
International Journal of Cyber Society and Education
Pages 31-38, Vol. 8, No.1, June 2015

doi: 10.7903/ijcse.1238

INCORPORATING SOFTWARE MAINTENANCE IN A SENIOR

CAPSTONE PROJECT

Ira Weissberger

University of Virginia’s College at Wise

1 College Avenue, Wise, VA 24293, USA

imw3h@uvawise.edu

Abrar Qureshi

University of Virginia’s College at Wise

1 College Avenue, Wise, VA 24293, USA

aaq3e@mcs.uvawise.edu

 Assad Chowhan

 University of Virginia’s College at Wise

1 College Avenue, Wise, VA 24293, USA

aac4c@uvawise.edu

Ethan Collins

University of Virginia’s College at Wise

1 College Avenue, Wise, VA 24293, USA

ecc9e@uvawise.edu

Dakota Gallimore

University of Virginia’s College at Wise

1 College Avenue, Wise, VA 24293, USA

dmg6t@uvawise.edu

 International Journal of Cyber Society and Education 32

ABSTRACT

Software engineering capstone projects give students experience in developing a

software product throughout the software life cycle. Projects such as these give students

practical experience in applying concepts they have learned in their software engineering

and computer science classes. This paper presents a software engineering capstone

project conducted by students at the University of Virginia's College at Wise. The work of

the students is documented in this paper. Unlike previous capstone projects conducted at

this university, however, this one uses methods commonly found in agile development

and is an adaptive maintenance development effort.

Keyword: Capstone Project, Software Engineering, Agile Development, Mobile

Application, Software Maintenance

INTRODUCTION

Software engineering continues to be a growing field. From 2012 to 2022, the

employment of software developers is expected to grow at least 22 percent, which is

much higher than the average for all occupations (Occupational Outlook Handbook,

2014-15 Edition, Software Developers, 2014). Even among careers in Science,

Technology, Engineering, and Math (STEM), those in computers are expected to

outnumber those of other fields. A report from the Georgetown University Center on

Education and the Workforce forecasts that 51 percent of STEM occupations will be

computer-related by 2018 (Carnevale, Smith, & Melton, 2011). It is useful for students

who are going to become software engineers to have some practical experience before

graduation.

Software engineering capstone projects introduce students to develop a software

product over the course of two semesters. Students typically design a new piece of

software and are responsible for everything from developing requirements to verifying

that the software meets those requirements. Vanhanen, Lehtinen, and Lassenius (2012)

have shown that capstone projects give students valuable experience by providing work

in which they can acquire necessary software engineering skills. Broman, Sandahl, and

Abu Baker (2012) stated that these skills can then be applied to jobs in industry. Other

capstone courses incorporate process-oriented aspects and practices of software

engineering (Fagerholm & Vihavainen, 2013). The capstone project can also be adapted

to fit a maintenance project, where the students port an existing application to a different

International Journal of Cyber Society and Education 33

platform. These types of maintenance projects can also start by gathering requirements

and following a normal software process.

This paper presents a case study done on the work performed by a team of students

during the Fall 2013 and Spring 2014 semesters for their software engineering capstone

project. This capstone project was conducted at the University of Virginia's College at

Wise. During the Fall 2012 semester, a different group of students developed a web-based

Fleet Management System (FMS) so that people could reserve a car to rent from the

college. Before the students implemented this system, the college had been using a

paper-based system to take reservations. Although previous capstone projects have

developed products from initial concepts, this capstone project was an adaptive

maintenance project. The students took an existing web application and ported it to the

Android platform, so that people with mobile devices could use the same functionality.

The paper focuses on the development methods the students used to complete part of the

project (through the end of code construction and beginning of system testing) and could

be used as a template for future software engineering capstone projects.

 SOFTWARE DEVELOPMENT

Requirements Engineering

Chen, Hong, and Chen (2014) have shown that encouraging students to work in a

more structured approach during software development leads to better results in the

capstone course. This is similar to the way that this capstone course was conducted. For

requirements development, the team followed the customary process of elicitation,

analysis, specification, and validation. After creating a baseline set of initial requirements,

the team then moved into the requirements management phase where each change request

was considered but not implemented immediately. Techniques such as interviewing,

ethnography, and developing use cases are all good methods to discover requirements for

the software system to be constructed. An important requirements discovery technique for

a replacement or a port of an existing system, however, is to interact with the existing

system to observe how it works and which requirements will need to be retained in the

new system.

The existing FMS was the senior project during the 2012 school year at the college,

and it failed to reach deployment. Therefore, the team was tasked with deploying the

website. Once the website went live, the team could interact with its functionality and

 International Journal of Cyber Society and Education 34

data as a way of eliciting requirements. However, the team also decided to also rely on

other means of requirements elicitation, such as interviewing the client. As is usual with

agile methods, the application is developed in very small increments, with a new version

of software appearing approximately every two to three weeks. The team used this

strategy to implement the requirements which were gathered and then scheduled more

meetings with the client to elicit additional requirements.

During the next phase of requirements development, the team analyzed the

requirements that had been elicited. From the requirements that had been gathered, the

team created an initial set of use cases. During the analysis of the requirements received

from the client, the team found that some of the requirements needed clarification. The

team had to backtrack to the requirements elicitation phase to refine those requirements.

Such backtracking is to be expected in requirements development. Rarely do all four

phases of requirements development (elicitation, analysis, specification, and validation)

occur in a one-time linear sequence. In most cases, several iterations must occur before

arriving at a stable set of requirements which can be used for design and implementation.

After the analysis phase was complete, the students began working on the next phase:

developing the Software Requirements Specification (SRS) document. This document

was the product of the requirements elicitation and analysis phases. The project scope had

then been set, and the requirements were ready for validation by the client.

Code Construction

The use of agile development techniques meant that the team skipped the majority

of software design. Since agile principles state that design is not as important since the

code will be going through rapid changes and refactoring, no detailed design phase was

conducted in this capstone project; this is another distinction between this process and

previous projects. The team aimed to put out a new version of software to the customer

approximately every three weeks as is customary using agile methods. However, as

Mahnic (2012) has shown, traditional plan-driven approaches to software engineering can

be combined with more agile ones. Thus, in addition to creating a formal requirements

specification and performing requirements traceability, the students suspended the release

of a version of software in order to produce design documentation. The advantage of this

kind of reverse engineering has the benefit that if the original developers are no longer

around to support the software, the new developers have an easier time understanding the

software by looking at the design documentation rather than by viewing the source code.

International Journal of Cyber Society and Education 35

The students used this approach to provide design documentation once they had verified

most of the requirements for a specific release of the software.

Code reviews were also done informally after completion of every large piece of

functionality. Code reviews helped the team clean up their code by making it more

efficient and more amenable to future updates or maintenance. The code reviews proved

to be a good way to ensure that the team produced a quality product and had met the

requirements that the client had validated. This was all in line with the agile principles of

the developers continuously improving the code to provide for easier maintenance in the

future.

Software Testing

Most of testing done in the first semester and at the beginning of the second was unit

testing. As of this writing, the team is constructing a system test document which will be

used to verify all the requirements at the end of the second semester. They have been

developing system test plans based off of the use cases they have created in the

requirements engineering phase of development. In addition to the development team

running system tests at the end of the second semester, two independent testing teams

from another class will construct their own system test plans on the basis of the

requirements. These independent test teams will then run their tests against the final

version of the software developed. Independent test teams have several advantages. One

advantage is that an independent test team may think of ways to test the software that the

original development team may have overlooked. Another advantage is that there is no

conflict of interest from independent test teams since they did not develop the software.

Sometimes developers are reluctant to show that their software does not meet the

requirement specification so they may not test it as exhaustively as they should. In the

system test document, the students must create a requirements traceability matrix to make

sure that every requirement has been mapped to at least one test case and therefore, every

requirement should then be verified.

PROJECT MANAGEMENT

Project management is concerned with controlling resources and risk to create a

software product which is on time, under budget, and meets the needs of the customer.

For this capstone class, the students focused on risk management techniques. Initially, the

team was given a template for the Risk Mitigation Plan. With this template, they were

 International Journal of Cyber Society and Education 36

able to see how they were expected to evaluate the risks for the project. Other than

providing the introduction of the Risk Mitigation Plan, the team was expected to identify

each risk, list the terms for monitoring that risk, and elaborate on the mitigation of all

risks that could arise.

First, the team researched risk evaluation techniques. They found some metrics that

fit the project and were proper for the risks identified. The team found a way to score

each risk, and based upon the score, calculated the impact and probability rating of the

risk occurring during the project (Table 1). The impact of each risk was evaluated first,

based upon a scale of values from one to ten (one being negligible impact and ten being

critical impact). Next, the team evaluated the probability of the risk occurring based upon

a scale from one to five (one being very unlikely and five being very likely).

Table 1 Probability and Impact Risk Rating Matrix

 Impact

Probability
Negligible

(1)
Minor

(3)
Moderate

(5)
Serious

(8)
Critical

(10)
Very Likely to Occur (5) 5 15 25 40 50
Probably will occur (4) 4 12 20 32 40

50% chance of occurring (3) 3 9 15 24 30
Unlikely (2) 2 6 10 16 20

Very unlikely to occur (1) 1 3 5 8 10

Finally, based upon the two values assigned to each risk, the team calculated a “Risk

Score” based upon the product of the impact and the probability. With each score for each

risk, they were able to place the results into a table with all the scores highlighted. The

risks, identified along with their probability, impact, and total risk score are shown in

Table 2.

International Journal of Cyber Society and Education 37

Table 2 Identified Risks and Risk Scores

Impact Description Impact Probability
Numeric

score

Working around classmate schedules
Moderate

(5)
Very Likely(5) 25

Working concurrently on other projects Serious(8) Very Likely(5) 40

Time constraint including college breaks and
holidays

Moderate(5) Very Likely(5) 25

Scheduling meetings that work with client
schedules

Moderate(5)
Probably will

occur(4)
20

Learning how to develop for Android Mobile Critical(10) Very Likely(5) 50

Android Fragmentation Critical(10) Very Likely(5) 50

Possibility of potential hosting issues depending

on IT Department decisions and limitations
Serious(8) Could Occur(3) 24

CONCLUSIONS

This paper presents the first half of a senior capstone project on gathering

requirements and developing initial versions of the software using agile principles of

development. The team has successfully applied the principles they have learned in

previous software engineering classes. Similar to previous capstone projects conducted at

this university, having a software process for various phases of development helped the

project to succeed. All future capstone projects would benefit from a standard software

process describing the activities, inputs, and outputs from every phase of the life cycle

regardless of what development technique was used (e.g. waterfall, spiral, agile). The

software process could then be tailored, first to a specific development technique and

then to each capstone project. This is how the software process is used in industry.

Another way to benefit capstone projects is to have students and professors fill out a

lessons learned document at the conclusion of each capstone project. Identifying the

project's successes and failures could improve the capstone process by incorporating

series of corrective and preventive actions. This continuous improvement of the software

process would result in richer learning experiences for students working on future

capstone projects.

REFERENCES

Broman, D., Sandahl, K., & Abu Baker, M. (2012). The company approach to software

engineering project courses. IEEE Transactions on Education, 55(4), 445-452.

 International Journal of Cyber Society and Education 38

http://dx.doi.org/10.1109/TE.2012.2187208.

Carnevale A.P., Smith, N., & Melton, M. (2014, February 12). STEM – Science,

technology, engineering, mathematics. Retrieved from

http://cew.georgetown.edu/STEM/.

Chen, C.Y., Hong, Y.C., & Chen, P.C. (2014). Effects of the meetings-flow approach on

quality teamwork in the training of software capstone projects. IEEE Transactions on

Education, 57(3), 201-208. http://dx.doi.org/10.1109/TE.2014.2305918.

Fagerholm, F., & Vihavainen, A. (2013). Peer Assessment in experiential learning. In C.

Dyer (Ed.), Proceedings of the 2013 IEEE Frontiers in Education Conference (pp.

1723-1729). Oklahoma City, Oklahoma: IEEE Press.

http://dx.doi.org/10.1109/FIE.2013.6685132.

Mahnic, V. (2012). A capstone course on agile software development using

Scrum. IEEE Transactions on Education, 55(1), 99-106.

http://dx.doi.org/10.1109/TE.2011.2142311.

Occupational Outlook Handbook, 2014-15 Edition, Software Developers. (2014,

February 12). Home: Occupational Outlook Handbook: U.S. Bureau of Labor

Statistics. Retrieved from

http://www.bls.gov/ooh/computerand-information-technology/software-developers.ht

m.

Vanhanen, J., Lehtinen, T.O., & Lassenius, C. (2012). Teaching real-world software

engineering through a capstone project course with industrial customers. In W. Weck

and N. Seyff (Eds.), Proceedings of the 2012 First International Workshop on Software

Engineering Education based on Real-World Experiences (EduRex) (pp. 29-32).

Zurich, Switzerland: IEEE Press. http://dx.doi.org/10.1109/EduRex.2012.6225702.

http://dx.doi.org/10.1109/TE.2012.2187208
http://cew.georgetown.edu/STEM/
http://dx.doi.org/10.1109/TE.2014.2305918
http://dx.doi.org/10.1109/FIE.2013.6685132
http://dx.doi.org/10.1109/TE.2011.2142311
http://www.bls.gov/ooh/computerand-information-technology/software-developers.htm
http://www.bls.gov/ooh/computerand-information-technology/software-developers.htm
http://dx.doi.org/10.1109/EduRex.2012.6225702

