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ABSTRACT 
Today’s record matching infrastructure does not allow a flexible 
way to account for synonyms such as “Robert” and “Bob” which 
refer to the same name, and more general forms of string 
transformations such as abbreviations. We expand the problem of 
record matching to take such user-defined string transformations 
as input. These transformations coupled with an underlying 
similarity function are used to define the similarity between two 
strings. We demonstrate the effectiveness of this approach via a 
fuzzy match operation that is used to lookup an input record 
against a table of records, where we have an additional table of 
transformations as input. We demonstrate an improvement in 
record matching quality and efficient retrieval based on our index 
structure that is cognizant of transformations.   

Categories and Subject Descriptors 
H.2.4 [Database Management]: Systems; H.2.8 [Database 
Management]: Database Applications 

General Terms 
Algorithms, Performance, Experimentation 

Keywords 
Data cleaning, Record Matching, Transformation Rules 

1. INTRODUCTION 
Data cleaning is essential in order to use data warehouses for 
accurate data analysis. For example, owing to various errors in 
data, the customer name in a sales record may not match exactly 
with the name of the same customer as registered in the 
warehouse. This motivates the need for record matching. A 
critical component of record matching involves determining 
whether two strings are similar or not: Two records are considered 
matches if their corresponding (string) attributes are similar.  
String similarity is typically measured via a similarity function 
that, given a pair of strings returns a number between 0 and 1 – a 
higher value indicating a greater degree of similarity with the 
value 1 corresponding to equality. This function is used to 
perform a similarity join between two input relations that returns 
pairs of strings whose similarity is above an input threshold.  

As reviewed by Koudas, Sarawagi and Srivastava [1], previously 
proposed similarity functions focus primarily on the syntactic 
difference between strings. While this is indeed an indicator of 

similarity, there are many cases where strings that are 
syntactically far apart can still represent the same real-world 
object. This happens in a variety of settings --- street names (the 
street name SW 154th Ave is also known as Lacosta Dr E in the 
postal area corresponding to zipcode 33027), the first names of 
individuals (Robert can also be referred to as Bob), conversion 
from strings to numbers (second to 2nd) and abbreviations 
(Internal Revenue Service being represented as IRS).  

Equivalences are only one form of string variations. We also 
have variations such as abbreviations that lose information – a 
first initial (such as J) can be expanded in multiple ways (John, 
Jeff, etc.) that are clearly not equivalent. 

In our recently published research paper [2], we show that it is 
impractical to expect a generic similarity function to be cognizant 
of variations such as those of the above examples since they are 
highly domain-dependent. Rather, the matching framework has to 
be customizable to take these variations as explicit input. Our 
research paper presents such a framework [2]. We have 
implemented this framework over Microsoft SQL Server 2005 as 
an operator which is a part of the Extract-Transform-Load 
platform namely SQL Server Integration Services [6]. Our goal is 
to demonstrate this operator. 

The demonstration proposal is organized as follows. We outline 
our framework briefly along with the algorithms needed to make 
the framework computationally efficient in Section 2. We 
describe the architecture of our system in Section 3 and the demo 
scenarios in Section 4. 

2. TRANSFORMATION BASED 
FRAMEWORK 
We briefly outline our framework to capture string 
transformations in this section. More details can be found in our 
research paper [2]. We model strings as a sequence of tokens. A 
given string may be tokenized for instance by splitting it based on 
delimiters such as white spaces. We use the term string to refer to 
a sequence of tokens and the term substring to refer to a 
subsequence of tokens. A transformation rule consists of a triplet 
(context, lhs, rhs) where each of context, lhs, rhs is a string. An 
example transformation is: (33027, “SW 154th Ave”, “Lacosta Dr 
E”). 

We now describe how a string s can be transformed given a set of 
transformation rules T. A rule (context, lhs, rhs) can be applied to 
string s if both context and lhs are substrings of s; the result of 
applying the rule is the string s' obtained by replacing the 
substring matching lhs with rhs.  

We can apply any number of transformations one after another. 
However, a token that is generated as the result of applying a 
transformation cannot participate in any subsequent 
transformation. Copyright is held by the author/owner(s).
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Example: We can use the transformation (“”, “Drive”, “Dr”) to 
generate the string “Lacosta Dr E” from the string “Lacosta 
Drive E”. However, we cannot further convert “Lacosta Dr E” to 
“Lacosta Doctor E” using the transformation (“”, “Dr”, 
“Doctor”). 

The set of strings generated by s is the set of all strings obtained 
by applying zero or more transformations to s. We can assign a 
similarity score to two strings given a similarity function f and a 
set of transformations T. The similarity between strings s1 and s2 
under T is defined to be the maximum similarity as measured by f 
among all pairs s1' and s2' respectively generated by s1 and s2 
using T. 

Example: Consider the strings ``SW 154th Ave Florida 33027'' 
and ``Lacosta Dr E, FL 33027''. Under the transformations (“”, 
“FL”, “Florida”) and (“33027”, “SW 154th Ave”, “Lacosta Dr 
E”), their similarity is 1 since both of the above strings generate 
the same string “Lacosta Dr E, Florida 33027”.  

2.1 Algorithm 
The main computational problem we addressed is the following: 
given a table R, called the reference table, consisting of strings 
and a set of transformation rules T, and a string s and similarity 
threshold α, find all strings in R whose similarity under T with s is 
greater than or equal to α. Our solution to this problem involves 
building an index over R. 

The index structure and index creation algorithm are based on the 
techniques described in [2] where we focused on the join problem. 
In the join problem, we have two tables R and S and a set of 
transformations T. Our goal is to find all pairs of strings in R and 
S whose similarity under T is greater than or equal to α. We now 
summarize our techniques.  

There are previously known algorithms for computing the 
similarity join [1]. A naive adaptation of these algorithms is as 
follows. Consider the expanded relations ExpandR and ExpandS 
obtained by applying the transformations to each string in R and S 
respectively. We can compute the similarity join between 
ExpandR and ExpandS by using any previously known technique 
and then find all distinct (r,s) returned by this join. The main 
problem with this approach is that the expansion factor can be 
prohibitively high.  

In our research paper [2], we focused on a class of signature-based 
algorithms [3] which includes several well-known techniques 
such as locality-sensitive hashing [5]. In order to address the 
expansion problem mentioned above, we considered several 
optimizations to compress the number of signatures. We also 
proposed optimizations for the problem of checking whether two 
strings have a similarity greater than or equal to α under T by 
making connections to the problem of bipartite matching. We 
refer the reader to [2] for these details. 

3. SYSTEM ARCHITECTURE 
Our system implements two operations incorporating 
transformations: (1) creating an index over a given reference table 
for a given set of transformations T, and (2) looking up an input 
string using the index to find all strings in the relation whose 
similarity under T is more than threshold α. The underlying 
similarity function is jaccard similarity [1] where the strings are 
tokenized into sets and the similarity is computed by taking the 
ratio of the (weighted) intersection to their union.  

We have developed our system as a stand-alone Windows dll 
(dynamically linked library). The primary usage of this system is 
in the context of loading data into a data warehouse where the 
reference table is stored in a database and the data being loaded 
has to be cleansed first. Therefore, we package the dll as an 
operator over Microsoft SQL Server 2005 as a part of SQL Server 
Integration Services (SSIS) [6]. Microsoft SQL Server 2005 
Integration Services is a platform designed to make the 
development of scalable Extract, Transform and Load (ETL) 
workflows easier. A typical data flow pipeline involves data 
sources (such as a flat file or a database query) connected to a 
number of operators connected ultimately to data destinations 
(such as the final warehouse database). Data flows from the 
sources through the operators and is then output at the 
destinations. 

The Fuzzy Lookup operator in SSIS that performs approximate 
string matching has been demonstrated previously [4] and we 
incorporate our system into this operator, thus enriching Fuzzy 
Lookup with transformations. This operator can be seamlessly 
combined with numerous other operators to create very powerful 
ETL solutions.  

4. DEMO SCENARIOS 
Our demonstration will highlight the benefits of our 
transformation-based framework as well as the performance of 
our algorithm. 

4.1 Scenario 1: Benefit of Transformations 
We will first demonstrate (1) how we can leverage transformation 
rules to match strings that are syntactically far apart, and (2) how 
a similarity function that is not cognizant of transformations will 
fail to achieve this.  

This will be shown visually through a graphical tool. Figure 1 
shows a screenshot of our tool. As we can see, we have an input 
string “Bill Gates, One Microsoft Way, Bldg 34, Redmond 
Washington 98052” being matched against a reference table of 
strings. Immediately below the input string is a set of matching 
records from the reference relation. As can be seen, we obtain 
several matches to strings that are syntactically far apart, such as 
“BillG, Microsoft Main Campus, Seattle WA 98052”. This is the 
result of using the set of transformations shown on the side. 

A special case arises when we have no explicit transformations.  
In this case, our matching algorithm reduces to jaccard similarity. 
We will illustrate this special case to show why taking 
transformations into account is essential for matching quality. 

We will also demonstrate the wide applicability of our 
transformation rules framework by using real-life data from 
several different databases including addresses, bibliographic 
citations, and product names. 

 

4.2 Scenario 2: Lineage 
Next, we will demonstrate how our tool displays the set of 
transformations that led to two strings being matched. This is 
shown in the bottom two panes in the screenshot in Figure 1. 
Thus, a user of the tool can understand the lineage of the match 
produced. For example, the input record is matched with the 
reference record “Bill Gates, 1 Msft Wy, Redmond Washington 
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98052” via the rules (“”, “Microsoft”, “Msft”), (“”, “Way”, “Wy”) 
and (“”, “One”, “1”). 

4.3 Scenario 3: Interactively Changing 
Transformations 
We will then demonstrate how we can interactively change the set 
of transformations to improve the overall data quality. For 
example, the transformations used in Section 4.2 are not adequate 
to match the input record with the record “BillG, Microsoft Main 
Campus, Seattle WA 98052”. However, adding transformations 
(“98052”, “One Microsoft Way”, “Microsoft Main Campus”) and 
(“”, “BillG”, “Bill Gates”) leads to a match. 

4.4 Scenario 4: Keyword Search 
Finally, we will demonstrate a stand-alone keyword search 
application where we are searching for a string over a reference 
table of strings. This scenario is primarily intended to illustrate the 
computational efficiency of our algorithms. Specifically, the 
application will illustrate the scalability of our algorithms both in 
the input size (indexed reference table) and the number of 
transformation rules. We will use a reference relation consisting 
of a large number of individual names and addresses as shown in 
Figure 1, and transformation rules obtained from USPS. 

We will show the response time of our indexing algorithm for 
various sets of transformations. Two useful reference points are 

the performance of a linear scan and the performance of our 
algorithm when the transformation set is empty.  

By considering larger sets of transformations systematically, we 
will show the improvements in response time yielded by our 
algorithm and also the overheads imposed by transformations.  
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Figure 1: Screenshot of interactive tool 
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