

Incorporating String Transformations in Record Matching
Arvind Arasu Surajit Chaudhuri Kris Ganjam Raghav Kaushik

Microsoft Research
{arvinda, surajitc, krisgan, skaushi}@microsoft.com

ABSTRACT
Today’s record matching infrastructure does not allow a flexible
way to account for synonyms such as “Robert” and “Bob” which
refer to the same name, and more general forms of string
transformations such as abbreviations. We expand the problem of
record matching to take such user-defined string transformations
as input. These transformations coupled with an underlying
similarity function are used to define the similarity between two
strings. We demonstrate the effectiveness of this approach via a
fuzzy match operation that is used to lookup an input record
against a table of records, where we have an additional table of
transformations as input. We demonstrate an improvement in
record matching quality and efficient retrieval based on our index
structure that is cognizant of transformations.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems; H.2.8 [Database
Management]: Database Applications

General Terms
Algorithms, Performance, Experimentation

Keywords
Data cleaning, Record Matching, Transformation Rules

1. INTRODUCTION
Data cleaning is essential in order to use data warehouses for
accurate data analysis. For example, owing to various errors in
data, the customer name in a sales record may not match exactly
with the name of the same customer as registered in the
warehouse. This motivates the need for record matching. A
critical component of record matching involves determining
whether two strings are similar or not: Two records are considered
matches if their corresponding (string) attributes are similar.
String similarity is typically measured via a similarity function
that, given a pair of strings returns a number between 0 and 1 – a
higher value indicating a greater degree of similarity with the
value 1 corresponding to equality. This function is used to
perform a similarity join between two input relations that returns
pairs of strings whose similarity is above an input threshold.

As reviewed by Koudas, Sarawagi and Srivastava [1], previously
proposed similarity functions focus primarily on the syntactic
difference between strings. While this is indeed an indicator of

similarity, there are many cases where strings that are
syntactically far apart can still represent the same real-world
object. This happens in a variety of settings --- street names (the
street name SW 154th Ave is also known as Lacosta Dr E in the
postal area corresponding to zipcode 33027), the first names of
individuals (Robert can also be referred to as Bob), conversion
from strings to numbers (second to 2nd) and abbreviations
(Internal Revenue Service being represented as IRS).

Equivalences are only one form of string variations. We also
have variations such as abbreviations that lose information – a
first initial (such as J) can be expanded in multiple ways (John,
Jeff, etc.) that are clearly not equivalent.

In our recently published research paper [2], we show that it is
impractical to expect a generic similarity function to be cognizant
of variations such as those of the above examples since they are
highly domain-dependent. Rather, the matching framework has to
be customizable to take these variations as explicit input. Our
research paper presents such a framework [2]. We have
implemented this framework over Microsoft SQL Server 2005 as
an operator which is a part of the Extract-Transform-Load
platform namely SQL Server Integration Services [6]. Our goal is
to demonstrate this operator.

The demonstration proposal is organized as follows. We outline
our framework briefly along with the algorithms needed to make
the framework computationally efficient in Section 2. We
describe the architecture of our system in Section 3 and the demo
scenarios in Section 4.

2. TRANSFORMATION BASED
FRAMEWORK
We briefly outline our framework to capture string
transformations in this section. More details can be found in our
research paper [2]. We model strings as a sequence of tokens. A
given string may be tokenized for instance by splitting it based on
delimiters such as white spaces. We use the term string to refer to
a sequence of tokens and the term substring to refer to a
subsequence of tokens. A transformation rule consists of a triplet
(context, lhs, rhs) where each of context, lhs, rhs is a string. An
example transformation is: (33027, “SW 154th Ave”, “Lacosta Dr
E”).

We now describe how a string s can be transformed given a set of
transformation rules T. A rule (context, lhs, rhs) can be applied to
string s if both context and lhs are substrings of s; the result of
applying the rule is the string s' obtained by replacing the
substring matching lhs with rhs.

We can apply any number of transformations one after another.
However, a token that is generated as the result of applying a
transformation cannot participate in any subsequent
transformation. Copyright is held by the author/owner(s).

SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
ACM 978-1-60558-102-6/08/06.

1231

Example: We can use the transformation (“”, “Drive”, “Dr”) to
generate the string “Lacosta Dr E” from the string “Lacosta
Drive E”. However, we cannot further convert “Lacosta Dr E” to
“Lacosta Doctor E” using the transformation (“”, “Dr”,
“Doctor”).

The set of strings generated by s is the set of all strings obtained
by applying zero or more transformations to s. We can assign a
similarity score to two strings given a similarity function f and a
set of transformations T. The similarity between strings s1 and s2
under T is defined to be the maximum similarity as measured by f
among all pairs s1' and s2' respectively generated by s1 and s2
using T.

Example: Consider the strings ``SW 154th Ave Florida 33027''
and ``Lacosta Dr E, FL 33027''. Under the transformations (“”,
“FL”, “Florida”) and (“33027”, “SW 154th Ave”, “Lacosta Dr
E”), their similarity is 1 since both of the above strings generate
the same string “Lacosta Dr E, Florida 33027”.

2.1 Algorithm
The main computational problem we addressed is the following:
given a table R, called the reference table, consisting of strings
and a set of transformation rules T, and a string s and similarity
threshold α, find all strings in R whose similarity under T with s is
greater than or equal to α. Our solution to this problem involves
building an index over R.

The index structure and index creation algorithm are based on the
techniques described in [2] where we focused on the join problem.
In the join problem, we have two tables R and S and a set of
transformations T. Our goal is to find all pairs of strings in R and
S whose similarity under T is greater than or equal to α. We now
summarize our techniques.

There are previously known algorithms for computing the
similarity join [1]. A naive adaptation of these algorithms is as
follows. Consider the expanded relations ExpandR and ExpandS
obtained by applying the transformations to each string in R and S
respectively. We can compute the similarity join between
ExpandR and ExpandS by using any previously known technique
and then find all distinct (r,s) returned by this join. The main
problem with this approach is that the expansion factor can be
prohibitively high.

In our research paper [2], we focused on a class of signature-based
algorithms [3] which includes several well-known techniques
such as locality-sensitive hashing [5]. In order to address the
expansion problem mentioned above, we considered several
optimizations to compress the number of signatures. We also
proposed optimizations for the problem of checking whether two
strings have a similarity greater than or equal to α under T by
making connections to the problem of bipartite matching. We
refer the reader to [2] for these details.

3. SYSTEM ARCHITECTURE
Our system implements two operations incorporating
transformations: (1) creating an index over a given reference table
for a given set of transformations T, and (2) looking up an input
string using the index to find all strings in the relation whose
similarity under T is more than threshold α. The underlying
similarity function is jaccard similarity [1] where the strings are
tokenized into sets and the similarity is computed by taking the
ratio of the (weighted) intersection to their union.

We have developed our system as a stand-alone Windows dll
(dynamically linked library). The primary usage of this system is
in the context of loading data into a data warehouse where the
reference table is stored in a database and the data being loaded
has to be cleansed first. Therefore, we package the dll as an
operator over Microsoft SQL Server 2005 as a part of SQL Server
Integration Services (SSIS) [6]. Microsoft SQL Server 2005
Integration Services is a platform designed to make the
development of scalable Extract, Transform and Load (ETL)
workflows easier. A typical data flow pipeline involves data
sources (such as a flat file or a database query) connected to a
number of operators connected ultimately to data destinations
(such as the final warehouse database). Data flows from the
sources through the operators and is then output at the
destinations.

The Fuzzy Lookup operator in SSIS that performs approximate
string matching has been demonstrated previously [4] and we
incorporate our system into this operator, thus enriching Fuzzy
Lookup with transformations. This operator can be seamlessly
combined with numerous other operators to create very powerful
ETL solutions.

4. DEMO SCENARIOS
Our demonstration will highlight the benefits of our
transformation-based framework as well as the performance of
our algorithm.

4.1 Scenario 1: Benefit of Transformations
We will first demonstrate (1) how we can leverage transformation
rules to match strings that are syntactically far apart, and (2) how
a similarity function that is not cognizant of transformations will
fail to achieve this.

This will be shown visually through a graphical tool. Figure 1
shows a screenshot of our tool. As we can see, we have an input
string “Bill Gates, One Microsoft Way, Bldg 34, Redmond
Washington 98052” being matched against a reference table of
strings. Immediately below the input string is a set of matching
records from the reference relation. As can be seen, we obtain
several matches to strings that are syntactically far apart, such as
“BillG, Microsoft Main Campus, Seattle WA 98052”. This is the
result of using the set of transformations shown on the side.

A special case arises when we have no explicit transformations.
In this case, our matching algorithm reduces to jaccard similarity.
We will illustrate this special case to show why taking
transformations into account is essential for matching quality.

We will also demonstrate the wide applicability of our
transformation rules framework by using real-life data from
several different databases including addresses, bibliographic
citations, and product names.

4.2 Scenario 2: Lineage
Next, we will demonstrate how our tool displays the set of
transformations that led to two strings being matched. This is
shown in the bottom two panes in the screenshot in Figure 1.
Thus, a user of the tool can understand the lineage of the match
produced. For example, the input record is matched with the
reference record “Bill Gates, 1 Msft Wy, Redmond Washington

1232

98052” via the rules (“”, “Microsoft”, “Msft”), (“”, “Way”, “Wy”)
and (“”, “One”, “1”).

4.3 Scenario 3: Interactively Changing
Transformations
We will then demonstrate how we can interactively change the set
of transformations to improve the overall data quality. For
example, the transformations used in Section 4.2 are not adequate
to match the input record with the record “BillG, Microsoft Main
Campus, Seattle WA 98052”. However, adding transformations
(“98052”, “One Microsoft Way”, “Microsoft Main Campus”) and
(“”, “BillG”, “Bill Gates”) leads to a match.

4.4 Scenario 4: Keyword Search
Finally, we will demonstrate a stand-alone keyword search
application where we are searching for a string over a reference
table of strings. This scenario is primarily intended to illustrate the
computational efficiency of our algorithms. Specifically, the
application will illustrate the scalability of our algorithms both in
the input size (indexed reference table) and the number of
transformation rules. We will use a reference relation consisting
of a large number of individual names and addresses as shown in
Figure 1, and transformation rules obtained from USPS.

We will show the response time of our indexing algorithm for
various sets of transformations. Two useful reference points are

the performance of a linear scan and the performance of our
algorithm when the transformation set is empty.

By considering larger sets of transformations systematically, we
will show the improvements in response time yielded by our
algorithm and also the overheads imposed by transformations.

5. REFERENCES
[1] Nick Koudas, Sunita Sarawagi, Divesh Srivastava. Record

linkage: Similarity Measures and Algorithms. ACM
SIGMOD 2006.

[2] A. Arasu, S. Chaudhuri and R. Kaushik. Transformation
based Framework for Record Matching. IEEE ICDE 2008.

[3] A. Arasu, V. Ganti and R. Kaushik. Efficient Exact Set
Similarity Joins. VLDB 2006.

[4] S. Chaudhuri, K. Ganjam, V. Ganti, R. Kapoor, V. R.
Narasayya, T. Vassilakis. Data cleaning in Microsoft SQL
server 2005. ACM SIGMOD 2005.

[5] A. Gionis, P. Indyk and R. Motwani. Similarity search in
high dimensions via hashing. VLDB 1999.

[6] Microsoft SQL Server Integration Services.
http://msdn2.microsoft.com/en-us/library/ms141026.aspx

Figure 1: Screenshot of interactive tool

1233

