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Abstract

Background: Protein phosphorylation catalyzed by kinases plays crucial regulatory roles in cellular processes. Given

the high-throughput mass spectrometry-based experiments, the desire to annotate the catalytic kinases for in vivo

phosphorylation sites has motivated. Thus, a variety of computational methods have been developed for

performing a large-scale prediction of kinase-specific phosphorylation sites. However, most of the proposed

methods solely rely on the local amino acid sequences surrounding the phosphorylation sites. An increasing

number of three-dimensional structures make it possible to physically investigate the structural environment of

phosphorylation sites.

Results: In this work, all of the experimental phosphorylation sites are mapped to the protein entries of Protein

Data Bank by sequence identity. It resulted in a total of 4508 phosphorylation sites containing the protein three-

dimensional (3D) structures. To identify phosphorylation sites on protein 3D structures, this work incorporates

support vector machines (SVMs) with the information of linear motifs and spatial amino acid composition, which is

determined for each kinase group by calculating the relative frequencies of 20 amino acid types within a specific

radial distance from central phosphorylated amino acid residue. After the cross-validation evaluation, most of the

kinase-specific models trained with the consideration of structural information outperform the models considering

only the sequence information. Furthermore, the independent testing set which is not included in training set has

demonstrated that the proposed method could provide a comparable performance to other popular tools.

Conclusion: The proposed method is shown to be capable of predicting kinase-specific phosphorylation sites on

3D structures and has been implemented as a web server which is freely accessible at http://csb.cse.yzu.edu.tw/

PhosK3D/. Due to the difficulty of identifying the kinase-specific phosphorylation sites with similar sequenced

motifs, this work also integrates the 3D structural information to improve the cross classifying specificity.

Introduction

Protein phosphorylation catalyzed by kinases plays crucial
regulatory roles in many essential cellular processes
including cellular regulation, cellular signal pathways,
metabolism, growth, differentiation, and membrane

transport [1]. It has been estimated that one-third to one-
half of all proteins are phosphorylated in a eukaryotic cell
[2] and around half of kinome are disease- or cancer-
related by chromosomal mapping [3]. Mass spectrometry-
based identifications of phosphorylation sites on substrates
in vivo and in vitro are the foundation of understanding
the mechanisms of phosphorylation dynamics and impor-
tant for the biomedical drug design [4]. However, the
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effort to experimentally verify the catalytic kinases remains
time-consuming, labor-intensive, and expensive. Thus,
many researches are undertaken to develop a computa-
tional method for the identification of kinase-specific phos-
phorylation sites, including NetPhosK [5], Scansite 2.0 [6],
PredPhospho [7], GPS [8], PlantPhos [9], PPSP [4], Meta-
PredPS [10], NetPhorest [11] and KinasePhos [12-14]. The
summary information of the previously developed phos-
phorylation site prediction methods is listed in Table S1
(Additional File 1). Particularly, Linding et al. [15] have
proposed an excellent method, namely NetworKIN, that

augments motif-based predictions with the network con-
text of kinases and phosphoproteins. With most of the
existing phosphorylation site prediction tools requiring
prior knowledge of experimentally verified substrates and
its kinase, a method is developed to be able to predict
kinase-specific phosphorylation sites based solely on pro-
tein sequence [16].
Although over 20 methods have been developed for

the accurate prediction of kinase-specific phosphoryla-
tion sites, most of them rely solely on the local amino
acid sequence surrounding the phosphorylated sites.

Figure 1 System flow of the proposed method.
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Blom et al. [17] were the first to propose a method with
limited data for sequence and structure-based prediction
of protein phosphorylation sites in eukaryotes. While
one-dimensional amino acid sequence was observed to
harbor most of the predictive power, Predikin [18] has
proposed a method that applied the structure-based
information for improving the prediction of phosphory-
lation sites in proteins. With an increasing interest in
the structural environment of protein phosphorylation
sites, Phospho3D database [19,20] was proposed for
characterizing the structural properties of phosphoryla-
tion sites on three-dimensional (3D) structures. Addi-
tionally, Phos3D [21] has extracted 3D-signature motifs
from 750 experimentally verified phosphorylation sites
with 3D structures available in Protein Data Back (PDB)
[22] and applied them to implement a web server for
structure-based detection of phosphorylation sites.
With the desire to investigate the spatial environment of

phosphorylation sites, all of the experimental phosphoryla-
tion sites are mapped to the PDB protein entries using
sequence identity. In this work, the linear motifs are com-
bined with the information of spatial amino acid composi-
tion, which is a new scheme for encoding a 3D structure
fragment of phosphorylated sites, to identify kinase-
specific phosphorylation sites on 3D structures. Moreover,
an independent testing set which is blind to the cross-
validation process has been generated for the evaluation of
stability and reliability of the proposed method. To investi-
gate the effect of including structural characteristics for
identifying kinase-specific phosphorylation sites with simi-
lar substrate motifs, the cross classifying specificities
among the kinase-specific models are evaluated.

Materials and methods

Figure 1 depicts the system flow of the proposed method,
including data collection and preprocessing, sequence-
based investigation, structural characterization, model
training and evaluation, and independent testing. The
experimentally verified phosphorylation sites are mainly

extracted from dbPTM [23,24] which has integrated the
data from version 9.0 of Phospho.ELM [25], release
20120711 of UniProtKB [26], release 20120730 of Phos-
phoSitePlus [27], version 1.0 of PHOSIDA [28], version
1.1 of SysPTM [29] and version 9.0 of HPRD [30]. In this
work, the data set extracted from Phospho.ELM and
UniProtKB is regarded as the training set for sequential
and structural investigation of phosphorylated substrate
sites. After removing the redundant sites between
Phospho.ELM and UniProtKB, the number of serine (S),
threonine (T), and tyrosine (Y) substrate sites are 98376,
25269, and 15188, respectively, as given in Table 1.
According to the annotations of kinase families extracted
from KinBase [3] and RegPhos [31], the substrate sites of
protein phosphorylation could be further categorized into
more than 200 kinase groups. Table S2 (in Additional File
1) summarizes the data statistics of 122 kinase groups con-
taining more than 10 substrate sites in the training set.
As for classification, the prediction performance of the

constructed models may be overestimated owing to the
over-fitting of a training set. The experimental phosphory-
lation sites that collected from PhosphoSitePlus, PHOSIDA,
SysPTM, and HPRD were regarded as the independent
testing set. Additionally, about 500 kinase-specific phos-
phorylation sites manually curate from 200 research articles
are included in the independent testing set.

Sequence-based investigation of phosphorylation sites

Since the flanking sequences of the substrate sites
(position 0) are graphically visualized as the entropy plots
of sequence logo [32,33], the conservation of amino acids
surrounding the phosphorylation sites could be easily
observed [34]. The 13-mer sequences (from -6 to +6) of
kinase-specific phosphorylation sites are extracted as the
positive data of training sets, while all other residues (S, T
and Y) in the phosphorylated proteins are regarded as the
negative data. With reference to the method of SulfoSite
[35], the positional weighted matrix (PWM), which speci-
fies the relative frequency of amino acids surrounding

Table 1 Data statistics of experimentally verified phosphorylation sites in each resource.

Data set Data Resource Version Number of phosphorylation sites Number of phosphorylated proteins

S T Y

Training set Phospho.ELM 9.0 26,136 6,316 3,118 8,690

UniProtKB 20120711 92,221 23,289 14,337 34,040

Combined (NR1) - 98,376 25,269 15,188 35,047

Independent testing set PhosphoSitePlus 20120730 73,969 19,946 14,696 18,550

PHOSIDA 1.0 7,391 1,300 278 2,212

SysPTM 1.1 30,307 6,643 2,255 10,667

HPRD 9.0 34,273 10,761 4,121 7,753

Combined (NR1) - 97,753 27,421 16,531 23,813

1NR, non-redundant.
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substrate sites, was utilized in encoding the fragment
sequences. A matrix of m × w elements was used to repre-
sent each residue of a training dataset, where w stands for
the window size and m consists of 21 elements including
20 types of amino acids and one for terminal signal.
Besides the composition of flanking amino acids, the

accessible surface area (ASA) and secondary structure (SS)
around the phosphorylation sites were also investigated.
Since most of the experimentally verified phosphorylation
sites do not have corresponding three-dimensional struc-
tures in PDB, with reference to MASA [36], an effective
tool, RVP-Net [37,38], was applied to compute the ASA
value from the protein sequence. The full-length protein
sequences with experimentally identified phosphorylation
sites are inputted to RVP-Net to compute the ASA value
of all of the residues. The ASA values of amino acids
around the phosphorylation sites are extracted and nor-
malized to be between zero and one. Additionally,
PSIPRED [39] was employed to compute the secondary
structure from the protein sequence. PSIPRED 2.0
achieved a mean Q3 score of 80.6% across all 40 sub-
mitted target domains without obvious sequence
similarity to structures that are present in PDB; accord-
ingly, PSIPRED has been ranked top out of 20 evaluated
methods [40]. The output of PSIPRED is given in terms
of “H,” “E” and “C” which stand for helix, sheet and coil,
respectively.

Structural characterization of phosphorylation sites

In an attempt to study the spatial context of phosphory-
lation sites and evaluate its effectiveness for improving
the predictive performance, all of the collected phos-
phorylation sites are mapped to the protein entries of
Protein Data Bank (PDB) by sequence identity. It
resulted in a total of 4508 phosphorylation sites (cover-
ing over 40 kinase groups) containing the protein 3D
structures. DSSP [41] is then utilized to calculate the
surface solvent accessibility and standardize the second-
ary structure of PDB entries with the mapped phosphor-
ylation sites. Instead of the sequential amino acid
composition (AAC), this work investigates the propensi-
ties for the different amino acid types to occur in the
spatial vicinity of the phosphorylated sites. A spatial
amino acid composition (Spatial AAC) is determined for
each kinase groups by calculating the relative frequen-
cies of 20 amino acid types within radial distances ran-
ging from 3 to 12 Å from central phosphorylated amino
acid residue. A radial cumulative propensity plot [21]
was applied to display the spatial AAC. In order to iden-
tify the significant difference of spatial AAC between
phosphorylation sites (positive data) and non-phosphor-
ylation sites (negative data), a measurement of F-score
[42,43] has been applied to calculate a statistical value
for each radial distance. The F-score of the ith value of

11 radial distances is defined as:
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Model training and evaluation

This work incorporates support vector machines (SVMs)
with the sequential and structural features to generate
the predictive models for the identification of kinase-
specific phosphorylation sites. A public SVM library,
namely LIBSVM [44], is applied for training the
predictive models. The radial basis function (RBF)

K(Si, Sj) = exp(−γ
∥

∥Si − Sj

∥

∥

2
) is selected as the kernel

function of SVM. Five-fold cross-validation is used to
evaluate the predictive performance of the models trained
from the large data sets such as PKA, PKC, CK2, and
MAPK groups, while Jackknife cross-validation is applied
for models trained from the data size smaller than 30
substrate sites. We balance the positive set and negative
set and the sizes of positive data and negative data are
equal during the cross-validation processes. The cross-
validation is performed for ten times to obtain an average
accuracy for each kinase group. The following measures
of predictive performance of the trained models are
defined: Precision (Pre) = TP/(TP+FP), Sensitivity (Sn) =
TP/(TP+FN), Specificity (Sp) = TN/(TN+FP) and Accu-
racy (Acc) = (TP + TN)/(TP+FP+TN+FN), where TP,
TN, FP and FN are true positive, true negative, false posi-
tive and false negative predictions, respectively. The mod-
els trained with various features that yield the highest
accuracy in each kinase group are utilized to implement
the prediction system and are further evaluated by inde-
pendent testing set. For a meaningful comparison with
other published tools, the ratio of data size between posi-
tive set and negative set is 1:2 [21].

Results and discussion

Sequential and structural characteristics of kinase-specific

phosphorylation sites

As the sequence logos given in Table S2 (Additional File 1),
most of the kinase groups have conserved amino acids sur-
rounding the phosphorylation sites. The solvent accessibil-
ity and secondary structure computed from a full-length
protein sequence are also presented. With the comprehen-
sive mapping between the collected phosphorylation data
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and PDB protein 3D structures, the spatial environment of
phosphorylation sites was investigated in detail, as well as
the sequential neighborhood. Figure 2 shows the sequence
logos (sequential neighborhood) and radial cumulative pro-
pensity plots (spatial neighborhood) of nine well-known
kinase-specific substrate groups. According to the observa-
tion from sequence logos, PKA and PKB have the signifi-
cant enrichments of Arginine (R) and Lysine (K) in the
sequential neighborhood of substrate sites, which is the
hallmark sequence motif for AGC kinase families. The
PKC group contains the slight enrichments of Arginine (R)

and Lysine (K) around the substrate sites. However, the
radial cumulative propensity plots present that there is an
additional enrichment of amino acid residues in the spatial
neighborhood. For instance, PKA exhibits the enrichments
of Methionine (M), Glutamine (Q) and Aspartic acid (D)
in the spatial neighborhood, accompanied by a remarkable
depletion of Leucine (L) residue. The PKB group has the
enrichments of Asparagine (N), Cysteine (C) and Threo-
nine (T) in the spatial neighborhood, accompanied by the
remarkable depletions of Glutamic acid (E) and L residues.
For PKC group, there are the enrichments of Alanine (A)

Figure 2 Sequence logos and radial cumulative propensity plots of nine kinase-specific substrate groups.
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and Tyrosine (Y) in the spatial neighborhood, also accom-
panied by a remarkable depletion of L residue.
For MAPK group, there is a consistent enrichment of

Proline (P) in sequential and spatial neighborhoods. Addi-
tionally, the enrichments of M and Y residues in spatial
neighborhood are identified from the radial cumulative
propensity plot. According to the sequence logo, there is
no significant enrichment of amino acids for CK1 group.
However, the radial cumulative propensity plot shows that
there are slight enrichments of Histidine (H), E, A, N, C,
Q, G and S residues in the spatial neighborhood, accom-
panied by the remarkable depletions of Valine (V), K and
L residues. The CK2 group contains the consistent enrich-
ments of D and E residues in sequential and spatial neigh-
borhoods. According to the radial cumulative propensity

plot, there are slight enrichments of Glycine (G), Isoleu-
cine (I) and H residues in spatial neighborhood.
For tyrosine kinase families, EGFR, SRC and InsR groups

have the enrichments of D and E residues in the sequential
and spatial neighborhood. In particular, EGFR group has a
significant depletion of T residue according to the radial
cumulative propensity plot, but SRC and InsR groups are
enriched in T residue instead. In summary, the radial
cumulative propensity plot reveals spatial preferences of
amino acids composition which cannot be identified
by inspecting the sequence logo alone. In addition to the
spatial preferences of amino acids composition, a sum-
mary list of structural characteristics, including spatial
AAC, solvent accessibility and secondary structure, for 20
kinase-specific substrate groups which contain more than

Table 2 Cross-validation evaluation of sequence and structure-based phosphorylation site predictions on 3D structures.

Kinase group Number of positive
data

Number of negative
data

Sequence-only Structural
information

Combination of
sequence and
structural
information

Sn Sp Acc Sn Sp Acc Sn Sp Acc

Phosphorylated Serine (pSer)

All serine data 1554 3108 61.4% 62.0% 61.8% 66.9% 68.1% 67.7% 72.9% 71.1% 71.7%

CDK 11 22 72.7% 81.8% 78.8% 90.9% 86.8% 87.9% 90.9% 86.8% 87.9%

CK1 10 20 20.0% 90.0% 66.7% 100% 95.0% 96.7% 100% 95.0% 96.7%

CK2 24 48 66.7% 87.5% 80.6% 87.5% 87.5% 87.5% 91.7% 89.6% 90.3%

MAPK 17 34 52.9% 94.1% 80.4% 76.5% 97.1% 90.2% 82.4% 97.1% 92.2%

PIKK 15 30 26.7% 83.3% 64.4% 80.0% 86.7% 84.4% 73.3% 83.3% 80.0%

PKA 56 112 79.1% 78.8% 78.9% 83.6% 84.3% 84.1% 89.1% 91.4% 90.7%

PKB 12 24 75.0% 66.7% 69.4% 75.0% 83.3% 80.6% 83.3% 83.3% 83.3%

PKC 50 100 77.3% 78.0% 77.8% 81.2% 80.0% 80.4% 85.3% 86.0% 85.8%

PKG 10 20 80.0% 80.0% 80.0% 80.0% 85.0% 83.3% 80.0% 85.0% 83.3%

PLK 10 20 60.0% 80.0% 73.3% 70.0% 90.0% 83.3% 70.0% 90.0% 83.3%

STE20 10 20 70.0% 75.0% 73.3% 80.0% 90.0% 86.7% 80.0% 90.0% 86.7%

Phosphorylated Threonine (pThr)

All Threonine
data

603 1206 60.9% 59.7% 60.1% 67.8% 67.2% 67.4% 70.1% 72.5% 71.3%

MAPK 13 26 69.2% 76.9% 74.3% 69.2% 76.9% 74.3% 69.2% 76.9% 74.3%

PKA 10 20 70.0% 90.0% 83.3% 80.0% 85.0% 83.3% 80.0% 95.0% 90.0%

PKC 13 26 61.5% 76.9% 71.8% 69.2% 88.5% 82.1% 69.2% 88.5% 82.1%

STE20 10 20 40.0% 95.0% 76.7% 70.0% 70.0% 70.0% 70.0% 90.0% 80.0%

Phosphorylated Tyrosine (pTyr)

All tyrosine data 629 1258 62.0% 63.3% 62.8% 64.1% 63.4% 63.8% 67.6% 68.6% 68.3%

Abl 18 36 50.0% 88.9% 75.9% 66.7% 80.6% 75.9% 66.7% 80.6% 75.9%

EGFR 10 20 60.0% 80.0% 73.3% 60.0% 95.0% 83.3% 60.0% 95.0% 83.3%

InsR 15 30 73.3% 83.3% 80.0% 80.0% 80.0% 80.0% 80.0% 90.0% 86.7%

Src 57 114 77.2% 75.4% 76.0% 79.1% 83.3% 81.9% 79.1% 84.9% 82.9%

Syk 11 22 63.6% 90.9% 81.8% 72.7% 86.4% 81.8% 72.7% 95.5% 87.9%

Abbreviation: Sn, sensitivity; Sp, specificity; Acc, accuracy.
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10 substrate sites on 3D structures is illustrated in
Table S3 (Additional File 1).

Predictive performance of kinase-specific SVM models

For finding the best predictive performance of SVM mod-
els in each kinase-specific group, the SVM models trained
with sequenced characteristics such as amino acid compo-
sition, solvent accessibility and secondary structure com-
puted from protein sequence, positional weighted matrix
are evaluated based on cross-validation. To obtain a stable
performance for each kinase-specific prediction models,
the cross-validation process is performed for ten times
and the average sensitivity (Sn), specificity (Sp), and accu-
racy (Acc) of the SVM models are calculated as shown in
Table S4 (Additional File 1). The overall cross-validation
performance of SVM models trained with the hybrid com-
bination of sequenced characteristics, whose average
accuracy is close to 90.0%, is performing better than the
SVM models trained with only amino acid composition.

Additionally, the performance of independent testing for
each kinase-specific model is also given in Table S4 (Addi-
tional File 1). Most of the SVM models have a predictive
accuracy approaching to their cross-validation perfor-
mance, while several kinase-specific SVM models trained
with small data size of training set have an unstable
predictive accuracy.
With the consideration of data sufficiency in structural

investigation, the kinase-specific groups containing more
than ten phosphorylation sites on 3D structures are stu-
died in this work. Table 2 presents the cross-validation
performance of kinase-specific SVM models trained with
various features, including sequence-only information,
structural information, and the combination of sequence
and structural information. In general, the kinase-specific
SVM models trained with structural information yield a
better predictive accuracy than the SVM models trained
with only sequence information. Additionally, the SVM
models trained with the combination of sequence and

Figure 3 The web interface of PhosK3D prediction system. The PhosK3D locates the predictive phosphorylation sites and the involved

catalytic protein kinases. In order to reveal the characteristics of the phosphorylation sites including the phosphorylated residues and

surrounding sequences, the training set of phosphorylation sites and constructed sequence logos corresponding to each protein kinase are also

provided graphically on the web interface. Additionally, users can download the predicted results with tab-delimited format for further analyses.

Since a PDB ID or structure file is inputted to PhosK3D, the sequential neighborhood (blue) and spatial neighborhood (gray) of the predicted

phosphorylation sites (orange) are provided to users. Moreover, the positively charged residues (blue) and negatively charged residues (red)

surrounding the predicted phosphorylation sites are physically presented by Jmol viewer.
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structural characteristics were observed to perform at
comparable or even slightly better performance levels
compared to the SVM models trained with structural
information. In summary, for all kinase-specific phos-
phorylation sites prediction, a consistent increase in per-
formance was obtained suggesting that including 3D
structural information does indeed improve the sensitiv-
ity and specificity.

Implementation of web-based prediction system

After evaluating the trained models for identifying kinase-
specific phosphorylation sites, the SVM model yielding the
highest predictive accuracy for each kinase group was uti-
lized to implement the web-based prediction system. The
system provides over 120 kinase-specific SVM models for
performing a large-scale prediction on protein 3D struc-
tures. Users can submit their uncharacterized protein
sequences and select the kinase-specific models for
predicting phosphorylated Serine, Threonine, or Tyrosine.
As presented in Figure 3, since a PDB ID or structure file
is inputted to PhosK3D, the sequential and structural

models will be integrated to identify the kinase-specific
phosphorylation sites on the 3D structure. Moreover, the
positively charged residues (K, R and H) and negatively
charged residues (D and E) surrounding the predicted
phosphorylation sites are physically presented as a surface
view of Jmol viewer. Two case studies of kinase-specific
phosphorylation sites prediction on protein 3D structures
of Pyruvate kinase 1 (PDB ID: 1A3W) and Histone (PDB
ID: 2CV5) are presented in Figure 4 and 5, respectively.

Effect of including structural information for identifying

kinase-specific phosphorylation sites with similar

sequence motifs

As the sequence logos given in Table S2 (Additional
File 1), it would be noticed that some of kinase groups
have similar substrate motifs. For instance, several kinases
(PKA, PKB, PKC, PKG, GRK, RSK,) of AGC family prefer
to recognize the substrate sites with basic amino acids
(Arginine, Lysine or Histidine) at positions of -2 or -3 rela-
tive to the phosphorylation sites (position 0). As given
in Table S5 (Additional File 1), in order to assess the

Figure 4 A case study of phosphorylation sites prediction on the protein structure of Pyruvate kinase 1 (PDB ID: 1A3W).
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cross classifying specificities among the kinase-specific
models containing the similar substrate site motifs, a parti-
cular group is regarded as the positive set and the other
groups are regarded as the negative sets one by one. For
instance, in the first row the classifying specificity (Sp) of
PKA model corresponding to the PKC, PKB and PKG
data sets are 51.4%, 27.5% and 38.6%, respectively. This
investigation indicates the cross classifying specificities are
relatively lower among the kinases PKA, PKC, PKB, and
PKG in basophilic group. Similarly, the Sp values marked
in blue are relatively lower between the kinases CDK and
MAPK in proline-directed group. We observe that
the cross classifying specificities corresponding to the
kinase-specific models in the same kinase group, such as
basophilic, acidophilic, and proline-directed groups, are
relatively lower than the specificities corresponding to the
kinase-specific models in different groups. To investigate
the effect of including structural characteristics for identi-
fying kinase-specific phosphorylation sites with similar
substrate motifs, the cross classifying specificities among

the kinase-specific models trained with the combination of
sequence and structural information are evaluated. As
shown in Table S6 (Additional File 1), almost all of the Sp
values are increased, especially for the Sp values marked in
red, green, and blue. This investigation demonstrates that
the consideration of structural information could improve
the predictive specificity when identifying the kinase-speci-
fic phosphorylation sites with similar sequence motifs.

Conclusions

The aim of this work is to develop an integrated method
for effectively identifying the kinase-specific phosphoryla-
tion sites on protein sequences or three-dimensional
structures. With the high-throughput mass spectrometry
(MS)-based experiment, the desire to comprehensively
annotate the catalytic kinases for in vivo phosphorylation
sites has been highly motivated. Herein, the proposed
method could yield a large-scale prediction of over 100
kinase-specific groups which contain reliable accuracy
and stable performance. This study has demonstrated

Figure 5 A case study of phosphorylation sites prediction on protein structure of Histone (PDB ID:2CV5).
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that the kinase-specific models trained with the consid-
eration of 3D structural information could perform better
than the models trained with only the sequence informa-
tion, especially improving the cross classifying speci-
ficities among the kinase groups containing similar
sequence motifs. Additionally, the proposed method was
compared with several popular phosphorylation predic-
tion tools, including PredPhospho, GPS 2.0, PPSP, and
KinasePhos 2.0. As given in Table 3, the number of
kinase groups, sensitivity and specificity of four well-
known kinase groups (PKA, PKC, CK2 and SRC) are
compared. GPS 2.0 and our method could provide more
than 100 kinase-specific groups for phosphorylation
sites prediction. In the independent testing performance
of PKA, PKC, CK2 and SRC groups, the proposed
method is comparable to GPS 2.0 and outperforms
other tools.

Availability

The PhosK3D can be accessed via a web interface, and
is freely available to all interested users at http://csb.cse.
yzu.edu.tw/PhosK3D/. All of the data set used in this
work is also available for download from the website.
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Additional File 1: Supplementary Tables. Contains additional Tables

showing further results in the study
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