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MicroRNAs (miRNAs) are a recently discovered set of regulatory
genes that constitute up to an estimated 1% of the total number
of genes in animal genomes, including Caenorhabditis elegans,
Drosophila, mouse, and humans [Lagos-Quintana, M., Rauhut, R.,
Lendeckel, W. & Tuschl, T. (2001) Science 294, 853–858; Lai, E. C.,
Tomancak, P., Williams, R. W. & Rubin, G.M. (2003) Genome Biol. 4,
R42; Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. (2001)
Science 294, 858–862; Lee, R. C. & Ambros, V. (2001) Science 294,
862-8644; and Lee, R. C., Feinbaum, R. L. & Ambros, V. (1993) Cell
115, 787–798]. In animals, miRNAs regulate genes by attenuating
protein translation through imperfect base pair binding to 3� UTR
sequences of target genes. A major challenge in understanding the
regulatory role of miRNAs is to accurately predict regulated tar-
gets. We have developed an algorithm for predicting targets that
does not rely on evolutionary conservation. As one of the features
of this algorithm, we incorporate the folded structure of mRNA. By
using Drosophila miRNAs as a test case, we have validated our
predictions in 10 of 15 genes tested. One of these validated genes
is mad as a target for bantam. Furthermore, our computational and
experimental data suggest that miRNAs have fewer targets than
previously reported.

mRNA structure � target prediction

M icroRNAs are a class of small, �22-nt RNAs that share
properties with silencing RNAs (1). In plants, most mi-

croRNA (miRNA) genes bind sequences perfectly and lead to
mRNA degradation (2, 3). However, in animals, with a notable
exception (4), they function by preventing translation without
mRNA degradation (5, 6). The mechanism by which the bound
miRNA down-regulates translation of its target mRNA remains
unknown. Currently, only a handful of miRNAs have experi-
mentally determined function in vivo. These miRNAs include
lin-4 and let-7 in Caenorhabditis elegans, bantam, and mir-14 in
Drosophila, and mir-23 in humans, playing vital roles in devel-
opment and apoptosis (7–14). Even this modest set of data has
some discernable common features that partially determine a set
of rules governing the binding of miRNAs to their targets. It has
been observed that toward the 5� end of the miRNA there is a
perfect Watson–Crick base pair matching of at least seven
consecutive nucleotides (15). Recent experimental evidence has
added more insights into the 3� UTR-binding rules (1, 16), but
a complete understanding of miRNA–target interactions is not
known. Because miRNA genes control many cellular processes,
it is important to identify their targets with high accuracy.

Incorporating the experimentally determined features and
deduced rules, we developed an algorithm for predicting miRNA
targets in animals that significantly reduces dependence on
evolutionary homology without sacrificing accuracy. The algo-
rithm consists of four parts; (i) the 5� seven nucleotides, (ii)
scoring the match of the entire miRNA, (iii) incorporating 3�
UTR structure of the target, and (iv) combining scores for
multiple sites in the targets. Applying the algorithm to Drosoph-
ila melanogaster, we analyzed 73 miRNAs from the MiRNA
registry (which can be accessed at www.sanger.ac.uk�Software�
Rfam�mirna�index.shtml) and the 3� UTRs of 9,230 transcripts
from Ensembl’s Ensmart (which can be accessed at www.ensembl.
org). A list of miRNAs and their predicted targets in the order

ranked by our algorithm is in Table 2, which is published as
supporting information on the PNAS web site.

Materials and Methods
To calculate the P value giving the probability that the correla-
tion between free bases and real binding is random, we first
folded the 3� UTR from C. elegans lin-28, lin-41, lin-14, daf-12,
and Drosophila Hid. Then, we counted the possible binding
positions in all of these genes that would give an overlap of three
or more bases between the seven seed nucleotides and a region
of free bases (in a loop or bubble). Dividing the total number of
positions by the total number of nucleotides in the 3� UTRs gives
a probability that one random seed would overlap a freebase
region. This probability is 0.228. Because 12 of the 19 binding
sites we are considering have seeds that overlap free bases, we
compute the probability of getting 12 or more of 19, given a
probability of 0.228 for each event. The result is the P � 0.0002.

To validate the predicted targets of Drosophila miRNAs,
reporter assay Drosophila S2 cells are used to monitor changes
in gene expression. First, we constructed a sensor for each target
gene by replacing the 3� UTR of firefly (Photinus pyralis)
luciferase (Pp-luc) with the 3� UTR of the target gene under the
control of Drosophila actin promoter. Pp-luc alone in the same
expression vector was used as negative control. To generate the
miRNA expression constructs, miRNA genes and 100–200 bp of
flanking DNA were amplified from Drosophila genomic DNA by
PCR and cloned into vectors. Expression of the miRNA genes
was induced by the Drosophila actin promoter. All of the miRNA
gene constructs were confirmed by sequencing.

Transient transfections into S2 were used to determine the
effect of the miRNA gene on the expression levels of the firefly
luciferase. The ratio between the firefly and the renilla reniformis
luciferase (Rr-luc) was used as an internal control for transfection
efficiency. Three days after transfection, the activities of Pp-luc
and Rr-luc were determined by the Dual-Glo luciferase assay
(Promega). Each experiment was repeated three times, and the
averages were used in comparisons.

Results and Discussion
Observing the experimentally determined miRNA target sites in
lin-14, daf-12, and lin-41 in C. elegans and hid in Drosophila, it was
noticed that at the 5� end of the miRNA there is a perfect match
of at least seven consecutive nucleotides (dubbed the seed). The
necessity of this match in the functionality of a target site has
been confirmed through direct experiment (16). For each
miRNA, we use the reverse complement of the sets of seven
nucleotides in a row that end within the last three bases of the
miRNA. This seed is used to establish a first cut of possible
targets by searching the set of 3� UTRs from Drosophila for
matches to these seeds.

Drawing again on both the observation of known target sites
and recent direct experimental tests, we wrote a recursive
program to score the entire binding site. The nonseed part of the
miRNAs bind imperfectly to their targets but contribute to the
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overall stability. Given the small binding window of the miRNA,
the known target sites form many more Watson–Crick base pairs
than randomly expected. However, we cannot simply rank
binding sites according to lowest binding energy for a couple
reasons. First, the paper of Doench and Sharp (16) provides
evidence that G-U pairs do not contribute to the effectiveness of
a binding site outside the seed and significantly reduce the
binding if a G-U pair is found within the seed. Second, the known
binding sites have not evolved to minimize binding energy.
Therefore, we set up a scoring algorithm that weights A-U and
G-C pairs positively, treats G-U pairs as neutral, and penalizes
mismatches and gaps. Applying this scoring algorithm to the
known target sites, we then choose a cutoff such that all these
sites score robustly above the cutoff. We define robust to mean
that a single change in the binding site, outside of the seed, would
not be able to move any of the known sites below the cutoff.

The above two criteria reduce the list of targets to a few
hundred. Additional reductions in the target list can be made by
examining the structure of the target 3� UTR. Folded mRNA
consists of nucleotides that are base-paired and those that are
free. We hypothesize that single-stranded miRNAs can only
search stretches of free mRNA for potential target sites. Ac-
cording to Boltzmann’s rules, the binding probability is propor-
tional to the exponential of the difference in binding energies of
the two states. If a stretch of RNA is unbound in one state and
bound in the other, the probability of binding is relatively high.
On the other hand, if the mRNA is folded so that the site of
interest is based paired with another part of the mRNA, then the
energy difference between the two states is smaller, and the
binding probability is smaller. Of course, there are proteins
wrapping the miRNA that could potentially play a role in
recognition. However, there is no evidence that the relevant
proteins recognize either sequence or structure of the mRNA
targets.

To test this hypothesis, we folded the 3� UTRs of the known
targets in C. elegans and Drosophila and calculated the proba-
bility that the known target sites were correlated with the free
nucleotides from the folded target. For the known targets of C.
elegans, we used those listed in Banerjee and Slack (6) that meet
the above two criteria, and, for Drosophila, we used the five
bantam targets in hid listed in Brennecke et al. (14). Specifically,
we required that of the seven seed nucleotides in the miRNA, at
least three consecutive bases paired with free bases from the 3�
UTR. We chose three bases for the following two reasons. First,
the minimal length of an RNA hairpin loop is three nucleotides,
which is a physical constraint from the limited flexibility of RNA.
Second, recognition for base pairing of free strands require three
consecutive complementary bases, and a string of two matches,
then a mismatch, will not form a double strand. Because the
folding algorithm is prone to error on a global scale for long
sequences, we focus on the local stems produced from the
folding. We restricted our set of free bases to those found in
the loop at the end of a stem or the bubble located at the base
of the stem. Given this restriction, we calculate the P value of
0.0002 as the probability that the correlation between known
seeds and free bases is random (see Materials and Methods). This
structural requirement for our target sites removes 80% of the
false sites, whereas we lose only one-third of our real binding
sites. These statistics are determined from the experimentally
verified targets mentioned above. This is a substantial gain in
accuracy because most real target mRNAs have multiple sites
and we improve by a factor of three for each site; so, our
algorithm folds the 3� UTRs of all of the Drosophila genes by
using the VIENNA FOLDING package and then throws out all
potential targets that do not have an overlap with free bases as
described above (17). We need only fold the 3� UTR because we
are looking at local structure (not global), and the performance
of the folding algorithm decreases dramatically as the sequence

length increases. There are many other ways in which we can take
structure into account such as considering alternative foldings.
However, we would require more known targets to get solid
statistics. We hope to improve the use of structure as more
targets are discovered.

The final part of the algorithm ranks the remaining targets by
computing a combined score for multiple sites within one 3�
UTR. The known targets have multiple binding sites in their 3�
UTR, and experimental evidence supports cooperative effects
with multiple sites in each 3� UTR (1). Fitting to the experi-
mentally generated curves from Doench et al. (1), we sum the
scores and then take the result to the power of 1.2.

Having partially based our algorithm on observations of
known targets, it is required that these targets score highly when
our algorithm is applied. We met this consistency check suc-
cessfully. In C. elegans, lin-14 and daf-12 were two of the top
three ranking targets of miRNA let-7, whereas lin-14 was also the
top ranking target of miRNA lin-4. In Drosophila, hid ranked
first as a target for the miRNA bantam.

We tested 19 potential targets predicted by our algorithm by
use of a reporter gene in Drosophila S2 cells. The 3� UTR of the
firefly luciferase gene was replaced with the 3� UTRs of the
Drosophila targets and transfected into Drosophila cells (see
Materials and Methods). Each experiment was repeated three
times. Table 1 contains our algorithm’s predictions regarding
these 19 targets. Fifteen of the 19 targets were high-scoring
targets that were chosen to represent the group of targets that
scored in the top four for some miRNA. These 15 targets tested
the validity of the algorithm. Ten of the 15 targets showed
significant repression when the corresponding miRNA was
expressed (Fig. 1). For the five targets that failed, we tested the
miRNA constructs to confirm that they were functioning. We
used the bantam�hid pair as a control because this result has
been verified in vivo. Our result is that the algorithm predicts the
top four targets for each miRNA with �67% accuracy. Because
the validation is in cell lines, the positive results provide evidence
that the regulation has a functional role in live animals.

Three of the remaining four tested targets were chosen
randomly from the group that ranked between 5 and 10 for their
respective miRNAs and the final target ranked 30th for its
miRNA. Experiments in cell culture showed no effect of the
miRNA on the presumed targets. By using Fisher’s exact test, we

Table 1. Tested miRNA targets

Target gene miRNA Rank Repressed

MAD Bantam 4 Yes
Hid Bantam 1 Yes
CRMP Mir-287 2 Yes
HLHm5 Mir-7 1 Yes
SP555 Mir-279 1 Yes
Imd Mir-310 3 Yes
TutI Mir-1 1 Yes
Su(z) 12 Mir-34 3 Yes
Rt Mir-12 1 Yes
Gli Mir-124 1 Yes
Fng Mir-7 3 Yes
DIP1 Mir-287 1 No
CG14991 Mir-303 1 No
tup Mir-278 2 No
Yellow-c Mir-317 3 No
CG13380 Mir-318 2 No
Boss Mir-286 5 No
CG32057 Mir-288 8 No
Ke1 Mir-276b 6 No
la2 Mir-316 30 No
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can say with 93% certainty that the median number of targets for
each miRNA is 10 or fewer. Additionally, we can say with 97%
confidence that the median number is �30. These experiments
address the question of how many targets a given miRNA is likely
to have. Our results suggest that the number is smaller than
previously thought.

Because our accuracy is sufficiently high, we were able to avoid
requiring a cut on homology. Although homology can help
improve accuracy, it comes at the expense of losing real targets.
Because the pseudoobscura genome has not been completely
annotated, we run into two major problems when trying to apply
homology. The first problem is that the length of the 3� UTRs
are not known, so we can only approximate the length. This
problems is difficult because Drosophila 3� UTRs vary widely.
Second, approximately one-fifth of the time the ESTs cut in the
middle of a 3� UTR, prohibiting us from checking homology.
Given these two limitations, we lose a substantial percentage of
real targets.

As a representative example, one of the targets we validated
is mad regulated by bantam, which we would not have found
had we required a homology cut. The miRNA bantam has been
shown function in two processes (14). It prevents apoptosis by
down-regulating the apoptotic gene hid. Also, mutants in
bantam increase cell proliferation, but the target gene that
interfaces with cell-cycle control is unknown. In our studies, we
found that mad is a target of bantam. Although bantam
represses the mad reporter to the same extent that it represses
hid in our control, we wanted to confirm that the cause of
repression was because of the bantam-binding sites in the mad
3� UTR. We made point mutations in the fourth and fifth
positions (as read from 3� to 5�) of the two bantam-binding
sites in the 3� UTR of mad. Doench et al. (1) showed that
mutating the fourth and fifth positions in a target site was
sufficient to eliminate binding. Transfecting the points mu-
tants into Drosophila S2 cells as described above, we find that
mutating one site partially restores the level of luciferase in the
presence of bantam, whereas mutating both binding sites
completely restores the level (Fig. 2).

Because mad is involved in propagating decapentaplegic sig-
nals, which promote proliferation in the fly, it is unlikely that the
bantam�mad interactions are involved in the cell-cycle regula-
tion observed for bantam. Possibly more than one of the seven
TGF�-like ligands signal through mad, raising the possibility that
the bantam�mad interaction affects a different TGF�-like path-
way. Alternatively, the bantam�mad interaction may function
through decapentaplegic, but in a different developmental pro-
cess. Further in vivo experiments are warranted to examine this
interaction.

To date, three algorithms are published for finding miRNA
targets from a whole genome: two in Drosophila and one in
vertebrates (15, 18, 19). Two other algorithms have been applied
to specific genes or miRNAs (20, 21). Only Lewis et al. (15)
estimated and tested a false-positive rate for targets. Lewis et al.
(15) tested their algorithm in humans and established a success
rate of approximately two-thirds, aiming for an accurate, as
opposed to comprehensive, list of targets. Their success hinged
strongly on homology, limiting their targets to those where
homologous genes in both mouse and rat were also predicted as
strong targets of homologous miRNAs. Using either mouse or
rat, but not both, dramatically drops the success rate of their
algorithm.

For the two Drosophila algorithms, we are able to directly
compare results. To do the comparison, we focused on the exper-
imentally validated genes and their corresponding miRNAs. The
Enright et al. (18) algorithm has almost no overlapping results with
our predictions. In particular, their algorithm scored only one of the
10 targets we validated experimentally in their list of the top 10 for
their partner miRNAs. Because they did not experimentally vali-
date any of their results, we are unable to run the comparison in the
other direction.

The Stark et al. (19) algorithm provides a large list of targets
of for each miRNA without determining accuracy. They chose
six targets to validate partially based on their algorithm and
partially based on biological intuition. Of their six validated
targets, our algorithm ranks three of them in the top 10 for their
partner miRNAs and two others in the top 20. One of their
targets allows us to demonstrate the gain that we achieve from
our structure cut. Stark et al. (19) validated reaper as a target for

Fig. 1. A graph of luciferase reporter intensity from miRNA target genes. The 3� UTR targets are from the genes listed on the x axis. The particular miRNA that
pairs with each gene is found in Table 1. As a control, we use hid as the target of bantam. The luciferase activity before expressing the miRNAs were normalized
to 1 for all cells, so the values in the bar graph are the fraction of luciferase intensity with the miRNA expressed. Each experiment was repeated three times, given
the error bars. The 11 targets on the left are regulated by a miRNA, and the 10 on the right are not.

Fig. 2. Both of the two bantam-binding sites on the 3� UTR of mad are shown
to contribute to repression. Positions 4 and 5 counting from the 5�end of the
binding site are mutated in one (*) and two (**) bantam-binding sites,
knocking out the sites. Knocking out one binding site partially restores the
activity of mad (*), whereas knocking out two binding sites completely
restores activity (**).
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mir-2a. Our algorithm ranks reaper as the number one target for
mir-2a. If we run our algorithm without including the structure
cut, reaper drops to 25th. Next, we compared their predictions
with our validated results. From their list of the top 100 targets
for each miRNA, 2 of our 10 targets scored well (in the top
three), 2 scored in the 20s, and the 5 others did not make their
top 60 (the final target was mad, and they did not publish their
bantam targets).

We have presented an algorithm that provides a substantial
increase in accuracy for predicting miRNA targets. As more
experimental data becomes available to elucidate the binding

rules of miRNAs to their targets, we expect to improve our
algorithm.
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