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Multivariate receptor modeling is used to estimate profiles and contributions of pollution sources from
concentrations of pollutants such as particulate matter in the air. The majority of previous approaches to
multivariate receptor modeling assume pollution source profiles are constant through time. In an effort to
relax this assumption, this article uses the Dirichlet distribution in a dynamic linear receptor model for
pollution source profiles. The receptor model developed herein is evaluated using simulated datasets and
then applied to a physical dataset of chemical species concentrations measured at the U.S. Environmental
Protection Agency’s St. Louis–Midwest supersite. Supplemental materials to this articles are available
online.
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1. INTRODUCTION

Ambient air pollutants have been linked to detrimental en-
vironmental and public health effects. An important first step
in mitigating harmful effects of pollutants is the identification
of pollution sources and quantification of their environmen-
tal impacts. Source apportionment seeks to derive information
about pollution sources from ambient measurements of chemi-
cal species concentrations obtained from one or more receptor
sites. Specifically, source apportionment seeks to (1) identify
the major sources of pollution and (2) estimate the contribu-
tion of each source to pollution measured at the receptor site.
By estimating and tracking pollution source contributions over
time, government agencies can regulate the amount of emitted
pollution and develop strategies for minimizing health risks to
persons in proximity to pollution sources.

The basic source apportionment model (see Miller, Friedlan-
der, and Hidy 1972) is written as

ypt =
K∑

k=1

λpkfkt + ept, t = 1, . . . ,T,p = 1, . . . ,P, (1)

where ypt is the concentration of chemical species p measured
at time t, λpk is the proportion of chemical p in emissions from
source k, fkt is the concentration of pollutants contributed by
source k to the air at the receptor site at time t, ept is the er-
ror term associated with ypt, K is the total number of pollution

sources, P is the total number of measured chemical species,
and T is the total number of time periods. To maintain the
physical interpretation of model parameters mentioned above,
fkt and λpk are generally constrained to be nonnegative and∑P

p=1 λpk ≤ 1. Using source apportionment terminology, the
vector λk = (λ1k, . . . , λPk)

′ is referred to as the kth pollution
source profile and fkt is called the kth source contribution at
time t. Model (1) is written in matrix form as

YP×T = �P×KFK×T + EP×T , (2)

where Y is the matrix of chemical concentration measurements
over T time periods, � is the matrix of pollution source profiles,
F is the matrix of source contributions, and E is the matrix of
model errors.

From a statistical modeling perspective, elements of � and
F are unknown model parameters. The number of pollution
sources, K, could also be treated as a model parameter. While
methods for estimating K is a current area of research, the pri-
mary focus of this article is to propose a general class of statis-
tical models for incorporating time-dependent source profiles.
For this reason, K is assumed to be known throughout. This as-
sumption is not completely without merit because the datasets
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used in this article have been thoroughly studied using alterna-
tive statistical methods. For more on methods for estimating K
in factor models, see Park, Oh, and Guttorp (2002) and Lopes
and West (2004).

The assumptions made about (2) vary by modeling tech-
nique. For example, chemical mass balance (CMB) models as-
sume � is constant through time and known up to some mea-
surement error. This assumption implies that not only are all
pollution sources known but the chemical composition of emis-
sions from these sources are measured up to a degree of un-
certainty. Some of the several techniques used to estimate (2)
from the CMB modeling perspective include weighted least
squares (Miller, Friedlander, and Hidy 1972), effective variance
(Watson, Cooper, and Huntzicker 1984), method of moments
(Fuller 1987, pp. 193–194), and Britt and Luecke’s method
(Britt and Luecke 1973). Each of these methods, however, re-
quire assumptions about (2), in addition to known �, which are
not reasonable. For example, weighted least squares assumes
chemical concentrations, ypt, are normally distributed and have
support on the real line. This assumption is obviously false in
that, by definition, ypt ≥ 0. Effective variance, method of mo-
ments, and Britt and Luecke’s method make no attempt to alter
the normality assumption proposed by weighted least squares,
but rather develop iterative least squares algorithms to estimate
F in the presence of measurement errors.

Approaches to the CMB problem have been developed which
weaken, but do not remove, the assumption that � is known.
For example, Marmur, Mulholland, and Russell (2007) consider
a version of the chemical mass balance problem where pro-
files must be specified, but the specified profiles can be altered
(subject to constraints) during the estimation process. Bandeen-
Roche (1994) approaches the chemical mass balance problem
by assuming some elements of � are known while others are
treated as model parameters. Billheimer (2001) uses informa-
tive prior distributions for � and estimates � and F using a
Markov chain Monte Carlo (MCMC) algorithm.

In contrast to CMB models, multivariate receptor (MR) mod-
els assume � is unknown. From the MR modeling perspective,
(2) can be viewed as a factor analytic model where F is the fac-
tor scores matrix and � is the factor loadings matrix. While tra-
ditional factor analytic treatments have been used for source ap-
portionment (see Thurston and Spengler 1985), these methods
are not optimal due to the nonuniqueness of source contribu-
tion and source profile estimates. Bandeen-Roche (1994) points
out that achieving model identifiability is nontrivial and outlines
conditions for which identifiability is guaranteed. Park, Spiegel-
man, and Henry (2002) also investigates several approaches to
achieve model identifiability which are appropriate for receptor
models. In short, the constraints imposed by Park, Spiegelman,
and Henry (2002) to ensure model identifiability equate to plac-
ing point mass priors on elements of �. In contrast, the degree
of model nonidentifiability can be decreased by placing infor-
mative priors on λk rather than using presumptuous point mass
priors.

Among the methods that have been developed to either
yield uniquely identifiable solutions or reduce the degree
of model indeterminacy, include confirmatory factor analy-
sis (Christensen and Sain 2002), iterated confirmatory factor
analysis (Christensen, Schauer, and Lingwall 2006), Unmix

(Henry 1997), and positive matrix factorization (Paatero and
Tapper 1994). Both confirmatory and iterated confirmatory fac-
tor analysis provide unique estimates of � and F by fixing
q > K rows of � to prevent rotation. In iterated confirmatory
factor analysis, however, the q fixed rows are chosen randomly
at each iteration and the algorithm continues until a goodness-
of-fit statistic is minimized.

Positive matrix factorization (PMF) differs from both confir-
matory and iterated confirmatory factor analysis in that PMF
obtains parameter estimates via minimization of error terms
normalized by a measurement of uncertainty. Specifically, the
PMF algorithm minimizes

T∑
t=1

P∑
p=1

[
ypt − ∑K

k=1 λpkfkt

spt

]2

, (3)

where spt is the uncertainty estimate for ypt. Positive matrix
factorization does not guarantee uniquely identified estimates
of � and F, but merely reduces the degree of nonidentifiabil-
ity. Lingwall and Christensen (2007) evaluate the use of PMF
in pollution receptor models via simulation studies in the pres-
ence and absence of a priori information. As PMF is currently
the most commonly used estimation technique, the methods de-
veloped in this article will be compared to the results based on
a PMF analysis.

Lingwall, Christensen, and Reese (2008) estimate (2) from
a Bayesian perspective by placing prior distributions over �

and F and estimating the parameters via MCMC. Specifically,
Lingwall, Christensen, and Reese (2008) use the Dirichlet dis-
tribution as a prior for the vector λk which maintains the mul-
tivariate structure of source profiles. The Bayesian approach to
pollution receptor modeling, as illustrated by Lingwall, Chris-
tensen, and Reese (2008), is advantageous in that a priori infor-
mation can be easily incorporated via informative prior distrib-
utions. Furthermore, estimation of complex quantities becomes
almost trivial with draws from the joint posterior distribution.

A common assumption between CMB and MR models is
that ypt and ypt′ are typically assumed to be independent for
all t �= t′. Because air pollution data are gathered as consec-
utive measurements of chemical concentrations across time,
this assumption is neither physically nor empirically justifiable.
Christensen and Sain (2002) propose to account for the tempo-
ral dependence in ypt by using a nested-block bootstrap. The
general idea of the nested-block bootstrap is to block ypt into
blocks of size l and resample these blocks when forming boot-
strap replicates. For an optimal block size l, the dependence
structure is preserved within each block and neighboring blocks
are effectively independent. Park, Guttorp, and Henry (2001)
propose a novel approach to account for the temporal depen-
dence of ypt by allowing fkt and ept in (1) to evolve according to
first-order autoregressive processes. Park, Guttorp, and Henry
(2001) then uses MCMC techniques to sample from the full
joint posterior distribution of model parameters.

In contrast to Park, Guttorp, and Henry (2001), this article
investigates possible temporal dependence in ypt arising from
� being nonconstant and correlated through time. To date, all
previous approaches to receptor modeling have assumed � is
constant through time. The goal and contribution of this arti-
cle is to relax this assumption by modeling temporal changes
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in λk as a time-dependent process. To do so, the Dirichlet dis-
tribution is used as a prior distribution for source profiles at
each time period. Let λkt = (λ1kt, . . . , λPkt) be the kth pollu-
tion source profile at time t. Specifically, this article models
λkt as a time-dependent process where at each time t, λkt fol-
lows a Dirichlet distribution. Through this prior specification,
not only is the multivariate structure of λkt maintained, but the
degree of model indeterminancy can be reduced by informing
this prior distribution. Because λkt follows a Dirichlet distrib-
ution at each time period, the model developed in this article
is called the “Dirichlet process model.” By modeling λkt as a
time-dependent process, not only is the assumption of constant
source profiles relaxed, but a degree of temporal dependence in
ypt is accounted for by the temporal structure of λkt.

Section 2 investigates the temporal structure of pollution
source profiles. Section 3 introduces the Dirichlet process (DP)
model used in this article as well as computational issues and
solutions for obtaining estimates of model parameters. Sec-
tion 4 includes a discussion of the performance of the DP model
as compared to PMF based on several simulated datasets. In
Section 5, the DP model is used to analyze a physical dataset
collected at the U.S. Environmental Protection Agency’s St.
Louis–Midwest supersite. Section 6 discusses conclusions and
future areas of research.

2. THE TEMPORAL STRUCTURE OF POLLUTION
SOURCE PROFILES

As previously mentioned, chemical concentrations (ypt) are
typically gathered as consecutive measurements over time and,
hence, are temporally correlated. By way of illustration, con-
sider a dataset containing daily measurements of 44 chemical
species collected at a receptor site outside St. Louis for nearly
two consecutive years (see Section 5 for a complete description
of the St. Louis dataset). Figure 1 displays plots of autocorre-
lation functions (ACF) for ypt as estimated using the St. Louis
data. Figure 1 illustrates that different chemical species exhibit
varying degrees of autocorrelation. Autocorrelation in chemical
species can arise for various reasons. Atmospheric dispersion
models suggest that the duration of a particles’ ambient sus-
pension depends on several factors including size and weight
in addition to the meteorological conditions shared by all par-
ticles. Additionally, measurements of ypt are collected as 24-
hour aggregates. Thus, particles which can remain suspended
for longer periods can have similar measurements on consecu-
tive days.

Because of the autocorrelation present in air pollution data,
proper statistical modeling needs to account for the depen-
dence structure of ypt. In addition to the Park, Guttorp, and

Figure 1. ACF plots of ypt as estimated using data measured from a St. Louis receptor.
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Henry (2001) assumption that the temporal structure of ypt is
accounted for by autocorrelation in fkt and ept, the temporal
structure of ypt shown in Figure 1 may also be a byproduct
of � being nonconstant and correlated over time. The possi-
bility of nonconstant source profiles is supported by several
physical facts. For example, the composition of vehicle emis-
sions changes seasonally because fuel mixtures vary season-
ally. Emissions also change depending on the proportion of
diesel, hybrid, and unleaded gasoline vehicles on the road. Lee,
Hopke, and Turner (2006) addressed this problem by separat-
ing diesel and auto emissions into two different sources. How-
ever, this separation can only be done with a priori informa-
tion incorporated by the estimation method. Because such a
priori information is often unavailable, most MR methods fall
short in incorporating time-varying source profiles. Other pol-
lution sources such as zinc and copper smelters are also subject
to time-varying profiles because emission compositions from
these sources change depending upon the choice of flux used to
remove rock impurities prior to smelting.

To gather empirical evidence for potential autocorrelation
in �, a subset of the St. Louis dataset consisting of eight chem-
ical species measured over 640 days was divided into 32 sepa-
rate datasets of 20 days each. Let �t be the estimate of � for the
tth time period, for t = 1, . . . ,32. Positive matrix factorization
was then used to obtain estimates of �t for t = 1, . . . ,32 and
these estimates were concatenated into a single time-varying es-
timate of �. Figure 2 displays the time-varying estimate of λk

for an identified winter-secondary pollution source along with

an estimate for the constant source profile as estimated by PMF
on all 640 days of data. Figure 2 shows that small fluctuations
through time are exhibited by the most prominent elements of
the source profile with the largest fluctuations occurring in Ni-
trate (NO3). While this is a crude estimate of possible fluctu-
ations in a source profile, the statistical evidence given in Fig-
ure 2 coupled with the physical justifications discussed above
indicate a need to develop methodologies which account for
time-varying source profiles.

As an extension of previous MR models, this article models
the dependence structure of ypt by allowing λk to vary through
time. This article proposes using a Dirichlet prior distribution
for λkt because the Dirichlet distribution correctly represents
the multivariate structure of source profiles while maintaining
proper constraints on λkt. Furthermore, the temporal depen-
dence in λkt is modeled using a generalized dynamic linear
model (see West and Harrison 1997). The log-normal distrib-
ution is used as a convenient prior distribution for fkt in order to
maintain nonnegativity constraints. Additionally, ypt is assumed
to be log-normal in order to extend the Gaussian error assump-
tion of Park, Guttorp, and Henry (2001) to a more physically
realistic setting.

3. THE DIRICHLET PROCESS MODEL

In order to model time varying source profiles, (1) can be
expressed in a dynamic linear model (DLM) context (see West
and Harrison 1997) with observation equation,

ypt|�t, ft,wpt ∼ LN[�t(p) × ft,wpt], (4)

Figure 2. Time plot of winter secondary source profile. The dashed line indicates the PMF estimate of the source profile using all 640 days
of data. Plots are on different scales to accent temporal variation in the profile.
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where �t(p) is the pth row of �t = (λ1t, . . . ,λKt), ft =
(f1t, . . . , fKt)

′, E(ypt) = �t(p) × ft, and wpt is the coefficient
of variation (CV) associated with ypt. Thus, ypt has density,

p(ypt|�t, ft,wpt)

∝ 1

ypt
exp

{−(
ln(ypt) − ln(�t(p) × ft) + 0.5 ln(w2

pt + 1)
)

/(2 ln(w2
pt + 1))

}
. (5)

Each λkt is then allowed to evolve through time according to
the system equation,

λkt|gk,λk(t−1) ∼ DIR
[
gkλk(t−1)

]
, (6)

where gk is a precision parameter for the kth source. The density
function for λkt is given by

p
(
λkt|gk,λk(t−1)

) ∝
P∏

p=1

λ
gkλpk(t−1)−1
pkt . (7)

The initial information of the DLM is

λk0|mk0 ∼ DIR[mk0], (8)

fkt|akt,bkt ∼ LN[akt,bkt]. (9)

The hyperparameters mk0, akt, and bkt are assumed known. For
the remainder of this article (4)–(9) will be referred to as the
“Dirichlet process” (DP) model. A special distinction should
be made here in that the term “Dirichlet process” as it is used in
this article is not the same as it is used in the Bayesian nonpara-
metric literature. Rather, the use of the term “Dirichlet process”
in this article denotes a time-dependent process where at each
time period t, λkt follows a Dirichlet distribution.

First, in the DP model, chemical concentrations, ypt, are
assumed to follow a log-normal distribution with expectation
�t(p)× ft and CV wpt . The log-normal distribution is used here
to extend the normality assumption of Park, Guttorp, and Henry
(2001) to a physically realistic setting in which chemical con-
centrations are strictly nonnegative. The strong positive skew-
ness imposed on ypt by the log-normal distribution is physi-
cally justifiable in that large “outlying” concentrations can oc-
cur on days such as July 4th. Furthermore, high concentrations
of chemicals can occur on days with severe weather.

Second, source profiles are allowed to vary according to the
time-dependent process defined by (6). The precision parame-
ter gk represents a measure of autocorrelation in that it controls
how similar λkt is to λk(t−1). Notice that, under the above para-
meterization, the expected value of λpkt is λpk(t−1) with variance
λpk(t−1)(1−λpk(t−1))/(gk +1); thus, gk controls the variance of
the temporal process while not affecting the expected value. For
this reason, gk is thought of as a measure of autocorrelation. Al-
ternative methods and parameterizations for modeling temporal
dependence in λkt have been proposed by Grunwald, Raftery,
and Guttorp (1993) and Cargnoni, Muller, and West (1997) but
the parameterization used in (6) is more intuitive for the rea-
sons mentioned above. The parameter gk is given a log-normal
prior distribution with large variance to ensure gk > 0 and allow
the model to determine the amount of autocorrelation present in
λkt.

As the final component of the DP model, source contribu-
tions are assumed to follow a log-normal distribution with ex-
pectation akt and CV bkt. Because fkt must be restricted to the
positive real line to maintain their physical interpretation, the
use of the log-normal distribution as a prior distribution for all
fkt is justifiable. The log-normal distribution has the added ben-
efit of having heavy tails which provides positive mass over
possible large values of fkt. The prior parameters akt and bkt

can be used at the discretion of the researcher to account for
any a priori knowledge regarding fkt but here each akt is set at
3 and each bkt is set at 1. These values of akt and bkt provide
a sufficiently vague prior specification for each value of fkt. An
obvious extension of the DP model would be to model the tem-
poral dependence as in Park, Guttorp, and Henry (2001) but, as
the focus of this article is to introduce temporal dependence in
�t, this extension is omitted here.

One aspect of temporal variation not explicity accounted for
by the DP model is seasonal effects of pollution sources. Cer-
tainly some form of seasonal variation is to be expected. For
example, the composition of mobile emissions could change
seasonally as fuel mixtures vary by season. Explicitly building
seasonality into the model, however, can be difficult because
the pollution sources are unknown before hand and pollution
sources can react different to seasonality. While not explicity
built into the DP model, the model is sufficiently flexible to
capture aspects of seasonality. Specifically, because fkt and λkt

are allowed to vary daily, these parameters can exhibit seasonal
drifts over time. Indeed, seasonal drifts were identified when the
DP model was applied to the St. Louis dataset (see Section 5).

The Bayesian formulation of the DP model provides an ad-
vantage over traditional approaches in that the results obtained
therefrom are distributional results and probability statements
regarding model parameters are perfectly legitimate. Addition-
ally, Monte Carlo sampling and integration provide a simple
approach to obtaining distributions over functions of model pa-
rameters. This added flexibility of the DP model over traditional
MR models can be of great value to regulating bodies in ob-
taining probability distributions over complex quantities such
as how many days in a year contributions from a certain pollu-
tion source exceed a prespecified threshold (see Section 5 for
an example).

Due to the large number of model parameters that need to be
estimated [a total of (P × K × T)+ (K × T)+ K], MCMC sam-
pling is employed for parameter estimation. A full description
of the MCMC algorithm used in this article is included in the
Appendix but a few points of interest are detailed here. First, at
each iteration of the MCMC algorithm, gk and fkt are drawn us-
ing the random walk Metropolis algorithm. For example, when

updating fkt, proposal values are drawn from a N(f (r−1)
kt , σ 2

fkt
)

distribution where f (r)
kt is the value of fkt at the rth iteration and

σ 2
fkt

is the variance of the proposal distribution. Each parameter
vector λkt is drawn using the Metropolis–Hastings algorithm
with proposal distribution DIR[lktλ

(r−1)
kt ]. In this regard, lkt be-

comes a scale parameter, similar to gk in (6), which controls the
variance of the proposal distribution.

In the MCMC algorithm, when updating λk1, the Metropolis–
Hastings acceptance probability requires the evaluation of

p(λk1|·) ∝ L(λk1)p(λkt|gk,λk0)p(λk2|gk,λk1), (10)
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where L(·) denotes the likelihood and “|·” denotes conditioning
on all other variables. A problem arises because, in this con-
text, λk0 is unknown and, hence, (10) cannot be evaluated. To
circumvent this problem, λk0 is treated as an additional para-
meter and sampled at each iteration of the algorithm. Specif-
ically, at the rth iteration a proposal value λ∗

k0 is drawn from

DIR[lk0λ
(r−1)
k0 ] and accepted with probability,

α = min

{
p(λ∗

k0|·)q(λ
(r−1)
k0 |lk0,λ

∗
k0)

p(λk0|·)q(λ∗
k0|lk0,λ

(r−1)
k0 )

,1

}
, (11)

where q(·|·) is the density of the proposal distribution given by
(7). Note the acceptance probability given by (11) is the usual
Metropolis–Hastings acceptance probability with limiting dis-
tribution p(λk0|·). This sampled value is then used in evaluating
the acceptance probability for λk1.

To avoid excessive tuning of the scale of the distributions
used to propose values of model parameters, the MCMC al-
gorithm used in this article automatically adapts the scale of
these distributions based on the acceptance rates. Specifically,
if the algorithm “accepts” more than 60 of 100 consecutive pro-
posals, the scale of the proposal distribution is increased by a
factor of 10%. Alternatively, if the algorithm “rejects” more
than 80 of 100 consecutive proposals, the proposal distribution
is decreased by a factor of 10%. By using such an adaptation
scheme, the algorithm adapts with the purpose of acheiving ac-
ceptance rates between 20% and 60%. Proposal distributions
are adapted during the burn-in phase of the algorithm and left
constant afterward. By tuning the scale of the proposal distrib-
ution during the burn-in phase only, the resulting Markov chain
still converges to the correct stationary distribution because the
proposal distribution is constant after the burn-in phase.

4. SIMULATION STUDY

To evaluate the performance of the DP model, datasets were
simulated under a 2 × 3 full factorial design (see Cochran and
Cox 1957, chapter 5) where the values of wpt are taken to be
(0.2, 0.8) and the values of gk are taken to be (100,250,∞).
The case where gk = ∞ represents the assumption of constant
source profiles. At each of the six combinations of wpt and gk,
50 datasets with P = 44, K = 9, and T = 50 were generated
by first simulating values of �t according to (6) where �0 was
obtained from a previous analysis of the St. Louis dataset and
then drawing ypt from (4) where ft was obtained from the same
previous analysis. Using values of �0 and F from a previous
analysis is preferable to individually specifying values because
values based on previous analyses will be more realistic. The
DP model was fit using 50,000 iterations of the MCMC algo-
rithm with the first 25,000 constituting the burn-in phase. Pos-
itive matrix factorization was also fit to each of the simulated
datasets with the uncertainty matrix calculated as wpt times the
data matrix.

Median absolute error (MAE) is used as a model perfor-
mance metric for the DP model and PMF. Median absolute error
for �t (MAE�) is calculated as

∑P
p=1 |λpkt − λ̂pkt| where λpkt

is the “true” value of λpkt used in simulating the datasets and
λ̂pkt is the median of the post-burn draws of the marginal poste-
rior distribution for λpkt in the DP model and the point estimate

when using PMF. Median absolute error for F is calculated in a
similar manner as

∑K
k=1 |fkt − f̂kt| where fkt is the “true” value

and f̂kt is the median of the posterior draws in the Bayesian set-
ting and the point estimate under PMF. Smaller values for MAE
indicate better model performance.

Plots (a) through (f) in Figure 3 display density plots for
MAE� under each combination of wpt and gk. Table 1 com-
pares the median MAE� for the DP model and for PMF. As
compared to PMF, when profiles are time-dependent the DP
model reduced MAE� by an average of 68% and 67% when
wpt = 0.2 and wpt = 0.8, respectively. Thus, the DP model is
able to more correctly estimate �t when gk �= ∞ than PMF.
This performance is to be expected of the DP model under time-
varying source profiles because the DP model is flexible enough
to estimate time-varying profiles. A specific point of interest is
the reduction in MAE� when source profiles are constant over
time; that is, gk = ∞ (a key assumption for the use of PMF). In
this case, the DP model reduces MAE� by an average of 87%.
Thus, even when the assumptions required for the use of PMF
hold, the DP model still outperforms PMF in terms of model
error.

The performance of the DP model in estimating F is de-
pendent upon the value of wpt as is displayed by plots (g)
through (l) in Figure 3 as well as in Table 2. When wpt = 0.2 and
source profiles are time-variant, the DP model clearly achieves
lower MAEF than PMF with an average MAEF of 4.166 under
the DP model and an average MAEF of 16.984 under PMF: a
75% reduction in error. When wpt = 0.8 and source profiles are
allowed to vary through time, the average MAEF is 13.78 and
14.59 for the DP model and PMF respectively. This equates to
a 6% difference in MAEF across the two models. As was also
seen in estimating λkt, the DP model reduced MAEF when the
assumption of constant source profiles was true. This reduction
of error is most prevalent by noting that MAEF was reduced
by 88% when wpt = 0.2. When variation among ypt was large
(wpt = 0.8) and source profiles are constant, model error under
the DP model was 60% that of PMF.

While this article does not endeavor to comprehensively
compare the DP model to PMF, early simulations indicate dis-
tinct advantages to using the DP model over PMF. For exam-
ple, the DP model performs at least as well as PMF under the
assumption of constant source profiles (gk = ∞), a key assump-
tion for the use of PMF. The DP model also has the added flex-
ibility of incorporating time-varying profiles and outperforms
PMF when time-varying profiles are present. Thus, the DP
model is preferred to PMF in that it requires fewer assumptions
for its use, it often has better performance in simulations, and
it facilitates distributional analysis of model parameters rather
than mere point estimates.

5. APPLICATION TO ST. LOUIS DATASET

The St. Louis Supersite is located on the Illinois side of St.
Louis and monitors consolidated 24-hour measurements of fine
particulate matter (PM2.5). Known pollution sources near the
St. Louis Supersite include a steel mill to the norteast as well
as zinc, copper, and lead smelters to the southwest. In total, the
St. Louis dataset consists of 661 complete daily measurements
taken over 749 days between May 2001 and May 2003 on 44
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l)

Figure 3. Density plots of MAE� and MAEF . The solid and dashed lines correspond to the MAE achieved by the DP model and PMF,
respectively. The columns of plots correspond to (wpt,gk) = (0.2, 100), (0.8, 100), (0.2, 250), (0.8, 250), (0.2,∞), (0.8, ∞), respectively.
Across all specified values of (wpt,gk), MAE� is lower for the DP model than PMF. When wpt = 0.2 the DP reduces MAEF compared to PMF,
but when wpt = 0.8 both models perform comparably.
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Table 1. Median values of MAE� for the DP and PMF models

Factor levels

gk = 100 gk = 250 gk = ∞
Model wpt = 0.2 wpt = 0.8 wpt = 0.2 wpt = 0.8 wpt = 0.2 wpt = 0.8

DP 0.349 0.566 0.351 0.401 0.160 0.182
PMF 1.599 1.605 1.292 1.387 1.321 1.365

chemical species including metals, organic, and elemental car-
bon (OC and EC), sulfate (SO4), and nitrate (NO3). Eighty-
eight days had either complete or partial missing data. Other
than one stretch of 5 consecutive missing measurements, none
of the missing measurements occurred on consecutive days.
The stretch of 5 consecutive days lasted between 11/21/2001
and 11/25/2001 (Wednesday–Sunday). Assuming source pro-
files do not change drastically over a 5 or 1 day period, the miss-
ing measurements were removed from the dataset and the DP
model above was fit to the 661 days of complete data. A com-
plete description of sampling methods for the St. Louis data
set can be found in Lee, Hopke, and Turner (2006). Note that
both S and SO4 are included in the suite of chemical analyses
because the two types of measurements can be useful in identi-
fying subtle differences in source types. However, to keep from
doubly impacting the source contribution estimates, the effect
of S is eliminated and only SO4 is considered when calculating
the daily contribution amounts.

Prior to analysis, cross-validation techniques were used to as-
sess the goodness of fit of the Dirichlet process model applied to
the St. Louis dataset. Sixty-six days (approximately 10% of the
complete dataset) were randomly selected to be cross-validated.
For each of the 66 days, the Dirichlet process model was fit to
the remaining 660 days in the dataset and the percentiles of
the observed data in the posterior predictive distribution were
recorded. For example, if day t was randomly selected to be
cross-validated then the vector yt was excluded and the Dirich-
let process model was fit to the remaining data (Y−t). After
fitting the model, the percentile (qpt) of each ypt ∈ yt was cal-
culated as

qpt = 100 ×
∫ ypt

0
p(ỹpt|Y−t)dỹpt, (12)

where p(ỹpt|Y−t) is the marginal posterior predictive distribu-
tion of ypt given by

p(ỹpt|Y−t) =
∫

�
p(ỹpt|�)π(�|Y−t)d�, (13)

ỹpt is the predicted value of ypt, and π(�|Y−t) is the distri-
bution of all model parameters (�) given all the data but the

excluded time period. Due to the complexity of the integrals in
(12) and (13), Monte Carlo integration techniques were used to
calculate these quantities.

Using the above goodness-of-fit technique, the Dirichlet
process model performed well in predicting concentrations for
those chemicals with a high average concentration across time.
For example, the distribution of qpt for chemicals such as cop-
per, zinc, lead, and elemental carbon were relatively uniform
over the interval (0, 100). Additionally, the distribution of qpt

for other chemicals with high average concentrations such as
sulfate and nitrate were unimodal, centered around 50 with high
variation. Thus, the DP model was consistent with the observed
data for chemicals with high average concentration.

In contrast, the Dirichlet process model exhibited positive or
negative bias in predicting the concentration of those chemi-
cals with low average concentration. For example, positive bias
was exhibited by the DP model in predicting chemical concen-
trations such as those for magnesium and strontium. Addition-
ally, the DP model exhibited negative bias in predicting chem-
icals such as titanium, vanadium, chromium, and gallium. In a
few rare cases (e.g., cobalt and barium) the distribution of qpt

was bimodal with the observed values either falling near the
80th percentile or near the 20th percentile while rarely falling
in the 40th to 60th percentile range. This model lack of fit is
only of minor concern because research interest typically lies
with those chemicals with high average concentration which
are modeled correctly by the DP model.

For the analysis of the St. Louis dataset, the DP model was
fit to all 44 observed chemical species using K = 9 sources due
to the findings of Lingwall and Christensen (2007). Vague prior
distributions for λkt and fkt were used in fitting the DP model.
Fifty thousand total iterations were used in the MCMC algo-
rithm with the first 25,000 iterations constituting the burn-in
phase.

After having fit the DP model, a common practice is to use
the estimates of �t and F to label the estimated sources. One
useful quantity in labeling the pollution sources is the propor-
tion of total predicted mass for chemical species p originating
from source k. The total predicted mass for chemical species

Table 2. Median values of MAEF for the DP and PMF models

Factor levels

gk = 100 gk = 250 gk = ∞
Model wpt = 0.2 wpt = 0.8 wpt = 0.2 wpt = 0.8 wpt = 0.2 wpt = 0.8

DP 3.440 12.797 4.891 14.590 2.180 9.453
PMF 15.884 13.901 18.083 15.279 18.676 15.373
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Table 3. Distribution of explained chemical mass across sources

Source

Chemical 1 2 3 4 5 6 7 8 9

SO4 0.857 0.069 0.033 0.015 0.019 0.000 0.002 0.002 0.002
OC 0.213 0.157 0.478 0.063 0.010 0.041 0.006 0.023 0.008
NO3 0.090 0.897 0.002 0.002 0.005 0.001 0.002 0.000 0.002
EC 0.050 0.202 0.502 0.156 0.001 0.034 0.009 0.010 0.036
Na 0.406 0.158 0.356 0.005 0.010 0.036 0.006 0.022 0.001
K 0.048 0.074 0.088 0.003 0.081 0.019 0.667 0.010 0.009
Si 0.027 0.020 0.221 0.123 0.558 0.008 0.003 0.004 0.037
Fe 0.108 0.013 0.197 0.427 0.119 0.081 0.006 0.015 0.035
Ca 0.003 0.002 0.624 0.054 0.149 0.104 0.004 0.012 0.047
Cl 0.000 0.341 0.007 0.008 0.000 0.428 0.117 0.010 0.087
Mg 0.249 0.163 0.202 0.010 0.115 0.085 0.064 0.059 0.053
Al 0.097 0.110 0.021 0.027 0.573 0.014 0.124 0.011 0.022
Zn 0.110 0.007 0.004 0.004 0.007 0.610 0.013 0.130 0.115
Cu 0.001 0.001 0.001 0.003 0.001 0.002 0.054 0.913 0.024
Ba 0.155 0.089 0.056 0.374 0.004 0.004 0.306 0.006 0.005
Pb 0.116 0.028 0.014 0.007 0.014 0.006 0.031 0.045 0.739

p is given by
∑

t ỹpt = ∑
t
∑

k λ̂pktf̂kt where λ̂pkt and f̂kt is the
median of the posterior draws for λpkt and fkt, respectively. The
proportion of total predicted mass for chemical species p at-
tributed to source k is then,∑

t λ̂pkt f̂kt∑
t
∑

k λ̂pkt f̂kt
.

For brevity, Table 3 displays the proportion of total predicted
mass attributed to the nine sources for the 16 of the total 44
chemical species with the largest average concentrations (the
full table is available as a supplemental file). For example, the
first number in the first row of Table 3 indicates that the fitted
model estimates 85.7% of the total predicted mass of SO4 is at-
tributed to Source 1. Using the values listed in Table 3 and the
plots of the source contributions over time in Figure 5 below,
labels can be applied to the 9 estimated sources by matching
the proportion of total predicted mass to knowledge of known
pollution sources of the surrounding areas. For example, the
steel mill to the northeast of the receptor location is a known
large contributor to iron pollution and Source 4 in Table 3 is
the largest contributor to the total predicted mass of iron. Thus,
Source 4 is labeled as “steel mill.” Sources 1 and 2 can likewise
be labeled summer and winter secondary as these are high con-
tributors of SO4 and NO3 and the corresponding source contri-
bution plots exhibit strong summer and winter peaks. Source 3
is identified as the mobile source due to high contributions of
OC. Silicon and aluminum are mostly explained by Source 5
which corresponds to soil. Interestingly, note that the soil source
has a large spike in July of 2002 which corresponds to the Saha-
ran dust storm which had global impacts (Lee and Hopke 2006).
Zinc, copper, and lead are largely contributed by Sources 6, 8,
and 9, respectively. These sources are then labeled as the zinc,
copper, and lead smelters to the southwest of the receptor site.
Lastly, Source 7 only shows large contributions on July 4th and
July 5th and is high in potassium indicating a fireworks source.

The sources identified by the DP model coincide directly
with those identified by Lingwall and Christensen (2007). This

similarity between the DP model and PMF is encouraging be-
cause vague prior distributions were used for the DP model and
the same nine sources were identified. In Lingwall and Chris-
tensen (2007), the source profiles were identified by fitting dif-
ferent source apportionment models for K = 3, . . . ,13 and the
final estimate of � was constructed by concatenating profile
estimates from the different models. Thus, the DP model ad-
equately identified pollution sources while PMF required ad-
ditional guidance and analysis to identify the same pollution
sources.

As noted previusly, the DP model is sufficiently flexible
to capture certain aspects of seasonal variation in pollution
sources. For example, consider Figure 4 which display the time
plots of the six largest elements of λkt for the zinc smelter
source. Specifically, notice that in Figure 4 the percentage of
chlorine (Cl) changes season to season. Chlorine seems to be
more prevalent in the winter than in the summer. The average
value for chlorine in λkt is 0.043 and 0.082 for summer and
winter, respectively. Using the DP model, the average value of
chlorine in the zinc smelter profile over time is 0.06 compared
to 0.05 when using PMF. Thus, the PMF estimate of λpkt for
chlorine in the zinc smelter appears to be a seasonal average
while the DP model identifies seasonal trends. This seasonal
phenomenon has posed a problem for traditional approaches
to source apportionment. The analysis of the St. Louis dataset
by Lee, Hopke, and Turner (2006) removed chlorine from the
dataset to avoid this phenomenon while, as previously men-
tioned, Lingwall and Christensen (2007) found a yearly average
when estimating a constant profile. In contrast, the DP model is
flexible enough to capture such atmospheric phenomena as the
seasonal variations in chlorine.

Figure 5 displays time plots of the posterior medians of
fkt for the nine identified sources. The median source con-
tribution estimates over time are as follows: summer sec-
ondary (6.21 μg/m3), winter secondary (3.86 μg/m3), mobile
(2.65 μg/m3), steel mill (0.56 μg/m3), soil (0.33 μg/m3), zinc
smelter (0.30 μg/m3), fireworks (0.20 μg/m3), copper smelter
(0.17 μg/m3), and lead smelter (0.13 μg/m3 ). Each of these
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Figure 4. Time plot of the six largest elements of λkt for the zinc smelter profile as identified by the DP model. The dashed lines correspond
to the time-constant PMF estimate.

medians are comparable to those obtained from Lingwall and
Christensen (2007); however, the DP model has the added ben-
efit of obtaining distributional results for all model parameters
which is illustrated below.

Most of the identified sources (e.g., zinc smelter) correspond
directly with a known pollution source. The summer and winter
secondary sources, however, do not correspond with a specific
pollution source but are sources used to explain seasonal vari-
ation in the chemical concentrations. The summer secondary
source profile accounts for the fact that more of sulfate (SO4)
and sodium (Na) is seen during the summer months. Similarly,
the winter secondary profile accounts for the higher concentra-
tions of nitrate (NO3) and elemental carbon (EC) during the
winter months. By thus estimating the pollution sources, the
DP model accounted for another known seasonal variation in
chemical concentrations.

To demonstrate the advantage of using the DP model over
PMF in obtaining distributional results for complex functions
of model parameters, consider a regulatory body which has a
goal to keep the daily auto emissions below 6.0 μg/m3 for 90%
of the measured days. Let Z represent the number of days that
mobile emissions falls above 6.0 μg/m3 in the two year period

the St. Louis dataset was collected. The discrete probability dis-
tribution for Z, p(Z|Y), is defined as

p(Z = z|Y) =
∫

I

(
661∑
t=1

I[fauto,t > 6.0] = z

)
π(�|Y)d�, (14)

where I(·) is an indicator function, fauto,t is the mobile source
contribution at time t, and π(�|Y) is the posterior distribution
of all model parameters (�). When using the DP model, the
post burn-in draws from the MCMC are used to construct (14)
via Monte Carlo integration. Figure 6 displays the model es-
timate of (14). Using Monte Carlo integration techniques, the
complex quantity, Pr{Achieved Goal} = Pr{Z < 66.1 = 661 ×
0.1} = ∑∞

Z=0 I(Z < 66.1) × p(Z|Y) is estimated to be 0.86. If
the regulatory body is satisfied with this probability of success
then any policies implemented to achieve this goal should be
continued; otherwise, the regulatory body would need to reeval-
uate its policies and reformulate a plan to reduce auto emis-
sions.

6. CONCLUSIONS

In this article, an extension of the multivariate receptor model
given by (1) was proposed where pollution source profiles are
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Figure 5. Time plot of fkt for the nine identified sources as estimated by fitting the DP model to the St. Louis dataset.

Figure 6. Distribution of the number of days mobile emissions exceeds 6.0 μg/m3.
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allowed to vary through time. Time-varying source profiles
were shown to be empirically and physically justifiable. Fur-
thermore, by allowing source profiles to vary through time, a
degree of temporal dependence in pollution concentrations is
accounted for. Model parameters were estimated via adaptive
MCMC methods which provide draws from the joint posterior
of all model parameters. These draws were shown to be useful
in the estimation of complex functions of model parameters.

The methods proposed herein were found to reduce estima-
tion error for λkt when source profiles were both time-varying
and time-invariant as compared to PMF. When uncertainty as-
sociated with ypt was small, the DP model reduced estima-
tion error in fkt as compared to PMF. However, when variation
within ypt was large, the DP model and PMF had comparable
estimation error for fkt. By applying the DP model to the St.
Louis dataset, seasonal trends in chemical concentrations and
λkt were discovered. Previous approaches to source apportion-
ment either excluded chemicals with seasonal variation or, if
included, estimates of λpk from these studies were shown to be
a seasonal average. The flexibility of the DP model to estimate
seasonal variations is a scientific asset when trying to under-
stand the behavior of chemical species in ambient air.

The DP model presented here was developed to provide in-
sight into the temporal evolution of source profiles where data
series are long enough to warrant a suspicion of profile evolu-
tion. However, many datasets are collected over a 2–3 week
period in a single season. The results in this article suggest
that the source profiles change only slightly over such a short
window. Hence, the assumption of constant source profiles for
such datasets may be approximately correct rendering alterna-
tive methods such as Lingwall, Christensen, and Reese (2008)
more appropriate for these cases.

As previously mentioned, Park, Guttorp, and Henry (2001)
showed that source contributions fkt and model errors ept also
exhibit temporal correlation. As the main contribution of this ar-
ticle was to develop a model which allows for temporally cor-
related source profiles, the autocorrelation in fkt and ept was
ignored. Future approaches to multivariate receptor modeling
should unite the methods proposed by Park, Guttorp, and Henry
(2001) with the methods discussed in this article to completely
model the temporal structure of ypt.

A key assumption made throughout this article was that the
degree of autocorrelation among all λpkt ∈ λkt was captured by
the single smoothness parameter gk. Figure 1 gives evidence
against this assumption in that those chemicals with large con-
centrations display a greater degree of autocorrelation. To in-
corporate this, the use of a scalar precision parameter could be
extended to vector valued as gk = (g1k, . . . ,gPk)

′ where gpk rep-
resents the degree of autocorrelation of chemical p in λkt. Each
gpk would then need to be estimated via MCMC.

One interesting extension of the DP model, and source ap-
portionment models in general, is the use of covariate informa-
tion in identifying pollution sources and explaining the behav-
ior of source contributions. For example, one would expect to
see higher contributions from certain pollution sources on days
where the wind carries pollutants from the source to the recep-
tor site. Additionally, given wind direction, observing spikes
in certain pollutants could provide some information regarding
which direction pollution sources are relative to the receptor
site. Methods which incorporate such covariate information are
a current area of active research.

APPENDIX: MCMC DETAILS

Estimation of the DP model requires the calculation of the
joint posterior distribution of all model parameters given the
data. To acheive this, this article used a Metropolis within
Gibbs adaptive MCMC algorithm. Specifically, a Gibbs sam-
pler (Casella and George 1992) was used to sample each model
parameter from its complete conditional distribution (the distri-
bution of the parameter given all the other parameters and the
data) in sequential order. The complete conditional distributions
for the DP model are

p
(
λkt|�−λkt ,Y

) ∝ L(λkt)p
(
λk(t+1)|λkt,gk

)
p
(
λkt|λk(t−1),gk

)
∀k, t = 1, . . . ,T − 1,

p
(
λkT |�−λkT ,Y

) ∝ L(λkT)p
(
λkT |λk(T−1),gk

) ∀k,

p
(
λk0|�−λk0 ,Y

) ∝ p(λk1|λk0,gk)p(λk0) ∀k,

p
(
fkt|�−fkt ,Y

) ∝ L(fkt)p(fkt) ∀k, t,

and

p
(
gk|�−gk ,Y

) ∝
[

T∏
t=1

p
(
λkt|λk(t−1),gk

)]
p(gk) ∀k,

where �−θi represents the set of all model parameters exclud-
ing the parameter θi,

L(λkt) ∝
[

P∏
p=1

1

ypt

× exp
{−(

ln(ypt) − ln(�t(p) × ft) + 0.5 ln(w2
pt + 1)

)
/(2 ln(w2

pt + 1))
}]

,

L(fkt) ∝ L(λkt), are the likelihoods for λkt and fkt, p(λkt|λk(t−1),

gk) is given by (7), p(λk0) is given by (8), p(fkt) is given by (9),
and p(gk) is the log-normal prior distribution for gk. Given start-

ing values λ
(0)
10 , . . . ,λ

(0)
KT , f (0)

11 , . . . , f (0)
KT ,g(0)

1 , . . . ,g(0)
K , the Gibbs

sampling algorithm proceeds as follows:

1. Set r = 1.
2. For k = 1, . . . ,K and t = 1, . . . ,T , sample λ

(r)
kt from

p(λkt|�(r)
−λkt

,�
(r−1)
−λkt

,Y) where �
(r)
−θi

represents the set of
parameters for which the rth value has already been drawn
in the algorithm excluding the parameter θi.

3. For k = 1, . . . ,K and T = 1, . . . ,T , sample f (r)
kt from

p(fkt|�(r)
−fkt

,�
(r−1)
−fkt

,Y).

4. For k = 1, . . . ,K, sample g(r)
k from p(gk|�(r)

−gk
,�

(r−1)
−gk

,

Y).
5. Repeat steps 2–4 for r = 2, . . . ,R.

As R → ∞, the distribution of the generated parameters � =
{�1, . . . ,�T ,F,g1, . . . ,gK} tends to the joint posterior distrib-
ution and statistical inference can be performed on the resulting
draws obtained from the algorithm.

Because each complete conditional distribution given above
is known only up to a constant of proportionality, the Metro-
polis–Hastings algorithm (Chib and Greenberg 1995, see) was
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used within the Gibbs sampler to sample from each com-
plete conditional distribution. Specifically, values for f (r)

kt and

g(r)
k were drawn using the random walk Metropolis algorithm

where the proposal distribution is a normal distribution cen-
tered at f (r−1)

kt and g(r−1)
k . In contrast, λ

(r)
kt was obtained us-

ing the Metropolis–Hastings algorithm where proposal values
λ∗

kt ∼ DIR[lktλ
(r−1)
kt ] where lkt controls the scale of the proposal

distribution.
To achieve good mixing properties, an adaptive MCMC algo-

rithm was used to adapt the scale of each proposal distribution.
Specifically, the acceptance rate of the chain was monitored in
windows of size 100. If the algorithm accepted more than 60 of
100 proposals within a window, the scale of the corresponding
proposal distribution was increased by a factor of 10%. Alter-
natively, if the algorithm accepted less than 20 of 100 proposals
within a window, the scale of the corresponding proposal dis-
tribution was decreased by a factor of 10%. In this way, the
adaptation is done to acheive an acceptance rate between 20%
and 60%. The adaptation of the algorithm was done during the
burn-in phase only. Thus, the limiting behavior of the resulting
adaptive MCMC algorithm remains intact.

SUPPLEMENTAL MATERIALS

Explained Mass Table: Full table of explained chemical mass
for St. Louis dataset. (ExplainedMassFullTable.txt, text file)
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