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Abstract

This paper presents a model to coordinate the pricing and fleet management decisions of a freight
carrier. We consider a setting where the loads faced by the carrier over a certain time horizon are
deterministic functions of the prices. We want to find what prices the carrier should charge so that
its pricing and fleet management decisions jointly maximize the profits. Our solution approach is
an iterative one. At each iteration, we solve the fleet management problem with fixed prices, and
then, adjust these prices by using the primal-dual solution to the fleet management problem so as
to obtain “better” prices. Computational experiments show that our approach yields high-quality
solutions and can efficiently be applied on large problems.
Keywords: Transport, Road Transport, Logistics, Pricing.

There is a rich body of literature on how to manage a fleet of vehicles to serve the loads that occur,

possibly randomly, at different locations in a transportation network. However, little attention has

been directed to the problem of what prices to charge for serving the loads. Due to the competition

in the freight transportation industry, reducing the prices can increase the number of loads, but the

pricing and fleet management decisions for different lanes (origin-destination pairs) and different time

periods interact with each other, and one should consider the “downstream” effects on the whole

transportation network and on the later time periods when making these decisions.

In this paper, we show how to coordinate the pricing and fleet management decisions of a freight

carrier. We consider a setting where the loads faced by the carrier over a certain time horizon are

deterministic functions of the prices. The objective is to find what prices the carrier should charge so

that its pricing and fleet management decisions jointly maximize the profits. Our solution approach

is an iterative one and is similar to a subgradient search method. At each iteration, we solve the

fleet management problem with fixed prices and obtain a search direction by using the primal-dual

solution to the fleet management problem. This search direction indicates how the prices should be

adjusted to increase the profits. After adjusting the prices, we resolve the fleet management problem

with the adjusted prices at the next iteration.
∗Running Title: Pricing in Fleet Management.
†Contact Information and Affiliation for Both Authors: School of Operations Research and Industrial Engineering,

Cornell University, Ithaca, NY 14853, USA, topaloglu@orie.cornell.edu, 1-607-255-0698.
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Fleet management models have a long history. Early models formulate the problem over a

“state-time network,” where the nodes represent the supplies of vehicles at different locations and

at different time periods, the arcs represent the vehicle movements and the load availabilities act as

upper bounds on the arcs (see Dantzig & Fulkerson (1954), Ferguson & Dantzig (1955), White &

Bomberault (1969), White (1972)). These models are referred to as deterministic models because

they assume that the future load arrivals are known in advance. The majority of the commercial

fleet management models used in practice today are deterministic.

Another class of fleet management models address the randomness in the load arrivals by formu-

lating the problem as a stochastic control problem and using value functions to assess the impact of

the current decisions on the future. Due to the large number of decision variables and possible load

realizations, it is difficult to compute the value functions exactly, and most of these models seek to

approximate the value functions in a tractable manner (see Jordan & Turnquist (1983), Frantzeskakis

& Powell (1990), Crainic, Gendreau & Dejax (1993), Carvalho & Powell (2000), Godfrey & Powell

(2002), Adelman (2004), Kleywegt, Nori & Savelsbergh (2004), Topaloglu & Powell (2006)).

There has been little work on pricing decisions in the fleet management context. Some of the

past work considers the problem of how much the total profit would change when an additional

load is introduced into the system. If the underlying fleet management model uses a “state-time

network” formulation, then this problem can be solved by using the dual variables associated with

the upper bound constraints that represent the load availabilities (see Powell (1985), Powell, Sheffi,

Nickerson, Butterbaugh & Atherton (1988), Powell (1989)). However, the same problem becomes

much harder when the load arrivals are random, specifically due to the fact that the optimal fleet

management policy is not known. Topaloglu & Powell (2004) show how to compute the change in

the total expected profit in response to an additional load introduced into the system by assuming

that the fleet management decisions are made according to a particular class of suboptimal policies.

Pricing models also appear in the network revenue management literature. Important topics in

this literature can be found in Weatherford & Bodily (1992), Talluri & van Ryzin (1998), McGill

& van Ryzin (1999), Bitran & Caldentey (2003), Talluri & van Ryzin (2004). The central question

in this literature is whether a perishable product should be sold to a customer who is available

now but is willing to pay a low price or it should be kept for a customer who may be available in

the future but will be willing to pay a higher price. Similar to fleet management systems, revenue

management systems are characterized by high level of uncertainty, but one of the most well-known

revenue management tools, called bid-price controls, assumes that the future demand is deterministic.

This is reminiscent of our pricing approach, which assumes that the loads faced by the carrier are

deterministic functions of the prices. (We note that, just like bid-price controls, our pricing approach
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can be applied on a “rolling-horizon” basis to handle the randomness in the load arrivals.) On the

other hand, the pricing problem we consider in this paper is set apart from the ones considered

by the revenue management literature by the fact that the revenue management context typically

assumes a fixed initial level of inventory that cannot be replenished over the lifetime of the product,

whereas the fleet management context provides the ability to reposition the vehicles and to adjust

the capacity to cover the loads occurring at different locations.

In this paper, we make the following research contributions. We present a model and an efficient

approximate solution method to find what prices a freight carrier should charge so that its pricing

and fleet management decisions jointly maximize the profits. This is one of the few attempts in the

literature to jointly make the pricing and fleet management decisions. Computational experiments

show that our approach yields high-quality solutions when compared with benchmark methods and

with upper bounds on the optimal objective values.

The organization of the paper is as follows. Section 1 formulates the problem and Section 2

describes our solution approach. Section 3 builds on Section 2 and develops a pricing algorithm to

find what prices the carrier should charge. This section assumes that, for a given lane, the carrier

can charge different prices for different time periods. Section 4 modifies the results of Section 3 to

address the situation where the carrier has to charge a single price for each lane. Section 5 presents

our computational experiments.

1 Problem Formulation

We have a fleet of vehicles to serve the loads occurring at different locations over a finite planning

horizon. The number of loads over each lane and at each time period is a deterministic function of

the price. We want to find what prices should be charged so that the pricing and fleet management

decisions jointly maximize the profits. We define the following.

T = Set of time periods in the planning horizon. We have T = {1, . . . , T} for finite T .

I = Set of locations in the transportation network.

L = Set of lanes that correspond to loaded vehicle movements.

E = Set of lanes that correspond to empty vehicle movements.

ol, dl = Origin and destination locations for lane l ∈ L⋃ E .

xlt = Number of vehicles moving loaded over lane l ∈ L at time period t ∈ T .

ylt = Number of vehicles moving empty over lane l ∈ E at time period t ∈ T .
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plt = Price charged over lane l ∈ L at time period t ∈ T .

Roughly speaking, a location corresponds to a “node” and a lane corresponds to an “arc” in the

transportation network. As such, we can have multiple lanes with the same origin and destination

locations. For example, if we have l, l′ ∈ L with i = ol = ol′ and j = dl = dl′ , then xlt and xl′t

may represent the numbers of vehicles serving two different types of loads that need to be carried

from location i to j at time period t. For all i ∈ I, we assume that there exists li ∈ E such that

i = oli = dli . In this case, ylit represents the number of vehicles held at location i at time period t.

We also define the following.

Dlt(plt) = Given that the price charged is plt, number of loads over lane l ∈ L at time period

t ∈ T . We assume that Dlt(plt) is a decreasing function of plt.

rlt(plt) = Given that the price charged is plt, profit from serving a load over lane l ∈ L at time

period t ∈ T . We assume that rlt(plt) = alt plt + blt, where alt and blt are constants

and alt > 0.

clt = Cost of moving a vehicle empty over lane l ∈ E at time period t.

fi1 = Number of vehicles at location i ∈ I at the beginning of the planning horizon.

For notational brevity, we take the travel time between any two locations to be one time period.

Without loss of generality, we assume that Dlt(·) is obtained by “rounding down” a differentiable

“intensity” function λlt(·). That is, we have Dlt(plt) = bλlt(plt)c (see Figure 1). We also assume

that the loads that are not covered are lost. The linear form of rlt(·) is not restrictive because the

prices are charged on a “per-mile” basis in practice and we have rlt(plt) = ∆(ol, dl) [plt − C], where

∆(ol, dl) is the distance between locations ol and dl, and C is the “per-mile” empty repositioning

cost. Finally, by suppressing one or more of the indices in the variables defined above, we denote

a vector composed of the components ranging over the suppressed indices. For example, we have

pt = {plt : l ∈ L}, p = {plt : l ∈ L, t ∈ T }. The problem can be formulated as

max
∑

t∈T

∑

l∈L
rlt(plt) xlt −

∑

t∈T

∑

l∈E
clt ylt (1)

subject to
∑

l∈L:ol=i

xl1 +
∑

l∈E:ol=i

yl1 = fi1 i ∈ I (2)

∑

l∈L:dl=i

xl,t−1 +
∑

l∈E:dl=i

yl,t−1 −
∑

l∈L:ol=i

xlt −
∑

l∈E:ol=i

ylt = 0 i ∈ I, t ∈ T \ {1} (3)

xlt −Dlt(plt) ≤ 0 l ∈ L, t ∈ T (4)

xlt, yl′t ∈ Z+, plt ∈ R l ∈ L, l′ ∈ E , t ∈ T . (5)
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The objective function above accounts for the profits and costs from the loaded and empty move-

ments. For all l ∈ L, t ∈ T , the cost of the movement from location ol to dl is implicitly accounted

for in rlt(plt). Therefore, we do not need to subtract clt from rlt(plt) in the objective function co-

efficient of xlt. Constraints (2)-(3) are the flow balance constraints, whereas constraints (4) are the

load availability constraints. Problem (1)-(5) is a difficult problem for several reasons. First, since

Dlt(plt) = bλlt(plt)c, Dlt(·) is not continuous. Furthermore, we have integrality requirements on the

decision variables x, y. An immediate approach to find an approximate solution to problem (1)-(5)

may be to use a continuous approximation to Dlt(·) and relax the integrality requirements. One may

argue that the primary purpose of problem (1)-(5) is to make the pricing decisions and the fact that

the decision variables x, y take fractional values does not necessarily mean that the prices found in

this manner are not “good.” We note that since we have Dlt(plt) = bλlt(plt)c, λlt(·) is a good candi-

date for the continuous approximation to Dlt(·). Second, even when we approximate Dlt(·) by λlt(·)
and relax the integrality requirements, the feasible region of problem (1)-(5) is convex if and only if

λlt(·) is concave for all l ∈ L, t ∈ T . Third, due to the nonlinear first term, the objective function

is not necessarily concave. Fourth, for realistic applications, problem (1)-(5) is a large nonlinear

program with hundreds of locations and tens of time periods.

2 Solution Strategy

For given prices p = {plt : l ∈ L , t ∈ T } and loads D(p) = {Dlt(plt) : l ∈ L, t ∈ T }, we let

F (p,D(p)) = max
∑

t∈T

∑

l∈L
rlt(plt) xlt −

∑

t∈T

∑

l∈E
clt ylt (6)

subject to (2), (3), (4) (7)

xlt, yl′t ∈ Z+ l ∈ L, l′ ∈ E , t ∈ T . (8)

Problem (6)-(8) assumes that the prices are fixed, and hence, it is an integer program. In fact, it is

easy to see that this problem is a min-cost network flow problem with integer data, in which case we

can relax the integrality requirements and talk about the dual of problem (6)-(8).

Noting the definition of F (p,D(p)), problem (1)-(5) is equivalent to

max
p

F (p, D(p)). (9)

We use a subgradient search-like method to solve problem (9). We emphasize that F (·, D(·)) is

not continuous and does not possess subgradients, and using a subgradient search-like method to

solve problem (9) is simply a heuristic based on the gradient ascent idea. For example, Figure

2 shows typical “cross sections” of F (·, D(·)). In this figure, letting elt be the |L||T |-dimensional
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unit vector with a 1 in the element corresponding to l ∈ L, t ∈ T and p̂ be given prices, we plot

F (p̂ + ε elt, D(p̂ + ε elt)) as a function of ε for three different (l, t) pairs. The “jumps” correspond to

the points of discontinuity for Dlt(·).

Although F (·, D(·)) is not continuous and does not possess subgradients, this section shows that

there exists a set of prices P such that P includes the optimal solution to problem (9), and for all

p ∈ P, there exists f(p) = {flt(p) : l ∈ L, t ∈ T } that satisfies

F (p + ε elt, D(p + ε elt)) ≤ F (p,D(p)) + ε flt(p) + δlt |ε| (10)

for all ε ∈ R, where δlt is a constant. In practice, it turns out that δlt does not need to be too large

and f(p) acts similar to a subgradient of F (·, D(·)) at p.

In particular, we define the set P as

P = {p ∈ R|L||T | : λlt(plt) ∈ Z+ for all l ∈ L, t ∈ T }.

Therefore, p ∈ P if and only if plt is a point of discontinuity for Dlt(·) for all l ∈ L, t ∈ T . It

is easy to show that there exists an optimal solution to problem (9) that is in P. To see this, we

assume that p̂ is an optimal solution to problem (9) that is not in P. For all l ∈ L, t ∈ T , we

let p∗lt be the smallest price such that p∗lt ≥ p̂lt and λ(p∗lt) ∈ Z+ (see Figure 1). Since we have

Dlt(p̂lt) = bλlt(p̂lt)c = bλlt(p∗lt)c = Dlt(p∗lt) and rlt(p̂lt) ≤ rlt(p∗lt) for all l ∈ L, t ∈ T , we obtain

F (p̂, D(p̂)) ≤ F (p∗, D(p∗)), and hence, p∗ is also an optimal solution to problem (9) and p∗ ∈ P.

To show that (10) holds, we let x∗(p,D(p)) = {x∗lt(p,D(p)) : l ∈ L, t ∈ T }, y∗(p, D(p)) =

{y∗lt(p,D(p)) : l ∈ E , t ∈ T } be an optimal solution to problem (6)-(8) and u∗(p,D(p)) = {u∗lt(p,D(p)) :

l ∈ L, t ∈ T } be the corresponding optimal dual variables associated with constraints (4) in problem

(6)-(8). By duality theory, we have

F (p,D(p + ε elt)) ≤ F (p,D(p)) + u∗lt(p,D(p)) [Dlt(plt + ε)−Dlt(plt)]

F (p,D(p + ε elt)) ≥ F (p + ε elt, D(p + ε elt)) + x∗lt(p + ε elt, D(p + ε elt)) [rlt(plt)− rlt(plt + ε)]

(see Chapter 10 in Vanderbei (1997)). Letting p̂ = p + ε elt for notational brevity, we obtain

F (p̂, D(p̂)) ≤ F (p,D(p)) + x∗lt(p̂, D(p̂)) [rlt(p̂lt)− rlt(plt)] + u∗lt(p,D(p)) [Dlt(p̂lt)−Dlt(plt)]

= F (p,D(p)) + x∗lt(p,D(p)) [rlt(p̂lt)− rlt(plt)] + u∗lt(p,D(p)) [Dlt(p̂lt)−Dlt(plt)]

+ [x∗lt(p̂, D(p̂))− x∗lt(p,D(p))] [rlt(p̂lt)− rlt(plt)]. (11)

Assuming that p ∈ P and λlt(·) is concave, we have

Dlt(p̂lt) = bλlt(p̂lt)c ≤ λ(p̂lt) ≤ λlt(plt) + λ̇lt(plt) [p̂lt − plt] = Dlt(plt) + λ̇lt(plt) [p̂lt − plt], (12)
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where we use λ̇lt(·) to denote the derivative of λlt(·) and the second equality follows from the fact

that p ∈ P. Furthermore, noting that the total number of available vehicles is
∑

i∈I fi1, we have

[x∗lt(p̂, D(p̂))− x∗lt(p,D(p))] [rlt(p̂lt)− rlt(plt)]

= [x∗lt(p̂, D(p̂))− x∗lt(p,D(p))] alt [p̂lt − plt] ≤ alt |p̂lt − plt|
∑

i∈I
fi1. (13)

Letting δlt = alt
∑

i∈I fi1 and noting (12)-(13), (11) implies that

F (p̂, D(p̂)) ≤ F (p,D(p)) + x∗lt(p,D(p)) alt [p̂lt − plt] + u∗lt(p,D(p)) λ̇lt(plt) [p̂lt − plt] + δlt |p̂lt − plt|,

where we use the fact that u∗lt(p,D(p)) ≥ 0. Therefore, (10) holds when we let

flt(p) = x∗lt(p,D(p)) alt + u∗lt(p, D(p)) λ̇lt(plt). (14)

3 Pricing Algorithm

We propose the following algorithm to solve problem (9) approximately. The idea is to solve problem

(6)-(8) and adjust the prices iteratively by using the primal-dual solution to this problem.

Step 1. Choose the initial prices p1 ∈ P and let n = 1.

Step 2. Solve problem (6)-(8) with the prices pn and loads D(pn). Let x∗(pn, D(pn)), y∗(pn, D(pn))

be an optimal solution to this problem and u∗(pn, D(pn)) be the corresponding optimal dual variables

associated with constraints (4).

Step 3. For all l ∈ L, t ∈ T , let flt(pn) = x∗lt(p
n, D(pn)) alt + u∗lt(p

n, D(pn)) λ̇lt(pn
lt).

Step 4. For all l ∈ L, t ∈ T , let qn
lt = pn

lt + αn
lt flt(pn), where αn

lt is a positive step-size parameter.

Step 5. For all l ∈ L, t ∈ T , let pn+1
lt be the smallest price such that pn+1

lt ≥ qn
lt and λlt(pn+1

lt ) ∈ Z+.

Step 6. Increase n by 1 and go to Step 2.

Noting (10) and (14), Step 3 finds a search direction and Step 4 adjusts the prices by using this search

direction. The prices qn obtained in Step 4 are not necessarily in P and Step 5 finds the prices pn+1

in P. By the discussion that follows the definition of P in Section 2, we have F (qn, D(qn)) ≤
F (pn+1, D(pn+1)), and hence, the prices pn+1 are trivially “better” than the prices qn.

4 Charging Uniform Prices over the Planning Horizon

Sections 2 and 3 assume that the prices charged over a particular lane at different time periods can

be different. We now consider the situation where the carrier has to charge a single price over each
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lane. Therefore, we have to have pl1 = pl2 = . . . = plT for all l ∈ L. Consequently, if the price

charged over lane l at time period t is adjusted by ε, then the price charged over this lane for every

time period has to be adjusted by ε. In this case, assuming that λl1(·) = λl2(·) = . . . = λlT (·) for all

l ∈ L, we can use an argument similar to the one in Section 2 to show that if we let

gl(p) =
∑

t∈T
x∗lt(p,D(p)) alt +

∑

t∈T
u∗lt(p,D(p)) λ̇lt(plt), (15)

then we have

F (p + ε
∑

t∈T
elt, D(p + ε

∑

t∈T
elt)) ≤ F (p,D(p)) + ε gl(p) + δl |ε| (16)

for all p ∈ P, ε ∈ R, where δl is a constant. Using (15)-(16), the algorithm in Section 3 can be

modified to find prices that are fixed over the planning horizon. All we need to do is to compute

gl(pn) in Step 3 and let qn
lt = pn

lt +αn
l gl(pn) for all l ∈ L, t ∈ T in Step 4, where αn

l is a positive step-

size parameter. Therefore, if we start the algorithm with the prices satisfying p1
l1 = p1

l2 = . . . = p1
lT

for all l ∈ L, then the prices satisfy pn
l1 = pn

l2 = . . . = pn
lT for all l ∈ L at any iteration n.

5 Computational Experiments

In this section, we show that our pricing approach yields high-quality solutions. We also observe

how the prices react to changes in certain problem parameters and make sure that they comply with

our expectations.

We assume that the prices are charged on a “per-mile” basis. That is, we have rlt(plt) =

∆(ol, dl) [plt − C] for all l ∈ L, t ∈ T and clt = ∆(ol, dl) C for all l ∈ E , t ∈ T . We assume

that λlt(·) has the form

λlt(plt) = µlt

[
1 + Ql −Ql

(
plt

ρl

)kl
]

, (17)

where Ql > 0, kl > 1, µlt ≥ 0, ρl > 0. In this expression, ρl stands for the prevailing price charged

over lane l and µlt stands for the forecasted number of loads over lane l at time period t (given that

we continue charging the prevailing price ρl). We have λlt(ρl) = µlt, which means that if we continue

charging the prevailing price, then the number of loads is equal to the forecast. For each l ∈ L, we

generate Ql and kl respectively from the uniform distributions over [0.5, 1.5] and [1, 3].

We use a multiplicative step-size parameter. In particular, we let hN
lt be the number of sign

changes of flt(pn) in the first N iterations. That is, we have hN
lt =

∑N
n=2 1(flt(pn−1) flt(pn) < 0),

where 1(·) is the indicator function. We adjust the prices in Step 4 of the algorithm in Section 3 by

qn
lt =





(
1 + 1

hn
lt+2

)
pn

lt if flt(pn) ≥ 0(
1− 1

hn
lt+2

)
pn

lt if flt(pn) < 0.
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Although quite robust, a disadvantage of this approach is that if the initial prices are too low, then it

may take a large number of iterations to recover. For this reason, we do not start with prices less than

$0.10/mile on any lane. Setup runs showed that the prices found by our pricing approach stabilizes

after about 40-50 iterations. To be safe, we carry out the price adjustments for 100 iterations.

5.1 Behavior analysis

In this section, we observe our pricing approach from a qualitative viewpoint and make sure that its

behavior complies with our expectations.

Price reactions to increasing fleet size. One would expect the optimal prices to have a tendency

to decline as the vehicles become more abundant. To test whether the prices found by our pricing

approach meet this expectation, we apply the algorithm in Section 3 to problems with different fleet

sizes. Table 1 shows the results. In all tables in this section, we describe the characteristics of the

test problems by the triplets (|I|, T, f), where |I| is the number of locations, T is the length of the

planning horizon and f is the fleet size. Letting p∗ be the prices found by our pricing approach,

Table 1 gives the average, and 20-th and 80-th percentiles of {p∗lt : l ∈ L, t ∈ T }. The results confirm

our expectation that the optimal prices should be lower when we utilize higher number of vehicles.

Checking for an optimality condition. We let p∗ be an optimal solution to problem (9) and

x∗(p∗, D(p∗)), y∗(p∗, D(p∗)) be an optimal solution to problem (6)-(8) when it is solved with prices

p∗ and loads D(p∗). In this case, if x∗lt(p
∗, D(p∗)) > 0 for some l ∈ L, t ∈ T , then we must have

x∗lt(p
∗, D(p∗)) = Dlt(p∗lt). To see this, if, on the contrary, we have 0 < x∗lt(p

∗, D(p∗)) < Dlt(p∗lt), then

we can choose ε > 0 such that Dlt(p∗lt + ε) = Dlt(p∗lt) − 1, in which case the solution x∗(p∗, D(p∗)),

y∗(p∗, D(p∗)) is feasible to problem (6)-(8) when it is solved with prices p∗+ε elt and loads D(p∗+ε elt).

Therefore, since rlt(p∗lt + ε) > rlt(p∗lt), we obtain F (p∗ + ε elt, D(p∗ + ε elt)) > F (p∗, D(p∗)) and this

contradicts the fact that p∗ is an optimal solution to problem (9).

To check whether the prices found by our pricing approach satisfy the property above, we let

p̂∗ be the prices found by our pricing approach and Q = {(l, t) : x∗lt(p̂
∗, D(p̂∗)) > 0}, and com-

pute x∗lt(p̂
∗, D(p̂∗))/Dlt(p̂∗lt) for all (l, t) ∈ Q. By the discussion above, if p̂∗ is indeed an optimal

solution to problem (9), then we must have x∗lt(p̂
∗, D(p̂∗))/Dlt(p̂∗lt) = 1 for all (l, t) ∈ Q. Table 2

shows the average and standard deviation of {x∗lt(p̂∗, D(p̂∗))/Dlt(p̂∗lt) : (l, t) ∈ Q} and indicates that

x∗lt(p̂
∗, D(p̂∗))/Dlt(p̂∗lt) is almost always equal to 1 whenever we have (l, t) ∈ Q.

We note that the converse of the statement “if x∗lt(p
∗, D(p∗)) > 0 for some l ∈ L, t ∈ T , then

we must have x∗lt(p
∗, D(p∗)) = Dlt(p∗lt)” is the statement “if x∗lt(p

∗, D(p∗)) < Dlt(p∗lt) for some l ∈ L,

t ∈ T , then we must have x∗lt(p
∗, D(p∗)) = 0.” Therefore, letting p̂∗ be the prices found by our pricing
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approach and R = {(l, t) : x∗lt(p̂
∗, D(p̂∗)) < Dlt(p̂∗lt)}, we can check whether x∗lt(p̂

∗, D(p̂∗)) = 0 for all

(l, t) ∈ R instead of checking whether x∗lt(p̂
∗, D(p̂∗)) = Dlt(p̂∗lt) for all (l, t) ∈ Q.

Price reactions to diminishing differences in regional market conditions. We consider

problems where λlt(·) = λl′t′(·) and rlt(·) = rl′t′(·) for all l, l′ ∈ L, t, t′ ∈ T . In this case, since the

loads and profits over different lanes and at different time periods react to price changes in the same

manner, we expect the optimal prices over different lanes and at different time periods to be similar.

Letting p∗ be the prices found by our pricing approach, Table 3 shows the 10-th and 90-th percentiles

of {p∗lt : l ∈ L, t ∈ T }. For every test problem, the initial prices over different lanes and at different

time periods range between 0.10 and 3.00 with a standard deviation of 0.87, but Table 3 indicates

that the final prices over different lanes and at different time periods are almost identical.

Price reactions to different initial prices. The objective function of problem (9) is not concave

(it is not even continuous) and our pricing approach does not have a convergence guarantee. Poten-

tially, if we start with different initial prices, then our pricing approach may find different prices. To

make sure that this is not a major issue, we start our pricing approach with three different initial

prices, say p̂1, p̃1 and p̄1. We let p̂∗, p̃∗ and p̄∗ be the prices that our pricing approach finds by

starting respectively from the initial prices p̂1, p̃1 and p̄1. The first three rows of Table 4 show the

coefficients of correlation among {p̂1
lt : l ∈ L, t ∈ T }, {p̃1

lt : l ∈ L, t ∈ T } and {p̄1
lt : l ∈ L, t ∈ T },

and indicate that the prices p̂1, p̃1 and p̄1 are either uncorrelated or strongly negatively correlated.

The next three rows of Table 4 show F (p̂∗, D(p̂∗)), F (p̃∗, D(p̃∗)) and F (p̄∗, D(p̄∗)), and indicate that

the performances of the prices found by starting from the initial prices p̂1, p̃1 and p̄1 are very sim-

ilar. Finally, the last three rows show the coefficients of correlation among {p̂∗lt : l ∈ L, t ∈ T },
{p̃∗lt : l ∈ L, t ∈ T } and {p̄∗lt : l ∈ L, t ∈ T }, and indicate that the prices p̂∗, p̃∗ and p̄∗ are strongly

positively correlated. Therefore, the prices found by starting from different initial prices are in close

agreement. Also, Figure 3 shows {(p̂1
lt, p̃

1
lt) : l ∈ L, t ∈ L} and {(p̂∗lt, p̃∗lt) : l ∈ L, t ∈ L} for problem

(20, 28, 100), and indicates that although the initial prices p̂1 and p̃1 are substantially different, the

final prices p̂∗ and p̃∗ are almost the same.

5.2 Solution quality

In this section, we compare the prices found by our pricing approach with those found by a benchmark

method and with upper bounds on the optimal objective value of problem (9).

Comparisons with the “relaxed” problem. Since we have Dlt(plt) = bλlt(plt)c, replacing Dlt(·)
by λlt(·) and relaxing the integrality requirements on the decision variables x, y in problem (1)-(5),

10



we can obtain an upper bound on the optimal objective value of problem (1)-(5) by solving

max
∑

t∈T

∑

l∈L
rlt(plt) xlt −

∑

t∈T

∑

l∈E
clt ylt (18)

subject to (2), (3) (19)

xlt − λlt(plt) ≤ 0 l ∈ L, t ∈ T (20)

xlt, yl′t ∈ R+, plt ∈ R l ∈ L, l′ ∈ E , t ∈ T . (21)

Due to our choice of the parameters in (17), the feasible region of problem (18)-(21) is convex.

However, since the objective function is not necessarily concave, we solve problem (18)-(21) by using

30 different initial solutions in a nonlinear programming package. We let pr be the prices found by

solving problem (18)-(21).

Letting p∗ be the prices found by our pricing approach, Table 5 shows F (p∗, D(p∗)), F (pr, D(pr))

and the optimal objective value of problem (18)-(21). The last three problems involve 3 time periods

because our nonlinear programming package did not find solutions in reasonable time to problems

with 28 time periods. In Table 5, comparing F (p∗, D(p∗)) with the optimal objective value of problem

(18)-(21) indicates that our pricing approach finds prices whose performances are close to the upper

bounds on the optimal objective value. Also, comparing F (p∗, D(p∗)) with F (pr, D(pr)) indicates

that the performances of the prices pr may be up to 40-50% worse than those of the prices p∗.

Therefore, solving a “relaxed” version of problem (1)-(5) may not provide “good” prices. Finally,

letting pn be the prices found by our pricing approach at iteration n, Figure 4 shows F (pn, D(pn)) as

a function of the iteration number n for problem (3, 28, 100). After 40-50 iterations, the performances

of the prices stabilize. This has been the case for all of our test problems.

Comparisons with exhaustive numerical search. We choose l1, l2 ∈ L and t1, t2 ∈ T , and

assume that only the prices over lane l1 at time period t1 and over lane l2 at time period t2 are

decision variables. The other prices are fixed at predetermined levels, say p̂ = {p̂lt : l ∈ L, t ∈ T }.
In this case, since the number of decision variables is only two, we can solve problem (9) through

exhaustive numerical search. In particular, for a small mesh size ξ > 0, our exhaustive numerical

search tests the performances of the prices p̂+k1 ξ el1t1 +k2 ξ el2t2 for different values of (k1, k2) ∈ Z2.

We test every value of (k1, k2) in the set

N = {(n1, n2) : p̂l1t1 + n1 ξ ≥ 0, Dl1t1(p̂l1t1 + n1 ξ) ≥ 0

p̂l2t2 + n2 ξ ≥ 0, Dl2t2(p̂l2t2 + n2 ξ) ≥ 0}.

If we let

(k∗1, k
∗
2) = argmax(k1,k2)∈N F (p̂ + k1 ξ el1t1 + k2 ξ el2t2 , D(p̂ + k1 ξ el1t1 + k2 ξ el2t2)),

11



then p̂ + k∗1 ξ el1t1 + k∗2 ξ el2t2 corresponds to the best prices found by exhaustive numerical search.

We let p̂∗ = p̂+k∗1 ξ el1t1 +k∗2 ξ el2t2 and p∗ be the prices found by our pricing approach by starting

from the initial prices p1. Table 6 shows p1
l1t1

, p1
l2t2

, F (p1, D(p1)), p∗l1t1
, p∗l2t2

, F (p∗, D(p∗)), p̂∗l1t1
, p̂∗l2t2

and F (p̂∗, D(p̂∗)), and indicates that the prices found by our pricing approach perform almost as

well as the ones found by exhaustive numerical search.

6 Conclusion

We developed a model and a solution approach to find what prices a freight carrier should charge

so that its pricing and fleet management decisions jointly maximize the profits. Computational

experiments showed that our approach yields high-quality solutions and the manner in which the

prices change in response to certain problem parameters complies with our expectations.

An attractive feature of our pricing approach is that the mechanism used to adjust the prices does

not interfere with the mechanism used to solve the fleet management problem. The former simply

takes the primal-dual solution from the latter and suggests improved prices. This relative indepen-

dence enables the carriers that are already solving the fleet management problem to incorporate our

pricing approach with small overhead.

Clearly, assuming that the load arrivals are deterministic functions of the prices is not realistic.

However, this criticism applies to all deterministic fleet management models and our pricing approach

can be applied on a “rolling-horizon” basis to handle the randomness in the load arrivals. One path

of research we are investigating is to assume that the loads arrivals are random and the rates of the

load arrivals depend on the prices. Further research should also incorporate multiple vehicle types,

load time windows and advance load bookings into the underlying fleet management model.
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Table 5: Comparison of the prices found by our pricing approach with those found by solving problem
(18)-(21).
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Table 6: Comparison of the prices found by our pricing approach with those found by exhaustive
numerical search.
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