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Incorporating Telemetry Error into Hidden
Markov Models of Animal Movement Using

Multiple Imputation

Brett T. McClintock

When data streams are observed without error and at regular time intervals, discrete-

time hidden Markov models (HMMs) have become immensely popular for the analysis

of animal location and auxiliary biotelemetry data. However, measurement error and

temporally irregular data are often pervasive in telemetry studies, particularly in marine

systems. While relatively small amounts of missing data that are missing-completely-

at-random are not typically problematic in HMMs, temporal irregularity can result in

few (if any) observations aligning with the regular time steps required by HMMs. Fit-

ting HMMs that explicitly account for uncertainty attributable to location measurement

error, temporally irregular observations, or other forms of missing data typically requires

computationally demanding techniques, such as Markov chain Monte Carlo (MCMC).

Using simulation and a real-world bearded seal (Erignathus barbatus) example, I investi-

gate a practical alternative to incorporating measurement error and temporally irregular

observations into HMMs based on multiple imputation of the position process drawn

from a single-state continuous-time movement model. This two-stage approach is rel-

atively simple, performed with existing software using efficient maximum likelihood

methods, and completely parallelizable. I generally found the approach to perform well

across a broad range of simulated measurement error and irregular sampling rates, with

latent states and locations reliably recovered in nearly all simulated scenarios. However,

high measurement error coupled with low sampling rates often induced bias in both the

estimated probability distributions of data streams derived from the imputed position

process and the estimated effects of spatial covariates on state transition probabilities.

Results from the two-stage analysis of the bearded seal data were similar to a more com-

putationally intensive single-stage MCMC analysis, but the two-stage analysis required

much less computation time and no custom model-fitting algorithms. I thus found the

two-stage multiple-imputation approach to be promising in terms of its ease of imple-

mentation, computation time, and performance. Code for implementing the approach

using the R package “momentuHMM” is provided.

Supplementary materials accompanying this paper appear online.
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1. INTRODUCTION

Discrete-time hidden Markov models (HMMs) have become immensely popular for the

analysis of animal telemetry data (e.g., Morales et al. 2004; Jonsen et al. 2005; Langrock

et al. 2012; McClintock et al. 2012). In short, an HMM is a time series model composed

of one or more observable data streams (X1, . . . , XT ), each of which is generated by Z

state-dependent probability distributions, where the unobservable (hidden) state sequence

(zt ∈ {1, . . . , Z} for t = 1, . . . , T ) is assumed to be a Markov chain. The state sequence of

the Markov chain is governed by (typically first-order) state transition probabilities, γ
(t)
i j =

Pr(zt+1 = j | zt = i) for i, j = 1, . . . , Z , and an initial distribution δ(1). The likelihood of

an HMM can be succinctly expressed using the forward algorithm:

L = δ(1)Ŵ(1)P (x1)Ŵ(2)P (x2) Ŵ(3) · · ·Ŵ(T −1)P (xT −1)Ŵ(T )P (xT ) 1Z (1)

where the Z × Z transition probability matrix Ŵ(t) = (γ
(t)
i j ), P(xt ) = diag(p1(xt ), . . . ,

pZ (xt )), ps(xt ) is the conditional probability density of X t given zt = s, and 1Z is a

Z -vector of ones (see Zucchini et al. 2016 for a thorough introduction to HMMs).

While HMMs for animal movement based solely on location data are somewhat limited

in the number and type of biologically meaningful movement behavior states they are able to

accurately identify (Morales et al. 2004; Beyer et al. 2013; Bagniewska et al. 2013; McClin-

tock et al. 2014), multivariate HMMs that utilize both location and auxiliary biotelemetry

data (e.g., McClintock et al. 2013; Russell et al. 2015; DeRuiter et al. 2016) can facilitate

the identification of additional states that go beyond the two-state approaches that are most

frequently used by practitioners (“encamped” and “exploratory” states sensu Morales et al.

2004 or “foraging” and “transit” states sensu Jonsen et al. 2005).

When data streams are observed without error and at regular time intervals, a major

advantage of HMMs is the relatively fast and efficient maximization of the likelihood using

the forward algorithm (Zucchini et al. 2016), and user-friendly software is available for

fitting movement HMMs under these circumstances (e.g., Michelot et al. 2016a). However,

location measurement error is rarely nonexistent and depends on both the telemetry device

and the system under study. For example, GPS errors are typically less than 50m, but Argos

errors can exceed 10 km (Costa et al. 2010; Silva et al. 2014). Missing location or auxiliary

biotelemetry data typically arise when transmitters cannot communicate with satellites at

temporally regular intervals. While missing data can be a problem in terrestrial systems

(e.g., in canyons or dense forest), it can often be pervasive in marine environments. If some

X t are missing, these data gaps are often ignored in maximum likelihood analyses (by

replacing P(xt ) with the Z × Z unity matrix) and thus do not contribute information to

the estimation of state-dependent probability distribution parameters (e.g., Zucchini et al.

2016), but if data are frequently missing or not missing-completely-at-random, this strategy

could have undesirable inferential consequences (Nakagawa and Freckleton 2008). Another

strategy is to impute missing data using simple linear interpolation (e.g., Russell et al. 2015;

DeRuiter et al. 2016; Michelot et al. 2016b), although the reliability of this approach is poorly

understood. While relatively small amounts of missing data that are missing-completely-at-

random are not typically problematic in HMMs, an extreme case of missing data can arise
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when location data are obtained with little or no temporal regularity, as in many marine

mammal telemetry studies (e.g., Jonsen et al. 2005), such that few (if any) observations

align with the regular time steps required by discrete-time HMMs. Temporal irregularity is

therefore different from the conventional HMM missing data scenario where data streams

are consistently observed at regular time intervals, but some of these observations happen

to be missing.

When explicitly accounting for uncertainty attributable to location measurement error,

temporally irregular observations, or other forms of missing data, one must typically fit

HMMs using computationally intensive (and often time-consuming) model-fitting tech-

niques such as Markov chain Monte Carlo (Jonsen et al. 2005; McClintock et al. 2013; Turek

et al. 2016). For example, a recent multivariate HMM analysis of bearded seal (Erignathus

barbatus) telemetry data that incorporated six behavior states, seven data streams, location

measurement error, temporal irregularity, and missing auxiliary data required several weeks

to fit using MCMC (McClintock et al. 2017). Given the time and money typically expended

in deploying animal-borne telemetry devices, one could posit that such an “expensive” anal-

ysis is entirely justified. However, complex analyses requiring novel statistical methods and

custom model-fitting algorithms are not practical for many of the biologists and ecologists

conducting these studies.

Here I investigate a practical approach to incorporating measurement error and tempo-

ral irregularity into HMMs for animal movement using multiple imputation (Rubin 1987;

Hooten et al. 2017). This two-stage approach is relatively simple and can be performed

with existing software using efficient maximum likelihood methods. After describing the

approach in more detail in the next section, I investigate its performance properties in a series

of simulation experiments. I then approximate the bearded seal analysis of McClintock et al.

(2017) using multiple imputation and compare the results.

2. METHODS

The multiple-imputation approach for incorporating location measurement error and

temporally irregular or missing observations into animal movement HMMs consists of two

stages. The basic concept is to first employ a single-state (i.e., Z = 1) movement model that

is relatively easy to fit but can accommodate location measurement error and temporally

irregular or missing observations. The second stage involves repeatedly fitting an HMM to

n temporally regular realizations of the position process drawn from the model output of

the first stage. These temporally regular realizations of the position process constitute the

data “we wish we had” if the observation process were not subject to location measurement

error and temporally irregular or missing observations. Inferences about behavior states

(e.g., state decoding, state probabilities, “activity budgets”), transition probabilities, and

state-dependent probability distribution parameters are based on a pooling of the n imputed

data HMM analyses using standard multiple-imputation formulae (Rubin 1987).

For the first stage of the analysis, the continuous-time correlated random walk model of

Johnson et al. (2008) is very well suited and easily implemented in the R package “crawl”

(Johnson 2016) using maximum likelihood methods, although any movement model that
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accommodates both location measurement error and temporally irregular or missing obser-

vations could be fitted to the telemetry locations during this stage. Some advantages of the

Johnson et al. (2008) model in “crawl” are its speed, flexible measurement error model

specification, and ease of repeatedly drawing realizations of the temporally regular position

process from the model output.

The second stage proceeds by fitting an HMM to each of the n imputed data sets using

standard methods. The HMM data streams need not be limited to step length or turning angle

(e.g., Morales et al. 2004), and auxiliary biotelemetry data streams that inform behavior states

can also be included at this stage (e.g., dive activity, altitude, heart rate; see McClintock et al.

2013). Data streams or covariates that are dependent on location (e.g., step length, turning

angle, habitat type, snow depth, sea surface temperature) will of course vary among the n

realizations of the position process, and the pooled inferences across the HMM analyses will

therefore reflect location uncertainty. Pooled point and variance estimates can be calculated

as

θ̄ =
1

n

n
∑

i=1

θ (i) (2)

and

var
(

θ̄
)

=

[

1

n

n
∑

i=1

var
(

θ (i)
)

]

+

(

1 +
1

n

)

[

1

n − 1

n
∑

i=1

(

θ (i) − θ̄

)2
]

, (3)

respectively, where θ (i) and var(θ (i)) are the i th point and variance estimates for parameter

θ (Rubin and Schenker 1986).

3. SIMULATION STUDY

3.1. SIMULATION METHODS

I performed three sets of simulation experiments to evaluate the performance of the

multiple-imputation approach under a variety of ecological and sampling scenarios (Table 1).

All simulated datasets consisted of N = 7 individual tracks generated from identical proba-

bility distributions for each data stream. The length of each track was between 500 and 1500

regularly spaced time steps, and the same “true” tracks were used for all scenarios within

each set of simulations. The observed location data (y) were generated from the “true”

locations (μ) subject to varying levels of measurement error and temporal irregularity, but

the underlying movement process model in each case was a standard HMM consisting of

T regular time steps. Temporal irregularity was introduced by allowing observations (yk)

to fall somewhere along the straight line between the temporally regular locations for each

time step:

yk = (1 − jk)μt−1 + jkμt + ǫk

for all k ∈ (t − 1, t] and t = 2, . . . , T + 1, where jk ∈ (0, 1] is the proportion of the

regular time interval between locations μt−1 and μt at which yk was observed, and ǫk

is (bivariate normal) location measurement error. The objective of the simulations was to

assess whether or not the parameters, state sequences, and temporally regular locations of
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Table 1. Simulation inputs for evaluating performance of multiple imputation as an approach to incorporating

location measurement error and temporally irregular observations into hidden Markov models of animal

movement. Behavior states included “foraging” (F), “transit” (T ), “hauled out on ice” (I ), and “resting

at sea” (S). State-dependent data streams included step length (sz), turning angle (φz), number of dives

(dz), proportion dive time (wz), and proportion dry time (vz) for z ∈ {F, T, I, S} and were generated

from Gamma(shape, scale), wrapped Cauchy [wCauchy(mean, concentration)], Poisson(rate), or beta

(shape1, shape2) distributions. Each simulation was based on N = 7 simulated individual tracks. Three

sets of simulations were conducted. The “two-state with covariate” simulations were similar to the

“two-state” simulations, but included a spatially correlated covariate on transition probabilities.

Data stream Simulation set

Two-state Two-state with covariate Four-state

Step length sF ∼ Gamma(0.25, 400) sF ∼ Gamma(0.25, 400) sF ∼ Gamma(100, 5)

sT ∼ Gamma(25, 40) sT ∼ Gamma(25, 40) sT ∼ Gamma(100, 50)

sI , sS ∼ Gamma(1, 10)

Turning angle φF ∼ wCauchy(0, 0.00) φF ∼ wCauchy(0, 0.00) φF ∼ wCauchy(0, 0.10)

φT ∼ wCauchy(0, 0.75) φT ∼ wCauchy(0, 0.75) φT ∼ wCauchy(0, 0.75)

φI , φS ∼ wCauchy(0, 0.85)

No. of dives dF ∼ Poisson(20)

dT ∼ Poisson(5)

dI , dS ∼ Poisson(1)

Dive time wF , wT ∼ Beta(10, 1)

wI , wS ∼ Beta(1, 10)

Dry time vF , vT , vS ∼ Beta(1, 10)

vI ∼ Beta(10, 1)

the “true” HMM could be reliably recovered from the observed data (y) using the proposed

two-stage approach.

The first set used simulated location data typical of the most commonly employed two-

state HMMs of animal movement (e.g., Morales et al. 2004; Jonsen et al. 2005) consist-

ing of an area-restricted-search-type state (i.e., “encamped” or “foraging”) and a high-

speed, directionally persistent state (i.e., “exploratory” or “transit”). Based on the results

of Beyer et al. (2013) demonstrating HMMs can perform poorly when movement behavior

states are not sufficiently distinct, the probability distributions for step length and turning

angle were chosen such that they had little overlap between states (Table 1). The transi-

tion probability matrix for these simulations was Ŵ =

[

0.8 0.2

0.1 0.9

]

, where each element

γi, j is the probability of switching from state i at time t to state j at time t + 1 for

i, j ∈ {1 = “foraging”, 2 = “transit”}. Temporal irregularity was simulated by assuming

the wait times between the observed locations followed an exponential distribution with

rate λ, which can be interpreted as the expected number of (temporally irregular) locations

observed between (temporally regular) time steps t and t + 1. I limited the design points

to λ = 2, 1, and 0.5, but also included a design point assuming temporal regularity (i.e.,

T + 1 observations occurring at temporally regular times t = 1, . . . , T + 1). Location mea-

surement error was assumed to arise from a bivariate normal distribution based on an error

ellipse with semi-major axis of length M , semi-minor axis of length m, and orientation c

(McClintock et al. 2015). For simplicity, I assumed M = m, c = 0, and limited the design
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points to M = 50 (low measurement error relative to state-dependent scales of movement),

M = 500 (moderate error), M = 1500 (high error), and M = 3000 (extreme error).

The second set of simulations were identical to the first except for one key difference.

For these scenarios, state transition probabilities were assumed to be a function of a spa-

tially correlated covariate, whereby simulated individuals were more likely to switch to

(and remain in) the “foraging” state (zt = 1) at locations with larger covariate values. The

transition probability matrix for these simulations was Ŵ(t) =

[

1 − γ
(t)
1,2 γ

(t)
1,2

γ
(t)
2,1 1 − γ

(t)
2,1

]

, where

γ
(t)
1,2 = logit−1(5 − 25ct ), γ

(t)
2,1 = logit−1(−10 + 50ct ), and ct ∈ [0, 1] is the spatial covari-

ate value corresponding to the animal’s location at time t .

The third set of simulations was motivated by multivariate HMMs that utilize both loca-

tion and additional data streams to inform behavioral states of ice-associated seals (e.g.,

McClintock et al. 2017). Data were generated under Z = 4 behavior states (1=“hauled

out on ice,” 2=“resting at sea,” 3=“foraging,” and 4=“transit”) and characterized by 6

data streams: step length, turning angle, number of dives, proportion dive time, propor-

tion dry time, and proportion sea ice cover (see Table 1). Because the step length distri-

bution, turning angle distribution, and transition probabilities for the “hauled out on ice”

and “resting at sea” states were identical, I simply simulated state sequences for three

states

⎛

⎜

⎝
Ŵ =

⎡

⎢

⎣

0.65 0.35 0.01

0.09 0.82 0.09

0.04 0.24 0.72

⎤

⎥

⎦

⎞

⎟

⎠
and then delineated these two non-diving states based

on whether or not the sea ice concentration at the initial location of the corresponding time

step was > 0.05. A spatially correlated sea ice concentration grid was simulated using the

R package “gstat” (Pebesma 2004). The second stage of the multiple-imputation approach

requires more computation time with four states, so I limited the measurement error scenar-

ios to M ∈ {50, 500, 1500} for this set of simulations.

The same procedure was followed for all scenarios within the three sets of simulations:

(1) Separately fit the continuous-time correlated random walk movement model of John-

son et al. (2008) to the observed data (y) for each of the N = 7 individuals using the

crwMLE() function in the R package “crawl” (Johnson 2016). Assume a bivariate

normal error ellipse model for each observed location yk ∼ N (μk,Σk), where μk is

the true location and Σk =

(

M2

2
0

0 M2

2

)

at time k ∈ [1, T + 1].

(2) Use the “crawl” function crwPostIS() to draw n samples from the posterior distri-

bution of the position process
(

μ
(i)
t , i = 1, . . . , n

)

at temporally regular intervals

(t = 1, 2, . . . , T + 1) conditional on the fitted parameters for each individual from

step 1. For each of the n realizations of the position process, calculate step lengths,

turning angles, and any other data streams or covariates that depend on location.

(3) Estimate the model parameters by fitting the corresponding HMM (consisting of

the “Data stream” distributions in Table 1) to each of the n imputed data sets using

maximum likelihood methods. For each of the n HMM fits, use the Viterbi algorithm
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to estimate the most likely state sequence and the forward–backward algorithm to

estimate state probabilities for each time step (Zucchini et al. 2016).

(4) Use Eqs. (2) and (3) to calculate pooled parameter estimates, variances, and 95%

t-distributed confidence intervals (Rubin and Schenker 1986).

Except for the two-state model including a spatial covariate on state transition probabilities,

the initial distribution was assumed to be the stationary distribution for the fitted HMMs. Note

that the Viterbi and forward–backward algorithms do not provide estimates of uncertainty.

For the “pooled” estimates of the most likely state sequence (zt , t = 1, . . . , T ), I simply

calculated the mode for each time step from the output of the Viterbi algorithm for each of

the n HMM fits. For “pooled” point and variance estimates of the state probabilities for each

time step (qz,t , z ∈ {1, . . . , Z}, t = 1, . . . , T ), I respectively used Eqs. (2) and (3) assuming

1/n
n
∑

i=1

var(θ (i)) = 0.

When fitting the four-state HMMs, I included the imputed sea ice concentration data as an

additional data stream modeled as a (state-dependent) beta distribution. This of course is not

how the data were generated, and a more sophisticated approach would be to incorporate

sea ice concentration into the transition probabilities for the non-diving states (“hauled

out on ice” and “resting at sea”), possibly using a hidden semi-Markov model (Zucchini

et al. 2016). However, hidden semi-Markov models are more challenging to implement than

HMMs, and my goal was to evaluate this approximation as a similar strategy was used by

McClintock et al. (2017) to help distinguish different types of resting behavior in bearded

seals.

I evaluated the performance of the multiple-imputation approach based on its ability to

estimate the unobserved state sequence, the parameters of the state-dependent probability

distributions, and the temporally regular locations (μt ). Classification accuracy was evalu-

ated based on the proportion of time steps for the estimated most likely state sequence that

matched the true state, a measure of agreement between the true and estimated states that

takes chance agreement into account (Congalton 1991), and the proportion of estimated state

probabilities (qz,t ) with at least 0.05 probability assigned to the true state. I also compared

the multiple-imputation approach to an HMM fitted to the single most likely position process

predicted by each of the “crawl” model fits (hereafter referred to as “the single-imputation

approach”). For all three sets of simulations, I first fit the single-imputation model using the

true parameters as starting values and then used the estimated parameters from the single-

imputation model fit as starting values for the multiple-imputation model fits. I used similar

parameter constraints to those used by McClintock et al. (2017) to avoid label switching

among the n HMMs fitted for each simulation scenario.

For all scenarios within each set of simulations, n = 400 imputations were performed.

To provide some insight into the number of imputations that may be required in prac-

tice, pooled estimates from the n = 400 model fits were compared to those of randomly

selected subsets of n = 30 and n = 5 imputations. All analyses were performed in R (R

Core Team 2016) using an extension of the “moveHMM” package (Michelot et al. 2016a)

that is currently under development (https://github.com/bmcclintock/momentuHMM). The

“momentuHMM” package allows for additional data streams, as well as user-specified

https://github.com/bmcclintock/momentuHMM
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design matrices and constraints for the state-dependent probability distribution parameters.

R code for simulating data and implementing the two-stage analyses using “momentuHMM”

is provided in ESM of Appendix A.

3.2. SIMULATION RESULTS

For the two-state simulations without a spatial covariate on transition probabilities

(T = 6519), each individual HMM typically required about 13 s to converge. All n = 400

imputed data analyses required about 23 min (range = 16 − 27 min) when run in par-

allel on a 3.7 GHz processor with eight cores. I generally found the multiple-imputation

approach to perform well in terms of state and probability distribution estimation. The

single-imputation approach performed well with high sampling rates and low measure-

ment error, but was less reliable with lower sampling rates or higher measurement error

(Fig. 1; ESM of Appendix B). The estimated most likely state sequence (zt , t = 1, . . . , T )

was typically similar between the single- and multiple-imputation approaches, and these

became less accurate as measurement error increased or sampling rate decreased. How-

ever, unlike the single-imputation approach, the estimated state probabilities (qz,t ) for the

multiple-imputation approach almost always included at least a 5% probability for the true

state at each time step (Fig. 1). By committing few such “false-positive” state assignments,

the multiple-imputation approach proved much more reliable in characterizing state assign-

ment uncertainty attributable to high measurement error or low sampling rates. Both the

single- and multiple-imputation approaches were increasingly unable to recover the true

step length (Fig. 1) and turning angle (ESM of Appendix B) distributions as measurement

error increased and, to a somewhat lesser extent, as sampling rate decreased. In terms of path

reconstruction, the multiple-imputation approach tended to estimate 95% confidence bands

for μt that included the true value (Fig. 1). However, mean coverage of μ when M = 50

m was as low as 80, 85, and 88% for λ = 2, 1, and 0.5 (Fig. 1), and the mean errors in the

estimated locations were 88.0, 164.7, and 345.5 m, respectively.

For the two-state simulations that included a spatial covariate on state transition proba-

bilities (T = 7000), each individual HMM typically required about 20 s (range = 6–40 s)

to converge. All n = 400 imputed data analyses required about 19 min (range = 12–

24 min) when run in parallel on a 3.7 GHz processor with seven cores. Both the single-

and multiple-imputation approaches generally performed well, and in most cases the inclu-

sion of a spatial covariate on state transition probabilities made the models more robust

to location measurement error and temporal irregularity relative to the two-state scenarios

without a covariate. Across all scenarios, the multiple-imputation approach tended to out-

perform the single-imputation approach in terms of state (Fig. 2) and probability density

estimation (ESM of Appendix B). As with the two-state simulations without a covariate,

both approaches were increasingly unable to recover the true step length and turning angle

distributions as measurement error increased and sampling rate decreased. Similarly, the

effect of the spatial covariate on transition probabilities was increasingly underestimated

as measurement error increased and sampling rate decreased (ESM of Appendix B). The

multiple-imputation approach tended to estimate 95% confidence bands that covered μt ,

but mean coverage when M = 50 m was as low as 81, 84, and 86% for λ = 2, 1, and 0.5
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Figure 1. Selected simulation results under the two-state (“foraging” in black and “transit” in gray) scenarios with

no spatial covariate on state transition probabilities. Each panel presents the true and estimated probability densities

for step length based on the single-imputation (SI) and multiple-imputation (MI) approaches with varying levels

of location measurement error (M ∈ {50, 500, 1500, 3000}) and temporally irregular sampling (Rate ∈ 2, 1, 0.5).

The first column pertains to scenarios with temporally regular sampling that exactly matches the time steps of the

simulated tracks. State classification accuracy for each scenario is based on the proportion of time steps for the

estimated most likely state sequence that match the true state, the proportion of estimated state probabilities with

at least 0.05 probability assigned to the true state (in parentheses), and a measure of agreement between the true

and estimated states (K ) that takes chance agreement into account and ranges from 0 (no better than chance) to

1 (perfect agreement not attributable to chance). Location accuracy for each scenario is based on the proportion

of true locations that fall within their respective estimated 95% confidence bands using the multiple-imputation

approach. Multiple-imputation pooled estimates are based on n = 400 realizations of the position process.
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Figure 2. Selected simulation results under the two-state (“foraging” and “transit”) scenarios including a spatial

covariate on state transition probabilities. Each panel presents the estimated tracks for N = 7 individuals relative to

the spatially correlated covariate under varying levels of location measurement error (M ∈ {50, 500, 1500, 3000})

and temporally irregular sampling (Rate ∈ 2, 1, 0.5). The first column pertains to scenarios with temporally regular

sampling that exactly matches the time steps of the simulated tracks. Black lines indicate the tracks using the single-

imputation (SI) approach, while white lines indicate each realization of the position process using the multiple-

imputation (MI) approach. Under the data-generating model, higher covariate values were associated with higher

probabilities of switching to (and remaining in) the “foraging” state characterized by area-restricted-search-type

movement. State classification accuracy for each scenario is based on the proportion of time steps for the estimated

most likely state sequence that match the true state, the proportion of estimated state probabilities with at least 0.05

probability assigned to the true state (in parentheses), and a measure of agreement between the true and estimated

states (K ) that takes chance agreement into account and ranges from 0 (no better than chance) to 1 (perfect

agreement not attributable to chance). Multiple-imputation pooled estimates are based on n = 400 realizations of

the position process.



B. T. McClintock 259

(ESM of Appendix B), and the mean errors in these estimated locations were 81.1, 142.3,

and 280.1 m, respectively.

For the four-state simulations (T = 6519), each individual HMM typically required about

5 min to converge. All n = 400 imputed data analyses required about 12 hr (range = 2–

16 h) when run in parallel on a 3.7 GHz processor with eight cores. Both the single- and

multiple-imputation approaches generally performed well in all scenarios with respect to

state and μt estimation, including the ice-associated non-diving states (Fig. 3). The estimated

probability distributions for the dive time, dry time, and number of dive data streams were

generally unbiased, but as with all other simulations examined here, the estimated step

length and turning angle distributions became more biased as measurement error increased

and sampling rate decreased (ESM of Appendix B). With high measurement error and low

sampling rates, it is clear that the step length and turning angle distributions for the non-

diving states (“hauled out on ice” and “resting at sea”) would be indistinguishable from the

“foraging” state in the absence of additional data streams. While the multiple-imputation

approach tended to estimate 95% confidence bands that covered μt , mean coverage of μt

when M = 50 m was as low as 84% for λ = 2 (ESM of Appendix B) with a mean error of

173.7m.

I was somewhat surprised that measurement error and sampling rate did not have a larger

impact on identification of the two non-diving states (“hauled out on ice” and “resting at

sea”) in the four-state simulations. I therefore performed an identical analysis excluding

the “dry time” data stream from the fitted HMMs and thus leaving sea ice concentration as

the sole data stream distinguishing these two non-diving states. However, I still found that

measurement error and sampling rate did not have a deleterious effect on state or location

estimation (ESM of Appendix C), and it appears the beta distribution approximation for sea

ice used by McClintock et al. (2017) can be useful for identifying different types of resting

behavior in ice-associated seals.

For all three sets of simulations, pooled estimates based on all n = 400 and a subset

of n = 30 randomly selected imputations were virtually indistinguishable. However, while

pooled estimates based on n = 5 imputations generally performed better than the single-

imputation approach, they did not perform as well as the pooled estimates from n = 400 or

n = 30 imputations, particularly in the estimation of the true underlying position process

(ESM of Appendix B).

4. BEARDED SEAL EXAMPLE

4.1. EXAMPLE METHODS

The bearded seal is a documented benthic forager whose life history is intricately linked

with sea ice, but the nature of that relationship and other ecological connections with habi-

tat is poorly understood. McClintock et al. (2017; hereafter MLCB) recently conducted a

single-stage analysis of bearded seal biotelemetry data that incorporated six behavior states

(“hauled out on ice,” “resting at sea,” “hauled out on land,” “mid-water foraging,” “benthic

foraging,” and “transit”), seven data streams (step length, bearing, proportion dive time,

proportion dry time, number of benthic dives, proportion sea ice cover, and proportion
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Figure 3. Selected simulation results under the four-state (“hauled out on ice” = red, “resting at sea” = green,

“foraging” = blue, and “transit” = light blue) scenarios. Each panel presents the estimated tracks for N = 7

individuals relative to a spatially correlated sea ice concentration grid (“ice cover”) under varying levels of location

measurement error (M ∈ {50, 500, 1500}) and temporally irregular sampling (Rate ∈ 2, 1, 0.5). The first row

pertains to scenarios with temporally regular sampling that exactly matches the time steps of the simulated tracks.

Solid lines indicate the tracks and state sequences using the single-imputation (SI) approach, while white lines

indicate n = 400 realizations of the position process using the multiple-imputation (MI) approach. Under the

data-generating model, both the “hauled out on ice” and “resting at sea” states were associated with short step

lengths and high directional persistence, but individuals could only switch to the “hauled out on ice” state if the grid

cell of its current position contained >0.05 sea ice concentration. State classification accuracy for each scenario

is based on the proportion of time steps for the estimated most likely state sequence that match the true state, the

proportion of estimated state probabilities with at least 0.05 probability assigned to the true state (in parentheses),

and a measure of agreement between the true and estimated states (K ) that takes chance agreement into account

and ranges from 0 (no better than chance) to 1 (perfect agreement not attributable to chance). Multiple-imputation

pooled estimates are based on n = 400 realizations of the position process (Color figure online).
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land cover), location measurement error and temporal irregularity, and missing auxiliary

biotelemetry data. To formally account for these sources of uncertainty, MLCB formulated

their six-state hierarchical HMM as a Bayesian model using a complete data likelihood that

conditions on the unobserved states. Their analysis required substantial model development,

a custom MCMC model-fitting algorithm written in the C programming language, and sev-

eral weeks of run time to achieve their target convergence diagnostics. While here I compare

the two-stage approach to that MLCB, it deserves note that alternative single-stage model

specifications, model-fitting algorithms, or software could lead to decreases (or increases)

in computation times relative to MLCB (e.g., Turek et al. 2016).

The bearded seal data consist of N = 7 individuals deployed with Argos (Service Argos

2013) satellite-linked tags near Kotzebue, Alaska, USA, between 2009 and 2012. In addition

to location data, the tags were equipped with sensors for recording dive and wet/dry data from

which the dive time, dry time, and the number of benthic dive data streams were calculated

at 6-hr time steps over the duration of each deployment. Given the nature of the Argos

platform, bearded seal diving behavior leading to limited or irregular exposure to satellites,

and limited bandwidth for transferring data, the location data were subject to measurement

error and temporal irregularity, while the auxiliary biotelemetry data were subject to missing

or incomplete records. The Argos error ellipses were overwhelmingly oriented toward the

x-axis, with mean semi-major axis M = 11252 m (median = 4174 m, SD = 36190), semi-

minor axis m = 493 m (median = 239 m, SD = 4894), and orientation c = 90◦ (median =

89◦, SD = 20). There was an average of 7.2 (SD = 5.5) location observations per 6-h time

step, with 18% of time steps having no observed locations. Full details of the data can be

found in London (2016).

I approximated the model implemented by MLCB using the same single- and multiple-

imputation approaches described in Simulation methods. The six-state HMM assumes step

length st | zt = i ∼ Gamma(ai , bi ), turning angle φt | zt = i ∼ wCauchy(0, ρi ),

and the number of benthic dives dt | zt = i ∼ Poisson(ri ) for z ∈ {I, S, L , M, B, T },

where I denotes “hauled out on ice,” S denotes “resting at sea,” L denotes “hauled out on

land,” M denotes “mid-water foraging,” B denotes “benthic foraging,” T denotes “tran-

sit,” and wCauchy(0, ρz) denotes a wrapped Cauchy distribution with mean zero and con-

centration parameter ρz ∈ (−1, 1). For the data streams corresponding to proportions

(wt = dive time, vt = dry time, ct = sea ice cover, lt = land cover), the HMM assumes

ft | zt = i ∼ Beta
(

υ
f

i , δ
f

i

)

for f ∈ {w, v, c, l}. To facilitate comparisons and avoid

label switching among the n HMM fits, I used the same constraints on the state-dependent

probability distribution parameters as MLCB.

Because these tags produced both GPS and Argos locations, the error model for the

first-stage “crawl” model fits depended on the location type. For GPS locations, I used a

bivariate normal model yk ∼ N (μk,Σk) assuming M = 50. For the Argos locations, I used

a bivariate normal model based on the Argos error ellipse (McClintock et al. 2015). For

each realization of the position process, the step length, turning angle, sea ice cover, and

land cover data streams were calculated at temporally regular time steps matching the 6-hr

resolution of the auxiliary biotelemetry data. Unlike the other biotelemetry data streams, the

number of benthic dives (dt ), defined as the number of (presumably foraging) dives to the
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sea floor, was not directly observable because the exact locations (and thus sea floor depth)

during each 6-hr time step were unknown. I therefore calculated the number of benthic dives

based on the sea floor depths at the start and end locations for each time step (see MLCB

for further details on how benthic dives were calculated). All analyses were performed in R

using the “momentuHMM” package.

There are seven key differences between the “full” treatment of MLCB and the two-stage

approaches. These differences include: (1) MLCB used MCMC to fit a Bayesian model based

on a complete data likelihood that conditions on the unobserved states, while the two-stage

approaches maximize the HMM likelihood (Eq. 1) directly; (2) the fitted HMMs using the

two-stage approaches are not hierarchical and thus do not contain individual-level random

effects on the state-dependent probability distribution parameters; (3) the two-stage approach

does not incorporate environmental data (e.g., sea floor depth, sea ice, land) or a maximum

bearded seal travelling speed of 2 m/s into the position process; (4) the two-stage approaches

used here do not impute any missing auxiliary biotelemetry data (dive time, dry time, and

number of benthic dives); (5) the two-stage approaches use a bivariate normal Argos error

ellipse model instead of a bivariate t-distributed model because the latter is not implemented

in “crawl”; (6) the two-stage approaches utilize a single-state continuous-time correlated

random walk model for the position process instead of a multistate discrete-time correlated

random walk model (see McClintock et al. 2014); and (7) the two-stage approaches assume

the initial distribution (δ) is the stationary distribution. These differences clearly suggest

that the results from the analyses will not be identical, but my objective was to assess how

well the two-stage approaches approximate the approach of MLCB.

4.2. EXAMPLE RESULTS

With 6 states and T = 7414 time steps, each individual HMM required 20–140 mins

to converge. Using the single-imputation parameter estimates as initial values for the opti-

mization, all n = 400 imputed data analyses required about 70 h when run in parallel on

seven cores of a 3.7 GHz processor. Plots of the estimated true locations (μt ) and states

for the single- and multiple-imputation analyses (Fig. 4) both appear qualitatively similar

to analogous plots in McClintock et al. (2017). A comparison of the estimated activity

budgets based on the Viterbi algorithm (for the two-stage approaches) and posterior state

summaries of MLCB indicate these were very similar for the three non-diving states and

the “mid-water foraging” states, but some differences were found for the “benthic foraging”

and “transit” states (Fig. 5). However, activity budget estimates based on the Viterbi algo-

rithm do not account for uncertainties reflected in the state probabilities (qz,t ) estimated

using the forward–backward algorithm. A closer examination of qz,t for the single- and

multiple-imputation approaches indicated that 7% and 3.5% of all time steps, respectively,

failed to include ≥5% probability for the most likely state identified by MLCB. When they

did significantly differ, the state sequences of the two-stage approaches tended to assign

the “transit” and “mid-water foraging” states to time steps that were assigned to “benthic

foraging” and “transit” by MLCB, respectively.

While most of the estimated probability distributions for each data stream were very sim-

ilar across all three analyses, the estimated step length, turning angle, and number of benthic
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Figure 4. Predicted locations and states for an adult male bearded seal tag deployment from June 25, 2009,

to March 9, 2010, near Alaska, USA, using the single-imputation (left panel) and multiple-imputation (right)

approaches. The sea ice concentration in 25 × 25 km grid cells on July 29, 2009, indicates both approaches

identified a mid-water foraging trip to the deeper Canada Basin waters off the Beaufort Shelf during which the

animal hauled out on the northwardly receding sea ice edge. For the multiple-imputation approach, the results from

each of n = 400 realizations of the position process are plotted.

dive distributions somewhat differed for the three diving states (Fig. 6, ESM of Appendix

D). As the underlying HMMs are very similar, these deviations are likely attributable to the

inherent differences between the two-stage approaches and MLCB. Notably, these differ-

ences seem most likely due to the smoothness of the tracks generated by the single-state

continuous-time correlated random walk model, and the fact that the environmental data

(sea floor depth, sea ice, land) are not used to inform the position process in the two-stage

approaches. For example, unlike MLCB, the two-stage approaches do not prohibit the posi-

tion process from moving inland or through waters shallower than the dive depths observed

for each time step, thereby allowing for movements close to land where shallower (likely

non-foraging) dives would tend to be included in the number of benthic dives for each time

step.

5. DISCUSSION

Motivated by my experiences with complex movement HMMs that incorporate mea-

surement error and temporally irregular or missing data, I have investigated the utility of a

two-stage approach based on multiple imputation as a more practical alternative to compu-

tationally demanding and often time-consuming model-fitting techniques such as MCMC.

Based on limited simulations and the bearded seal example, I found this approach to be

promising in terms of its ease of implementation, computation time, and performance. The

two-stage approach can be performed with existing software using maximum likelihood

methods and thus alleviates the need for custom model-fitting algorithms and computer

code that is typically required for analogous single-stage analyses. Because maximum like-

lihood methods are used, likelihood-based model selection criteria (e.g., AIC, BIC) could
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Figure 5. Estimated activity budgets among six behavioral states (“hauled out on ice,” “resting at sea,” “hauled

out on land,” “mid-water foraging,” “benthic foraging,” and “transit”) from N = 7 bearded seal tag deployments

between 2009 and 2012 near Alaska, USA. Results from the single- and multiple-imputation analyses are presented

alongside those reported by McClintock et al. (2017; MLCB). There were seasonal differences in activity budgets

between “summer” (from tagging in late June and early July to 30 September), “autumn” (1 October to 31

December), and “winter” (1 January until tag loss between February and April) that coincided with the southern

advance of winter sea ice in the Arctic. Error bars representing 95% confidence and highest posterior density

intervals are included for the multiple-imputation and MLCB estimates, respectively. For the multiple-imputation

analyses, pooled estimates are based on n = 400 (“MI-400”), n = 30 (“MI-30”), and n = 5 (“MI-5”) realizations

of the position process.
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Figure 6. Estimated state-dependent probability distributions for step length (top two rows) and the number of

benthic dives (bottom two rows) for N = 7 bearded seals using the single-imputation, multiple-imputation (MI),

and McClintock et al. (2017; MLCB) approaches. The six behavior states include “hauled out on ice,” “resting

at sea,” “hauled out on land,” “mid-water foraging,” “benthic foraging,” and “transit.” For plots in the third row,

the single- and multiple-imputation probability densities for the number of benthic dives are nearly identical.

Multiple-imputation results are based on n = 400 realizations of the position process.
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potentially be used to select among competing models at either stage in the analysis. Further,

unlike MCMC and similar techniques, multiple imputation is completely parallelizable; with

sufficient processing power computation times need not be longer than that required to fit a

single HMM. While n = 400 imputations were used here, I found that far fewer imputations

may actually be necessary in practice. However, the appropriate number of imputations is

likely to be case dependent.

In terms of state identification and path reconstruction, I generally found multiple impu-

tation of the position process based on the continuous-time correlated random walk model

of Johnson et al. (2008) to be robust to sampling rate and location measurement error.

The two-stage approach thus appears to be a reliable method for inferring both when and

where individuals exhibit particular behaviors and could therefore be used to investigate

hypotheses about activity budgets, space use, resource selection, and many other areas of

movement and behavioral ecology. Somewhat to my surprise, low sampling rates and high

measurement error did not adversely affect identification of very similar states solely dis-

tinguishable by a spatially correlated covariate (i.e., “hauled out on ice” and “resting at sea”

in the four-state simulations; see ESM of Appendix C), suggesting the beta approximation

for sea ice concentration used by McClintock et al. (2017) can be useful for this purpose.

Although not investigated here, it is important to note that difficulties arising from measure-

ment error and temporally irregular or missing data will almost certainly be amplified when

state-dependent probability distributions are less distinct than they were in my simulations

(Beyer et al. 2013). However, as demonstrated in the four-state simulations, additional data

streams can help facilitate accurate state estimation when step length and turning angle

distributions are similar among states.

In terms of state transition probabilities and probability distribution estimation for data

streams that depend on the position process (e.g., step length, turning angle), multiple impu-

tation based on the model of Johnson et al. (2008) was less robust to sampling rate and, in

particular, measurement error. While the estimated effects of the spatial covariate on tran-

sition probabilities were all significant except in the most extreme cases, both the single-

and multiple-imputation approaches increasingly underestimated the true transition proba-

bility coefficients as measurement error increased and sampling rate decreased (see ESM of

Appendix B). Clearly, finer-scale spatial relationships can become masked as uncertainty

about the position process increases. Based on the simulations examined here, low sampling

rates and high measurement error can result in the single-state model of Johnson et al. (2008)

smoothing the track toward the more dominant state (“transit” in the two-state simulations

without a spatial covariate, “foraging” in the two-state simulations with a spatial covariate,

and “foraging” in the four-state simulations; see Fig. 1, ESM of Appendix B). However, the

smoothed distributions typically remained distinct enough for the states and spatial covariate

effects to be reasonably well inferred in the second stage. Thus, while generally reliable for

state and location estimation, if primary interest is in unbiased estimation of distributions

for data streams or covariate effects that depend on the position process, I would not rec-

ommend using this two-stage approach based on the model of Johnson et al. (2008) unless:

(1) measurement errors are small relative to the (state-dependent) scales of movement; and

(2) sampling rates are high relative to the time step of interest. Although not explored here,

alternative movement models or the inclusion of movement covariates (if available) in the
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first stage could help mitigate this smoothing. For example, auxiliary biotelemetry data can

be used as covariates in the model of Johnson et al. (2008), but these were not used in the first

stage of the bearded seal analysis because missing covariate data are not currently permitted

in “crawl.”

The single-imputation approach generally performed similarly to multiple imputation

when sampling rates were high and measurement error was low. It could therefore potentially

serve as a fast and reliable alternative to simple linear imputation or more computationally

intensive methods for handling temporally irregular or missing location data under these

circumstances. However, as expected, the performance of the single-imputation approach

declined with lower sampling rates and higher measurement error.

Although I have found imputation to have several potentially desirable qualities with

respect to ease of implementation and computation time, this two-stage approach to account-

ing for measurement error and missing data in movement HMMs has some important limi-

tations relative to more complicated single-stage alternatives. As highlighted in the bearded

seal example, perhaps the most important limitation is the separation of the position pro-

cess (i.e., the movement model) from the latent behavior states and the environment (e.g.,

bathymetry, land, sea ice). The latter is perhaps best demonstrated in Fig. 4, where the

two-stage approach clearly imputed some inland positions that are rather dubious for an ice-

associated seal. The two-stage approach used here also does not include individual-level

random effects in the HMMs (Altman 2007; DeRuiter et al. 2016). Extending the two-stage

approach to incorporate other types of missing data, random effects, and environmental con-

straints to movement (e.g., land) is the focus of ongoing research. As with any maximum

likelihood analysis, starting values for the optimization are also an important consideration

when using the two-stage approach.

Here I have focused on imputation of the position process when location data are subject to

measurement error and temporal irregularity, but multiple imputation need not be limited to

these scenarios. For example, missing auxiliary biotelemetry data (e.g., dive time, dry time,

number of dives) in the bearded seal example could be imputed using standard missing data

techniques (Rubin 1987). This would also allow for the investigation of different mechanisms

for missingness that can be problematic if not accounted for (Nakagawa and Freckleton

2008).

Despite the subtle but important differences between two-stage approaches and the single-

stage treatment, the overall inferences from the bearded seal example are quite similar in

terms of the primary objectives of McClintock et al. (2017), including the quantification

of seasonal activity budgets, the identification of bearded seal foraging habitat, and the

characterization of different movement behaviors in relation to seasonal sea ice. However,

if one prefers single-stage approaches, the two-stage approach could still prove useful for

exploring alternative HMMs from which to choose a potential candidate for the single-stage

treatment. Given its ease of implementation and relatively fast computation, the two-stage

approach could also be used to generate initial values or help diagnose convergence in

single-stage analyses. Whether used for primary analysis or as an exploratory aid, I found

multiple imputation to be a promising addition to the ecologist’s toolbox for inference when

HMM data streams are subject to observation error.
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