gaps for this
data set. Gaps are likely to be more important for longer
reads, since a longer read is more likely to cross a gap, and
it is also more likely that the alignment can be extended
across the gap.
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Figure 4. Mapping accuracy for 100 000 simulated 36-bp reads using a mapping procedure that guarantees to find all matches with up to two
substitutions. This is identical to Figure 2, except that a different mapping algorithm was used here.
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For completeness, we also tried mapping the reads to
either or both Drosophila genomes in two-mismatch guar-
antee mode (Supplementary Figure S3). All combinations
support the main conclusion that mapping accuracy
increases significantly when we model real sequence differ-
ences in addition to sequencing errors. When we map to
D. simulans in two-mismatch guarantee mode, the slight
benefit of modeling gaps disappears, perhaps because this
mode requires finding large (26 bp) gapless matches (see
‘Materials and Methods’ section). As expected,
two-mismatch guarantee mode does not reduce false
mappings as dramatically as it did for simulated data.
Finally, two-mismatch guarantee mode gives fewer
correctly mapped reads (as it did for simulated reads),
perhaps because it requires seeds with 18 matches (see
‘Materials and Methods’ section), making it less sensitive
in general than adaptive seeds.

DISCUSSION

We have described a general approach for incorporating
sequence quality data into alignment. The method is
straightforward, and it can be implemented with little
additional computational cost over standard alignment
(Supplementary Table S1). This approach noticeably
improves DNA read mapping for substitution
rates �0.2%, corresponding to a moderate rate of poly-
morphism. It also greatly increased the amount of
correctly mapped reads when mapping D. melanogaster

DNA to the D. simulans genome, and is likely to be
beneficial for xeno-mapping in general. As explained
above, xeno-mapping is especially crucial for extinct
genomes.

On the other hand, the human polymorphism rate is
only �0.1%, and many agricultural and laboratory organ-
isms are even less polymorphic. So it is less important to
allow for real sequence differences in these cases, although
there is no harm in doing so. If we are specifically looking
for polymorphisms, however, it seems wise to model them
during read mapping even for these organisms. Another
consideration is that sequence quality data is not necessar-
ily accurate: high quality scores can be over-optimistic
(15). Although explicit recalibration of quality scores is
sometimes possible (16) our method can also roughly com-
pensate for over-optimistic quality scores by assuming a
real substitution rate of, say, 1%.

To make best use of our mapping approach we need
good estimates of the real substitution and indel rates, as
we calculated for D. simulans versus D. melanogaster. Such
estimates can be obtained by first aligning the sequences
with naive parameters and then measuring the substitution
and indel rates in these alignments (and perhaps iterating).

One possibly useful generalization would be to incorpo-
rate quality data from both sequences being aligned, not
just one. This could be relevant for mapping reads to
low-quality draft genomes, for example. It is straightfor-
ward to generalize equations (7–12) to this case, but the
resulting calculations seem to require much more time
and/or memory. Some previous methods do consider
quality scores in both sequences, but they do not use
general score matrices (1,3,4).

It is worth remarking that we can map DNA reads effi-
ciently using a general purpose, BLAST-like aligner
(Supplementary Table S1). While the current trend is spe-
cialized algorithms for mapping short sequences allowing
few differences, we have shown that this is not essential.

There is one very different approach to using sequence
quality data that we should mention. If we obtain DNA
reads from a small number of abundant sequences, then
sequencing errors will manifest as low-frequency reads
that are very similar to high-frequency reads. So we can
infer the true frequency of each read, and correct
sequencing errors, by comparing the reads to each other
(16,17). This approach seems most relevant for certain
transcriptome and metagenome data sets, where a few
sequences are highly abundant. It is not straightforward
to combine this approach with use of quality data during
read mapping, because we must avoid double counting the
quality data.

A major limitation of modern sequencing systems
is their short read lengths. One cause of this is that
the error rate increases along the read until it becomes
too high (Figure 1). By incorporating quality data into
alignment, we can more sensibly use lower quality
sequences than standard alignment techniques can. This
should allow read lengths to increase ‘for
free’ without improving the sequencing hardware,
because the alignment software can profitably use lower
quality bases.

0 200 400 600 800 1000 1200

10
00

0
20

00
0

30
00

0
40

00
0

Incorrectly mapped reads

C
or

re
ct

ly
 m

ap
pe

d 
re

ad
s

qualities + matrix + gaps
qualities + matrix
qualities

Figure 5. Estimated mapping accuracy for 100 000 real 36-bp reads
from D. melanogaster, mapped to the D. simulans genome. Circles
indicate a score cutoff of 150. The dotted line shows the mapping
accuracy when we model the sequencer errors but not the real differ-
ences. The solid line shows the accuracy when we model both. The
dashed red line shows the accuracy when we model both but forbid
insertions and deletions. Correctness was estimated by mapping the
reads to the D. melanogaster genome (modeling sequencer errors
only), and using the UCSC D. melanogaster / D. simulans pairwise
genome alignment to cross-reference the mappings.
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SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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