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Abstract

Stable isotopes are a powerful tool for ecologists, often used to assess contributions of

different sources to a mixture (e.g. prey to a consumer). Mixing models use stable

isotope data to estimate the contribution of sources to a mixture. Uncertainty associated

with mixing models is often substantial, but has not yet been fully incorporated in

models. We developed a Bayesian-mixing model that estimates probability distributions

of source contributions to a mixture while explicitly accounting for uncertainty

associated with multiple sources, fractionation and isotope signatures. This model also

allows for optional incorporation of informative prior information in analyses. We

demonstrate our model using a predator–prey case study. Accounting for uncertainty in

mixing model inputs can change the variability, magnitude and rank order of estimates of

prey (source) contributions to the predator (mixture). Isotope mixing models need to

fully account for uncertainty in order to accurately estimate source contributions.
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I N T R O D U C T I O N

Movements of nutrients and matter through food webs and

ecosystems are often difficult to quantify, being transient,

variable and difficult to observe (Polis 1991). There is

growing recognition that stable isotopes of naturally

occurring elements, such as carbon, sulphur, nitrogen,

oxygen and hydrogen, are a powerful tool to trace these

flows (Peterson & Fry 1987; Schindler & Lubetkin 2004; Fry

2006; West et al. 2006). As a result, stable isotope studies are

increasing exponentially in ecology (Schindler & Lubetkin

2004; Martı́nez del Rio & Wolf 2005). One of the most

common uses of stable isotopes is to quantify contributions

of different sources to a mixture. For example, stable

isotopes have been used to investigate the potential sources

of pollution (Clouquet et al. 2006). Alternatively, because

organisms �are what they eat, isotopically� (DeNiro &

Epstein 1978), stable isotopes can illuminate many aspects

of food web ecology, such as food-web length (e.g. Kling

et al. 1992; Post 2002), niche space (e.g. Layman et al. 2007)

and diet compositions (e.g. Benstead et al. 2006). In this

paper, we focus principally on such food-web analyses in

examples and discussion, although the analytic approach we

describe is not limited to species interactions or ecological

systems in general.

To quantify the relative contribution of different sources

to a mixture, stable isotope studies often construct a mixing

model using stable isotope signatures from potential sources

and the mixture. Because stable isotopes are conserved

through time, and change relatively predictably during

biological processes, mass-balance mixing models can

quantitatively assess the relative contribution of different

sources to the mixture of interest (Peterson & Fry 1987;

Phillips & Gregg 2001, 2003; Schindler & Lubetkin 2004;

Martı́nez del Rio & Wolf 2005). Like other powerful tools,

mixing models have the potential to be misused. In fact, as

previous authors have noted (Phillips & Gregg 2001; Fry

2006), stable isotope mixing models are often performed

with little or no consideration of the substantial and multiple

sources of uncertainty. Given the ongoing proliferation of

stable isotope studies, there is a clear need for robust

analytical techniques that allow for the estimation of

uncertainty surrounding source contributions. A basic

mass-balance mixing model assumes that, for a given
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isotope, the isotopic signature of the mixture (dM) is defined

as follows:

dM¼ f1 � ðd1þ c1Þþ f2 � ðd2þ c2Þ � � � fn � ðdnþ cnÞ; ð1Þ

where fi is the proportional contribution of the ith source to

the mixture, di the isotopic signature of the ith source and ci

the isotope-specific fractionation of the ith source

(often fractionation is assumed to be constant across

sources). Stable isotope signatures are generally expressed as

a ratio of the heavy to light isotope, relative to a standard. If

the number of sources is less than or equal to the number

of isotopes + 1, these equations can be solved exactly for

the contributions of the different sources. For instance,

with data from two isotopes, only the contribution of

three or fewer sources can be partitioned exactly. This

mixing model is the basis for stable isotope source

partitioning.

Mixing models are challenged to incorporate a variety of

sources of uncertainty. Here, we present a mixing model

that more fully incorporates the following sources of

uncertainty.

Variability in isotope signatures

Stable isotope signatures typically have substantial uncer-

tainty, primarily due to process errors (Phillips & Gregg

2001). Isotopic studies of food webs often investigate how

populations of prey (sources) contribute to a population of

consumers (mixture). However, within a population, differ-

ences in diet lead to differences in the isotopic signatures of

individuals (Angerbjörn et al. 1994; Matthews & Mazumder

2004; Urton & Hobson 2005; Araújo et al. 2007; Layman

et al. 2007). Within an individual, stable isotope signatures

are subject to a small amount of measurement error (Jardine

& Cunjak 2005), can vary across tissue types (e.g. Tieszen

et al. 1983) and be influenced by preservation and sampling

techniques (Sarakinos et al. 2002; Post et al. 2007). Further-

more, given that isotope signatures are temporally and

spatially variable, the sampling regime used to collect

isotope signatures is of critical importance, especially given

that consumers and their prey will likely have different scales

of isotopic integration (Cabana & Rasmussen 1996; Vander

Zanden & Rasmussen 1999; O�Reilly et al. 2002; Post 2002).

Isotopic fractionation

Ratios of isotopes systematically change as elements are

ingested, excreted or catabolized (e.g. trophic fractionation;

DeNiro & Epstein 1981; Minagawa & Wada 1984; Martı́nez

del Rio & Wolf 2005). Fractionation can vary depending on

the characteristics of the consumer, such as diet composi-

tion or feeding rate (Vander Zanden & Rasmussen 2001;

Post 2002; McCutchan et al. 2003; Vanderklift & Ponsard

2003; Martı́nez del Rio & Wolf 2005). Despite this

substantial variability, studies typically assume constant

fractionation rates and ignore the associated uncertainty

(but see Vander Zanden & Rasmussen 2001).

Too many sources

As the number of potential sources included in a mixing

model increases, the uncertainty in the contribution of any

one source also increases (Phillips & Gregg 2003; Lubetkin

& Simenstad 2004). Mixing models cannot deterministically

solve mass-balance equations when the number of sources

exceeds the number of isotopes + 1, a common occurrence

in ecological systems. There have been several statistical

treatments to account for mixing models without determin-

istic solutions (e.g. Phillips & Gregg 2003; Lubetkin &

Simenstad 2004), and we build upon these previous models

to more fully incorporate uncertainty.

Mixing model estimates can be refined by incorporating

additional information. Many predator–prey isotope studies

have used gut content or faecal analyses to informally refine

the estimates of prey contributions to a consumer (e.g. Kling

et al. 1992; Vander Zanden et al. 1997; Layman et al. 2007).

However, to our knowledge, there have been limited

attempts to establish a formal means to incorporate such

prior information into mixing model analyses (but see

Phillips & Gregg 2003). Thus, we see a pressing need for a

stable isotope mixing model that can partition multiple

sources, incorporate multiple sources of uncertainty and

provide an explicit framework for using prior information to

guide analyses. These challenging aspects of stable isotope

analyses can be addressed through Bayesian statistical

techniques. In this paper, we describe a Bayesian stable

isotope mixing model that achieves these goals. As an

example, we use this mixing model to estimate contributions

of different prey to rainbow trout (Oncorhynchus mykiss) from

Alaskan streams and demonstrate that accurately interpret-

ing stable isotope data with mixing models requires

addressing the uncertainty associated with these data.

M E T H O D S

Statistical model

We developed and implemented a stable isotope mixing

model, hereafter referred to as MixSIR, using a Bayesian

framework to determine the probability distributions for the

proportional contribution ( fi ) of each source i to the mixture

of interest. Bayesian statistics offer a powerful means to

interpret data because they can incorporate prior informa-

tion, integrate across sources of uncertainty and explicitly

compare the strength of support for competing models or

parameter values (Hilborn & Mangel 1997; Ellison 2004).
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For this application, Bayesian techniques allow for the

estimation of posterior probability distributions for all fi
through numerical integration. This numerical integration

requires randomly generating q proposed vectors of

proportional source contributions fq representing possible

states of nature, where all fi elements in fq sum to unity.

Based on Bayes theorem, the probability of each fq is then

calculated based on data and prior information (Hilborn &

Mangel 1997; Ellison 2004) such that:

Pðf q j dataÞ ¼
Lðdata j f qÞ � pðf qÞP

Lðdata j f qÞ � pðf qÞ
; ð2Þ

where L(data|fq) is the likelihood of the data given fq, p(fq)

represents the prior probability of the given state of nature

being true based on prior information and the denominator

is a numerical approximation of the marginal probability

of the data (a normalizing constant). The numerator

Lðdata j f qÞ � pðf qÞ, hereafter referred to as the unnormal-

ized posterior probability (Gelman et al. 2003), yields the

absolute probability of a given fq based on data and prior

beliefs.

Suppose we are trying to estimate the contribution of i

sources to a mixture of j isotopes. In MixSIR, isotope

signatures from the mixture population constitute the data

and are assumed to be normally distributed. For instance, if we

wish to determine the contribution of prey items to a predator

diet, the data would be isotope signatures from individual

predators. Uncertainty in source isotope values are factored

into the model by defining mean and variance parameters for

each i, j. Prior beliefs regarding proportional source contri-

butions are defined using beta distributions on the interval [0,

1] and the two non-negative shape parameters, a and b.

In order to calculate the likelihood of the data given fq,

the proposed proportional contributions are combined with

both user-specified source isotope distributions and their

associated user-specified fractionation distributions in order

to develop resultant proposed isotope distributions for the

mixture. The likelihood of this distribution given the

mixture data is then determined by calculating the product

of the likelihoods of each individual mixture isotope value,

given the proposed mixture distribution specific to that

isotope. The proposed isotope distributions for the mixture

are determined by solving for the proposed means l̂j and

standard deviations r̂j of the mixture based on the randomly

drawn fi values comprising a vector fq:

l̂j ¼
Xn

i¼1

fi � mjsourcei
þ mjfraci

� �h i
ð3Þ

r̂j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

f 2
i � s2

jsourcei
þ s2

jfraci

� �h is
; ð4Þ

where mjsourcei
is the mean of the jth isotope of the ith source,

mjfraci
the mean fractionation of the jth isotope of the ith

source, s2
jsourcei

the variance of the jth isotope of the ith source

and s2
jfraci

the variance in fractionation of the the jth isotope

of the ith source. Once the l̂j �s and r̂j �s are determined, the

likelihood of the data given the proposed mixture is

calculated as:

Lðx j l̂j ; r̂jÞ ¼
Yn

k¼1

Yn

j¼1

1

r̂j �
ffiffiffiffiffiffiffiffiffiffi
2 � p
p � exp �

ðxkj � l̂jÞ2

2 � r̂2
j

 !" #
;

ð5Þ

where xkj represents the jth isotope of the kth mixture in the

data file. Next, the likelihood of fq given prior information

(user-specified a and b for each source) is calculated

according to a beta distribution:

Lðf q j ai ; biÞ ¼
Yn

i¼1

f ai�1
i � ð1� fiÞbi�1

Bðai ; biÞ
: ð6Þ

Finally, the likelihood of fq given prior information is

multiplied by the likelihood of the mixture data given fq in

order to calculate the unnormalized posterior probability of

fq given priors and data.

We implemented the Hilborn (after Professor Ray

Hilborn) sampling-importance-resampling (SIR) algorithm

(Rubin 1988) to examine the posterior probability of a

vector of proportional source contributions (fq) through

numerical integration. The Hilborn SIR method is func-

tionally equivalent to a basic SIR algorithm with a uniform

importance function such that the resample weight for a

given state of nature w(fq) is equal to the unnormalized

posterior probability (Rubin 1988; McAllister & Ianelli

1997). However, rather than saving all initial samples in a file

and subsequently resampling from this file based on w(fq),

the Hilborn SIR method establishes a threshold acceptance

value (T ) prior to sampling and uses it to simultaneously

resample, as the unnormalized posterior probabilities for

each fq sample are calculated. We used the Hilborn method

because it is programmatically intuitive, and because it does

not require all initial samples to be stored (advantageous for

large model runs). The method works as follows:

(1) Use 10% of user-specified model iterations to establish

a threshold (T ):

(a) set T to 0 before beginning iterations;

(b) for each threshold iteration, randomly draw values for

each fi in fq (e.g. for a three-source model, a

contribution parameter draw might be 0.1, 0.1 and 0.8);

(i) calculate the unnormalized posterior probability

(L) of the parameter draw based on prior

information and data;

(ii) if L is greater than the current T, then T ¼ L.
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(2) Use all user-specified model iterations to develop

samples and simultaneously resample based on T and

a cumulative likelihood value (C ):

(a) set C to 0 before beginning iterations;

(b) for each iteration, randomly draw values for each fi in

fq;

(i) calculate the L of the parameter draw based on

prior information and data;

(ii) add L to cumulative likelihood, C ¼ C þ L;

(iii) If C exceeds T then save the fq for that iteration

in list of resamples and adjust the cumulative

likelihood value, C ¼ C � T :

The SIR algorithm is well suited to models having

relatively few parameters with well-defined intervals.

Because all of the parameters in the model are proportional

contributions of each source, models will generally have few

parameters. Additionally, as these parameters are propor-

tions, they are bounded in the interval 0–1. Finally, because

bounded proportions must all sum to 1, parameter values

have cross-dependencies that can result in multi-modal

posterior distributions and thus limit the applicability of

basic Markov-Chain Monte-Carlo sampling techniques.

Given these constraints, a SIR algorithm is an effective

method for resampling proportional parameter space in

order to develop accurate posterior distributions.

Incorporating prior information

The Bayesian framework allows a user to establish

informative priors to guide model estimates. As stated

above, the probabilities of source contributions are evalu-

ated against prior information according to the beta

distribution. The beta-distributed priors on each fq are

highly flexible. Informative priors can be established on

some or all fq so that a user can incorporate varying degrees

of belief regarding the contribution of each source to the

mixture. Note, however, that because all elements of fq must

sum to unity, priors on the elements of fq are not

independent (Connor & Mosiman 1969). Highly informative

priors will often �sharpen� the peaks in the likelihood

surface, and the model will consequently require more

iterations to develop an appropriate posterior. However, the

model may fail to converge if informative priors specify

implausible source contributions based on the model

formulation and input data. Generally, the more data a user

provides the model, the less influential prior information

will be on the model. When both a and b are set to 1, all

source contributions are a priori equally likely (uninformative

priors).

Application

We developed MixSIR and an associated graphical user

interface (GUI) using MATLAB. The MixSIR GUI allows a

user to input isotope data and specify graphical and textual

outputs of probability distributions for the source contri-

butions. MixSIR takes space delimited text files as inputs

that specify the averages and standard deviations of source

isotope signatures, the averages and standard deviations of

fractionation values, and mixture isotope signature data.

Estimates of the fractionation of common isotopes can be

found in several recent reviews (e.g. Vander Zanden &

Rasmussen 2001; Post 2002; McCutchan et al. 2003;

Vanderklift & Ponsard 2003). Users can optionally input

informative priors by specifying a and b parameters that

define prior beliefs about the form of source contribution

distributions. MixSIR outputs graphically and numerically

descriptive posterior probability distribution estimates of the

source contributions. MixSIR is available over the Green-

Boxes code sharing network (http://conserver.iugo-cafe.

org), along with example data and a user guide with more

information regarding the model form and function.

Alaskan stream food web example

To demonstrate MixSIR, we used data from stream food

webs in Alaska. The model for this example uses isotope

data from predatory rainbow trout (O. mykiss) and five prey

sources (benthic invertebrates, prey fishes, shrews, salmon

eggs and terrestrial invertebrates) to estimate the dietary

patterns of rainbow trout in streams in the Wood River

system of south-western Alaska. Between 2000 and 2006, 90

rainbow trout above 250 mm in total length were non-

lethally sampled during the open water season ( June–

August) using hook and line and small seines. Following

anesthetization, gut contents were collected via gastric

lavage, identified and dry mass of the different diet items

recorded. Prior to fish release, small plugs of dorsal muscle

were taken for subsequent isotopic analysis. Based on prior

diet analyses, we gathered the representative prey items from

the stream or diets for isotopic analyses. Because these prey

items likely have more rapid isotopic turnover rates than

their consumers (e.g. Cabana & Rasmussen 1996; Vander

Zanden & Rasmussen 1999; O�Reilly et al. 2002; Post 2002),

prey items were collected across multiple sampling dates

throughout the open water season. Sampling for all prey

types spanned at least three summer months with at least

three sampling events, with the exception of shrews and

salmon eggs, which were sampled on 2 and 3 dates,

respectively, across 3 weeks. Isotopic samples were

preserved in ethanol. Subsets of prey and consumer samples

were subsequently dried, homogenized and sent to the

UC-Davis Stable Isotopes Facility to determine d13C and

d15N signatures. This sampling was part of a larger effort by

the Alaska Salmon Program of the University of Washing-

ton to understand the ecological importance of Pacific

salmon (Oncorhynchus spp.) on lotic food webs (Schindler

et al. 2003; Scheuerell et al. 2007; Moore et al. 2008).
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We used isotopic data from eight rainbow trouts between

300–400 mm in total length for our mixing model analysis.

These trout were relatively enriched in 15N, as were salmon

eggs. Benthic invertebrates were relatively enriched in 13C,

while terrestrial invertebrates were relatively depleted in 13C

(Fig. 1a). Typical of isotope data, consumer and prey

isotopes signatures were variable (Fig. 1a). We used the

individual isotope signatures of the rainbow trout and the

means and SD of prey as inputs to MixSIR. We used

previously published fractionation values of 2.3 ± 1.61 for
15N and 0.4 ± 1.20 for 13C for aquatic organisms

(mean ± 1 SD; McCutchan et al. 2003). In addition, using

these same data, we ran similar analyses using IsoSource, a

popular mixing model that qualitatively accounts for

uncertainty through a �tolerance� parameter (Phillips &

Gregg 2003). In order to investigate the influence of model

uncertainty, we re-ran MixSIR (Fig. 1) after decreasing (1)

the error in source isotope values, (2) error in fractionation,

(3) error in mixture isotope values and (4) error in all

sources. Finally, we re-ran MixSIR with the same data, but

with informative priors on the prey contribution parameters

based on gut-content data.

We developed prior beliefs in the form of beta

distributions representing the proportional diet contribu-

tions of each source using a bootstrap procedure applied to

gut-content data. Because a bootstrap routine works best

with large sample sizes, we used all diet samples (n = 90).

Data were organized into a matrix where rows defined the

proportional gut contents of a fish and columns comprised

the source contributions to total gut-content dry weight as

proportions. For each of 1 · 105 bootstrapped samples, we

resampled eight fish (the number of individuals used in our

mixing model) from the data matrix with replacement and

subsequently averaged the source proportions in the gut

contents of these eight resamples. Finally, we fit beta

distributions to these 1 · 105 averaged bootstrapped gut-

content proportions by identifying the maximum likelihood

estimates of the a and b parameters for each source. We

have made the code for this bootstrap procedure available

over the GreenBoxes code sharing network (http://con-

server.iugo-cafe.org).

Model validation

Because the fundamental construct of our model is based

on a mass-balance mixing model (eqn 1), the performance

of our model is subject to many of the same constraints

described previously for such models (e.g. Phillips & Gregg

2003). Thus, demonstrating that the results of MixSIR

converge to the results of existing mixing models as

uncertainty is reduced provides a simple means of model

validation. Furthermore, to evaluate the performance of

MixSIR when model input uncertainty is realistically

specified, we developed a MATLAB script that generated

artificial data by randomly choosing a number of sources

(between 3 and 5), their associated d13C and d15N

signatures and their proportional contribution to a theoret-

ical mixture. Mixture data points were then generated by

drawing values from each of the source isotope distribu-

tions, multiplying them by their associated proportional

contributions and, finally, summing these values across

sources for each isotope to generate a mixture isotope

signature.
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Figure 1 Model input and diagnostic histogram for stable isotope mixing model: (a) carbon and nitrogen stable isotope data from Alaskan

stream food webs used as an input for MixSIR. Open circles represent the stable isotope signatures of individual rainbow trout. Solid points

and error bars represent, respectively, the mean and standard deviation of isotope signatures of prey sources for rainbow trout. (b) Input data

following adjustment due to fractionation and error incorporation. Data were adjusted based on error propagation and incorporation of

fractionation, following eqns 4 and 5. MixSIR performs these calculations as part of the algorithm, and the adjusted data are shown here for

demonstrative purposes.
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R E S U L T S

Alaskans stream food-web example

Using uninformative priors and estimates of uncertainty

associated with mixing model inputs, a MixSIR model run

of 5 · 106 iterations resulted in convergence on the

posterior source contributions of the different prey items

to the diet of rainbow trout (Figs 1 and 2). The model

resampled a total of 24 147 posterior draws with no

duplicates in less than 1 min on a laptop with 2 GB of RAM

and an Intel� CoreTM Duo processor T2500 (Lenovo,

Morrisville, NC, USA). The maximum importance ratio

(calculated by determining the ratio of the maximum

unnormalized posterior probability resample to the sum of

all unnormalized posterior probability resamples) was below

0.001, suggesting that our model was effective in estimating

the true posterior density (McAllister & Pikitch 1997).

Additionally, the distribution of these resampled unnormal-

ized posterior probabilities (Fig. 2a and b) demonstrated

that our model placed appropriate weight on the tails of the

posterior distribution (McAllister & Ianelli 1997). Based on

model results, rainbow trout derive most of their tissue from

salmon eggs and prey fishes such as sculpin and juvenile

salmon (Fig. 2c). Specifically, the model estimated that eggs

contributed a median of 63% (48–76%; this and the

following represent the 5 and 95% confidence percentiles)

and prey fishes contributed a median of 18% (2–37%) to

rainbow trout. The estimated median contribution of the

three other prey groups all were 10% or less, with 95%

confidence limits all less than 20% and 5% confidence limits

less than 1%.

Running the model with informative priors modified the

median posterior estimates of source contributions and

reduced the variance in the posterior source contribution

estimates, especially for prey fishes (Fig. 2d). However, the

model results were not dramatically altered from those

resulting from uninformative priors, suggesting that our data

were informative and that our specified priors generally

agreed with the data.

As expected, running the uninformative prior model

after decreasing all sources of uncertainty constrained the

estimates of the relative contributions of the different prey

sources to the diet of rainbow trout (Table 1; Fig. 3).

However, we were surprised to find that changes in

uncertainty influenced the magnitude and rank order of

estimated prey contributions to the diet of trout, some-

times considerably (Table 1). For example, reducing the

variation in source isotope signatures by 50% changed

the estimate of the contribution of eggs both in terms of

the median and range of contributions from 0.63 (0.48 to

0.76) to 0.71 (0.31 to 0.83), and of fishes from 0.18 (0.02

to 0.37) to 0.09 (0.01 to 0.62) (Table 1). Reducing the

individual sources of uncertainty changed the model output

to varying degrees (Table 1; Fig. 3). In the extreme case of

reducing all sources of uncertainty, model results changed

not only the median and range of source contributions, but

also the rank order of median contributions. Specifically,

the model that fully incorporated uncertainty identified fish

as the second most important prey source, while the model

where all uncertainty was reduced identified fish as the

third most important prey source with benthic inverte-

brates becoming the second most important prey source.

IsoSource results were virtually identical to the results of

MixSIR model run with all sources of uncertainty reduced.

On the other hand, output from IsoSource was extremely

different from that of the MixSIR model run under fully

specified uncertainty.

Model validation

When we reduced variability in model inputs in our Alaska

stream food-web example, our model results converged to

those of IsoSource (Table 1). Reducing the variability in

only one of the model inputs (source signatures, fraction-

ation, mixture data) did not necessarily bring the results of

MixSIR and IsoSource closer together, highlighting the

complex influence of multiple sources of variation on model

results. Our analysis of artificial data sets demonstrated that

with fewer sources, the model was more likely to correctly

identify contributions. Source geometry also influenced

model performance, such that the degree of separation

between source isotope signatures strongly influenced the

ability of the model to correctly identify source contribu-

tions (Phillips & Gregg 2003). Moreover, in certain instances

when sources had similar isotope signatures, the posterior

distributions of source contributions exhibited strong

multimodality, reflecting support for alternative states of

nature (see Fig. S1 in Supplementary material). In these

instances, establishing informative prior distributions had

the potential to dramatically influence posterior probabilities

(Fig. S1), highlighting the importance of prior specification

when source geometry and the variability in inputs are

insufficient to identify unimodal posterior distributions.

D I S C U S S I O N

Mixing model studies typically use messy isotope data and

poorly described fractionation values. Here, we described

and demonstrated a Bayesian stable isotope mixing model

that fully integrates across this uncertainty to characterize

the posterior probability distributions of source contribu-

tions to a mixture. Furthermore, our Bayesian approach can

incorporate prior information, so that additional sources of

information can be used to increase the power to discern

source contributions. While we focus our analyses on an

example using two isotopes and multiple sources, this model
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can account for an unlimited number of isotopes and

sources.

The MixSIR program incorporates isotope and fraction-

ation uncertainty in the development of posterior probabil-

ity distributions of source contributions. By incorporating

these sources of uncertainty, MixSIR produces source

contribution estimates with explicit probability distributions.

It is important to carefully examine these probability

distributions and report the output conscientiously; for

example, if the distributions are flat (e.g. Fig. 3d), then they

do not support a certain solution but rather a range of

equally feasible solutions and should be reported as such.

Not surprisingly, when we reduced uncertainty in all model

inputs, the resulting probability distributions became more

restricted (Table 1; Figs 2 and 3). However, reducing

different sources of error had different impacts, due to

the interplay of data distributions and contribution param-

eter cross-dependencies. Although previous mixing model

implementations, such as IsoSource and SOURCE ⁄ STEP,

can deal with the uncertainty associated with more sources
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Figure 2 Estimation of source contributions using data from an Alaskan stream food web. (a) Diagnostic histogram for model run based on

this example using uninformative priors. This histogram represents the resampled unnormalized posterior probability values relative to the

single largest value in set of posterior draws. If the Hilborn SIR function places too little weight in the tails of the posterior distribution, it may

be inefficient in approximating posterior distributions. Thus, the graph should not be heavily right skewed (the majority of the posterior

draws are at or very near the �best� draw based on the posterior likelihoods; McAllister & Ianelli 1997). (b) Diagnostic histogram for model

run based on informative priors. (c) Posterior estimates of proportional contributions of prey sources to rainbow trout, based on MixSIR,

using uninformative priors. These histograms represent the distributions of posterior probabilities of source contributions. (d) Distributions

of posterior estimates of proportional contributions using informative priors. The superimposed grey lines represent the specified prior

distributions for each source contribution based on previous diet studies. The prior distributions were defined by a parameter values of 2.08,

2.48, 3.11, 1 and 1, and the b parameter values of 9.27, 7.41, 4.56, 43.87 and 6.57 for benthic invertebrates, salmon eggs, fishes, shrews and

terrestrial invertebrates, respectively. These parameters were estimated using a bootstrap algorithm for diet data that are described more in the

text.
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than an analytical solution allows (Phillips & Gregg 2003;

Lubetkin & Simenstad 2004), they do not formally

incorporate the variation in isotope signatures or fraction-

ation. When used to analyse the same data from our case

study, IsoSource obtained different results than our model,

both in terms of the median and range of those contribu-

tions, and their rank order. When all error sources were

reduced in MixSIR, the source contribution estimates

converged with mixing models that do not incorporate

multiple sources of uncertainty. Thus, models that do not

explicitly account for variability in source isotope values,

fractionation and mixture data may fail to accurately identify

the magnitude of source contributions to a mixture and the

uncertainty surrounding contribution estimates.

If prior information that appropriately characterizes

source contributions to a mixture is available, this informa-

tion can be used to improve mixing model estimates. In our

example, prior information was based on gut-content data.

When we incorporated this prior information, the medians

of the posterior source contributions were altered and the

variances were reduced (Fig. 2). However, these changes

were relatively modest both because our isotope data were

informative and because these data supported posterior

distributions similar to the prior distributions developed

from gut-content data. The isotopic signatures of rainbow

trout tissue in our study provide information on consump-

tion integrated across an extended period of time, likely

months (e.g. MacAvoy et al. 2001). Similarly, the gut-content

data we used to develop prior information were collected

over the open water season (3 months). Nonetheless, the

isotope signatures of trout and the gut-content data we

collected may integrate across different temporal windows.

We urge careful and skeptical consideration of the relevance

of prior information (e.g. gut-content data, results from

previous isotope studies) before developing and implement-

ing priors. Specifically, prior development should be

informed by the rich literature regarding the methods,

advantages and pitfalls of prior selection and specification

(e.g. Jeffreys 1961; Lindley 1983; Robert 1994; Gelman et al.

2003). Informative priors should be used with extreme

restraint and developed a priori, as they are a tempting way to

manipulate output (Robert 1994).

The SIR algorithm we developed is at heart a �brute force�
method of Bayesian analysis, as it draws proposals uniformly

over proportional parameter space. The more iterations, the

more likely that the model output will reflect the true

posteriors of the source contributions. The specific number

of iterations required to generate sufficient posterior draws

depends on the data, the variances in source isotope

signatures and fractionations, and the extent to which the

isotope mixture precludes the contribution of specified

sources. For instance, the inclusion of implausible sources

based on the isotope mixture and fractionation will lower

the resampling rate because the model will coincidentally

sample implausible (c. 0 likelihood) parameter space. A large

number of iterations are also important in order to establish

an appropriate threshold (T ), as the more iterations the

model uses to develop a T value, the closer this value will be

to the true maximum likelihood of the posterior. If too few

iterations are used, the threshold establishment phase of the

Table 1 Model estimates of the contribution of different prey items to the diet of rainbow trout using different amounts of uncertainty

associated with mixing model inputs (see Fig. 3)

Model type

Prey source

Benthic Eggs Fish Shrew Terrestrial

MixSIR

(no reduction) 0.08 (0.01–0.20) 0.63 (0.48–0.76) 0.18 (0.02–0.37) 0.05 (0.00–0.16) 0.03 (0.00–0.11)

(reduced mixture*) 0.09 (0.01–0.26) 0.44 (0.05–0.69) 0.15 (0.01–0.51) 0.10 (0.01–0.43) 0.11 (0.01–0.47)

(reduced source�) 0.08 (0.01–0.21) 0.71 (0.31–0.83) 0.09 (0.01–0.62) 0.03 (0.00–0.11) 0.02 (0.00–0.07)

(reduced fractionation�) 0.02 (0.00–0.14) 0.56 (0.45–0.79) 0.39 (0.02–0.50) 0.01 (0.00–0.05) 0.01 (0.00–0.06)

(reduced all§) 0.18 (0.17–0.19) 0.80 (0.79–0.81) 0.01 (0.00–0.02) 0.00 (0.00–0.01) 0.00 (0.00–0.01)

IsoSource– 0.18 (0.17–0.19) 0.79 (0.76–0.82) 0.01(0.00–0.06) 0.00(0.00–0.03) 0.00 (0.00–0.02)

Shown are the results from our model with different scenarios where uncertainty is alternately maintained in full, reduced in the mixture

isotope data, reduced in source isotope estimates, reduced in the estimates of isotope fractionation and reduced in all aspects. Estimates from

IsoSource using a 0.1& tolerance are included. Shown are the medians and percentiles (unless otherwise noted they are 5th and 95th) of the

posterior source contributions.

*We eliminated uncertainty in the isotopes values of the mixture (rainbow trout) by averaging the individual isotope signatures to create a

single mixture value for each isotope.

�We reduced the standard deviation values of source isotopes by half.

�We reduced the standard deviation values of fractionation by half.

§We reduced the standard deviation values by a factor of 10 and used a single average mixture value for each isotope.

–IsoSource outputs 1 and 99% confidence limits.
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model run may yield an inappropriately small T, and this in

turn may cause the SIR algorithm to resample a single fq

with high likelihood tens or even thousands of times.

The stable isotope mixing model presented here builds

upon previously published mixing model methods, but is

still limited by some of the basic assumptions of the isotope

mixing model approach. For instance, MixSIR assumes that

the mixture is constructed exclusively from those sources

included as model inputs. In addition, mixing models

necessitate sampling prey isotopes over an appropriate time

frame, which can be challenging given potential temporal

mismatching in isotopic turnover rates between longer-lived

consumers and their prey (Cabana & Rasmussen 1996;

Vander Zanden & Rasmussen 1999; O�Reilly et al. 2002;

Post 2002). Other issues such as concentration dependence,

tissue compartmentalization, a lack of distinctiveness in

source isotope signatures and the correct choice of tissues

for isotope analysis are also generic to isotopic mixing

models, including our own (Gannes et al. 1997; Phillips &

Koch 2002; Phillips & Gregg 2003; Martı́nez del Rio & Wolf

2005; Phillips et al. 2005; Fry 2006). Finally, the Bayesian

framework of the model presented here establishes distri-

butional assumptions that are unique among published

mixing models, namely, the beta-distributed priors on

source contributions.

Stable isotope mixing models are a potentially powerful

tool for ecologists and can be used to quantify relationships

that would otherwise be difficult or impossible to describe.
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Figure 3 Plots of the data and model

solutions for each of the reduced uncertainty

scenarios presented in Table 1. The scatter

plots on the left present the input data

following adjustment due to fractionation

and error incorporation. Data were adjusted

based on error propagation and incorpora-

tion of fractionation, following eqns 4 and 5.

The histograms on the right show the

posterior model estimates of prey contribu-

tions for each scenario. �Benthic� and �ter-

restrial� refer to invertebrate prey from those

habitats. (a) Plots of the data and model

results after replacing the mixture data with a

single value (mixture data means) for each

isotope. (b) Plots of the data and model

results following a 50% reduction in frac-

tionation. (c) Plots of the data and model

results following a 50% reduction of source

uncertainty. (d) Plots of the data and model

results following a 10· reduction of source

and fractionation uncertainty, and using the

single mean values of mixture isotopes.
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However, like much ecological data, stable isotopes are

often highly variable. This variability contains important

information that should be incorporated into analyses. The

Bayesian mixing model we outlined here estimates the

probability distributions of source contributions by incor-

porating variable data and prior information. Although the

posterior distributions this approach produces might be less

appealing than the products of mixing models based on

analytical solutions, they present a realistic assessment of the

ability to discern source contributions to a mixture based on

data and prior knowledge.
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