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Incorporating Variability of Resistive RAM in

Circuit Simulations using the Stanford–PKU Model
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Abstract—Intrinsic variability observed in resistive-switching
devices (cycle-to-cycle and device-to-device) is widely recognised
as a major hurdle for widespread adoption of Resistive RAM
technology. While physics-based models have been developed to
accurately reproduce the resistive-switching behaviour, repro-
ducing the observed variability behavior of a specific RRAM
has not been studied. Without a properly fitted variability in
the model, the simulation error introduced at the device-level
propagates through circuit-level to system-level simulations in
an unpredictable manner. In this work, we propose an algorithm
to fit a certain amount of variability to an existing physics-
based analytical model (Stanford-PKU model). The extent of
variability exhibited by the device is fitted to the model in a
manner agnostic to the cause of variability. Further, the model is
modified to better reproduce the variations observed in a device.
The model, fitted with variability can well reproduce cycle-to-
cycle, as well as device-to-device variations. The significance of
integrating variability into RRAM models is underscored using
a sensing example.

Index Terms—Resistive RAM (RRAM), physics-based models,
cycle-to-cycle variability, device-to-device variability, Stanford
model, memristor, sense amplifier, resistive-switching, 1T-1R

I. INTRODUCTION

RESISTIVE RAMs (RRAMs) are two terminal devices

capable of changing their resistance in response to volt-

age stress. Initially RRAM was researched as an emerging

Non-Volatile Memory (NVM), and, recently, RRAM has also

extended its influence beyond memory to logic [1] and com-

puting [2]. Consequently, research in RRAM-based memories

and RRAM-based computing circuits are very active and ever

increasing [3]. Variability in RRAM devices is widely recog-

nised as a serious concern hindering its industry adoption and

commercialization [4]–[8]. In RRAM technology, variability

in switching behavior can be temporal (cycle-to-cycle) and

spatial (device-to-device). The variability in the switching

behaviour manifests as variation in the programmed resistance

of the device (low resistance state, LRS and high resistance

state, HRS) and variation in the voltage at which the device

switches (HRS → LRS occurring at VSET and vice versa

at VRESET ). It is evident that such stochasticity jeopardizes

the operation of memory (e.g. large HRS variation can result

in erroneous read-out by the sense amplifier of the memory
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array) and logic (e.g. large VSET variation can result in

failure of NOR gates implemented in memory array [9]).

While variations have been utilized for some applications like

stochastic learning and physical unclonable functions [10]–

[12], they remain a hurdle for memory and other deterministic

computing applications.

In the past, researchers attempted to eradicate variability in

resistive switching behavior by device engineering, e.g. the

introduction of an additional Al2O3 layer [14], Germanium

layer [15], T iOx layer [16] and other such techniques. The

subject of variability and its causes is still a matter of intense

research. However, past efforts in device engineering seem to

suggest that variability can be reduced, but not completely

eliminated. There is a certain amount of variability which

is intrinsic to Resistive RAM, i.e. variability is due to the

stochastic nature of formation and rupture of the conductive

filament [5], [6], [17]. While variability needs to be mitigated

at the device level, the exhibited variability of a device needs to

be included in RRAM models so that circuit/system designer

can observe in their simulations a behaviour close to reality.

If the variability observed in a device is not included in its

model, the error introduced in the simulation of a single

RRAM cell propagates through circuit level (memory array)

to system-level simulations. As noted in [18], the impact of

device-level variations on realized circuits and systems can

not be predicted in a deterministic manner, resulting in an

estimate far from reality. Without incorporating variations,

there cannot be a proper assessment of the functionality and

yield of RRAM-based ICs, which will result in a series

of expensive trial-and-errors. Pessimistic design approaches

which allocate huge safety margins to accommodate variability

are not recommended since they sacrifice design properties

like energy, delay, and area. Consequently, there is an exigent
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Fig. 1: Based on degree of detail, a model for RRAM can

range from atomistic (Density Functional Theory (DFT)) to

Kinetic Monte Carlo (KMC) to Finite Element Method (FEM)

to compact model [13]. From another perspective, a model for

RRAM can be derived from first principles or simplifications.
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need to incorporate variability precisely into RRAM models

for reliable circuit/system evaluations.

RRAM (memristor1) modeling has made significant

progress in recent years, and, at the time of this writing, 15-20

distinct models have been reported in literature. A classifica-

tion of models based on the degree of detail is presented in

[13] (Fig. 1). While atomistic models capture intricate details

like ion/atom diffusion and migration mechanisms at atomistic

scale (few nm3), compact models capture macroscopic details

like geometry of the conductive filament and temperature.

Based on the modeling approach, they can be classified as–

physical models and analytical models (Fig. 1). Physical

models try to model resistive switching behavior from first

principles, i.e. by modeling the fundamental cause for change

in resistance, from the perspective of device-physics. On the

other hand, analytical models are formulated as mathematical

equations, which match the device’s experimentally-observed

behaviour. The physical principles approach and analytical

approach are two extremes, and in reality, a model for RRAM

is a compromise between these two extremes [19]. Analytical

approaches can be further classified as being either physics-

based or black-box. In a physics-based analytical model,

the physics of resistive switching is modeled by appropriate

equations e.g. a physics-based analytical model may simplify

resistive switching to the formation and rupture of conductive

filament under voltage stress. In a black-box model, a mea-

surement approach is followed and the approach is agnostic

to the device structure or switching mechanism e.g. a device

is subjected to different stimulus and its response studied;

then mathematical equations are formulated which obey this

behavior (VTEAM model [20] is a classic example of black-

box approach).

In addition to the aforementioned classification schemes,

some models are specifically proposed for a RRAM switching

mechanism. Examples of these would be [21] and [22] that

specifically model Valence Change Mechanism (VCM) and

Electrochemical Metallization (ECM) devices, respectively.

More details on RRAM models and their classifications can

be found in [13], [17], [19], [23]–[26]. Since the focus of this

work is variability modeling, we discuss a few models which

have the capability to reproduce variability (in section V) to

make our contribution clear.

Physics-based analytical models have proven to be more

accurate in reproducing the resistive switching behaviour when

compared to black-box analytical models [13]. Further, some

physics-based models have the capability to mimic the vari-

ability observed in resistive-switching behaviour. However, the

reliability of these models comes at a cost– the process to fit

a physics-based analytical model to a device is strenuous. The

authors in [27] have proposed an algorithm to fit different

devices (HfOx, SiOx, TaOx) to a physics-based analytical

model. However, to the best of our knowledge, there is no

work reported on fitting experimentally observed variations

into a RRAM model.

In this work, we focus on incorporating the variability

1The terms memristor and RRAM are used interchangeably by researchers
in this field.

behavior of RRAM devices in circuit simulations using a

physics-based model. Our main contributions are:

1) We present a methodology to fit device variations (i.e.
measured from fabricated RRAM devices) to a well-

established physics-based model presented in [28].

2) We propose modifications to the model that enable better

fitting of variations to fabricated devices.

Our emphasis in this work is modeling the quantum of vari-

ability, i.e. analysing the degree of variability in LRS, HRS,

VSET , and VRESET cycle-to-cycle and device-to-device; and

including it in the model. Therefore, our approach is agnostic

to the cause of variability2, and, the inherent correlation of

variability observed in devices (VSET , VRESET exhibited

correlation between consecutive cycles [29] and a similar

phenomenon was observed in HRS [30]). We pursued this

approach due to the following reasons:

1) It is the amount of variations that decides correct func-

tionality at the circuit and system-level.

2) Incorporating variability in a physics-based approach

by modeling its cause will increase the computa-

tional complexity, making the model inappropriate for

circuit/system-level simulations where numerous devices

are interconnected.

For example, the cause of variability at HRS is due to

variation of the number of particles in the narrowest current-

controlling part of the filament [31], while the cause of

variability at LRS is due to variation in the morphology of the

filament, i.e., it’s shape varies from cycle-to-cycle [13]. There-

fore, to model variability at HRS and LRS from its cause will

increase the simulation time drastically since the resolution

needed will be that of an atomistic or Kinetic Monte Carlo

model for RRAM. It must be noted that our approach still

models resistive-switching in a physics-based manner and only

the variations are modeled in a black-box approach. Therefore

our approach retains the low computational complexity of a

compact model and reliability of a physics-based model.

The remaining of this paper is organized as follows. Section

II describes the Stanford-PKU model and its capabilities to

model variations. Section III describes our algorithm to fit

the model to exhibit cycle-to-cycle variations. We first fit

the Stanford-PKU model to exhibit the variations observed in

devices manufactured in a process from IHP3 and analyse the

error in fitting (Section III-A). In Section III-B, we improve

the Stanford-PKU model to minimize the error in fitting. The

following section (Section IV-A) describes how device-to-

device variability can be incorporated in simulation by consid-

ering a 1T1R memory array. We also discuss the implications

of device variability at the circuit level by examining the

design of a sense amplifier for the memory array. Section V

discusses our contribution in light of other works and Section

VI concludes our contribution.

2The cause of variability is being studied by device researchers and is
beyond the scope of this research.

3Innovations for High Performance Microelectronics, Germany
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II. STANFORD-PKU RRAM MODEL AND VARIABILITY

A. Stanford-PKU model in a nutshell

The Stanford-PKU is a physics-based (analytical), com-

pact model developed for metal oxide bipolar RRAMs [28],

[32]–[34]. The model was well characterized on HfO2 and

HfOx/T iOx bilayer devices [28]. This model simplifies the

resistive switching behaviour to the growth (HRS → LRS)

and rupture (LRS → HRS) of a single dominant conductive

filament. The gap distance, g (between the tip of the filament

and the counter electrode) is the crucial parameter which de-

termines the resistive state. The parameter g is programmable

between gapmin and gapmax with the device being in HRS
at gapmax and in LRS at gapmin. Fig. 2 lists the equations

governing the resistive switching process. The key equation

(shaded grey in Fig. 2) describes the current through the

RRAM (I) as a function of voltage across it (V ) and the gap

in the conductive filament (g). The current has an exponential

dependence on g, which together with hyperbolic dependence

on the V , implements the sudden increase (or decrease) of the

current resulting in a transition to LRS (or HRS). The reader

is referred to [28] for an elaborate description of the model.

I=I o× exp(− g

g0
)×sinh ( V

V 0
)

g=∫( dgdt +δg×χ (t)) . dt

dg

dt
=−υ0× exp(− Ea

kT )×sinh (γ×
a0

t ox

×
qV

kT )

δg(T )=
δg

0

1+exp [ (TCRIT−T )

T SMTH
]

T=T 0+V ×I ×RTH γ=γ0−β×g3

Fig. 2: Equations of Stanford-PKU RRAM model: Cycle-to-

cycle variation is introduced by multiplying δg by a Gaussian

noise χ(t) and adding to the instantaneous value of the gap,

g. δg(T ) is the variation in the gap as a function of current

temperature, T (shaded yellow).

The parameters Ea (activation energy), a0 (atomic spacing

of the switching oxide), tox (thickness of the switching oxide),

T0 (environment temperature) and RTH (thermal resistance)

are determined by device structure, material properties and

test environment. Let them be called ‘process parameters’

since they are dictated by the fabrication aspects of the

device. The parameters I0, g0, V0, υ0, γ0 and β are called

‘switching parameters’ or ‘conductance parameters’ by the

model developers, and they determine the median switching

characteristics. They are used to tune the median switching

characteristics to a specific RRAM, as elaborated in the

fitting algorithm proposed for this model in [27]. δ0g is the

fitting parameter for variations in the gap. TCRIT denotes

the threshold temperature, above which significant variations

in the gap occurs and TSMTH is the variations smoothing

parameter [28]. These three parameters (δ0g , TCRIT , TSMTH )

are related to variations in resistive-switching and they can be

used to incorporate the experimentally observed variability in

the Stanford-PKU model.

B. Variability

We first define terms to quantify variability. Variabil-

ity in VSET / VRESET is quantified as σSET /σRESET , the

standard deviation from the mean, µSET /µRESET . Variabil-

ity in HRS/LRS is also expressed as standard deviation,

σHRS /σLRS from the mean, µHRS /µLRS . While the VSET

and VRESET voltages of RRAMs are almost of the same order,

the HRS can be up to three orders of magnitude higher than

LRS. Therefore, the resistance variability is normalised by

mean resistance and quantified by Co-efficient of Variation

(CV ), σLRS/µLRS and σHRS/µHRS . Stanford-PKU model

[28] has the capability to reproduce variability, and, the

modeled variability can be configured using the parameters:

δ0g , TCRIT , TSMTH . Although the model can be configured

to introduce variability in simulation, the developers of the

model [28] do not suggest any steps or procedure to fit certain

amount of variability (σHRS , σSET etc) to their model. To

introduce a particular amount of variability in LRS, HRS,

VSET , and VRESET , how should the parameters δ0g , TCRIT ,

TSMTH be tuned? As can be deciphered from the equations

in Fig. 2, the three parameters together decide the variation

in the gap, δg(T ), which is multiplied by a random Gaussian

noise χ(t), and added to the instantaneous value of the gap, g.

Since the gap g is the key state variable, variation in g affects

all aspects of resistive-switching – threshold voltage at which

the device switches and also the programmed resistive states.

The mean switching characteristics of a specific RRAM were

fitted to the Stanford-PKU model in [27]. This was done by

varying the switching(conductance) parameters, one at a time,

and the predominant role of each parameter in the switching

process was analyzed and tuned accordingly [27]. However,

such an approach could not be used to fit variations to the

model because

1) The three parameters together decide variability and

they are fused, i.e. it was not possible to find a direct

relation between one of these parameters and one facet

of variability (e.g. effect of δ0g on σHRS or effect of

TCRIT on σSET ).

2) The three parameters have a statistical effect on resistive-

switching, i.e. it requires numerous simulations of resis-

tive switching to determine the effect of the parameter

set (δ0g , TCRIT , TSMTH ) on (σHRS , σLRS , σSET ,

σRESET )

Therefore, fitting variability is not straightforward and our

purpose in the first part of this work is to formulate a

methodology to fit experimentally observed variations into the

model, i.e. given (σHRS , σLRS , σSET , σRESET ) from RRAM

characterization experiments, our goal is to find (δ0g , TCRIT ,

TSMTH ) which will produce that variability during resistive-

switching simulations.

III. VARIATION FITTING METHODOLOGY

A. Fitting variations to the Stanford-PKU model

We propose a variability fitting algorithm (Fig. 4) which

is generic and can be applied for any RRAM device. We

shall elucidate the variability fitting algorithm of Fig. 4 using

the 1T1R devices manufactured at IHP (lower left corner
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Fig. 3: Stanford-PKU model fitted to mean characteristics’ of

IHP’s RRAM using the fitting algorithm presented in [27].

Fitting parameters: I0 = 1.55e−4, g0 = 0.25 e−9, V0 = 0.325,

υ0 = 1.5, γ0 = 24.25, β = 10, tox= 6 nm, gapmin = 0.01 nm,

gapmax = 1.1 nm, Ea = 0.6 eV , a0 = 2.5e−10, RTH = 2100.

of Fig. 3). The 1T1R is constituted by NMOS transistor

manufactured in IHP’s 250 nm CMOS technology, whose

drain is connected to the bottom electrode of the RRAM. The

RRAM is a T iN/Hf1−xAlxOy/T i/T iN stack integrated on

the metal line 2 of the CMOS process (Fig. 3). The median

switching characteristics are: µSET = 0.7 V, µRESET = -0.8

V, µLRS = 11 KΩ and µHRS = 115 KΩ. The SET/RESET
voltage variability of IHP’s RRAMs are extracted from [35]:

σSET = 100 mV and σRESET = 75.3 mV. Since variability at

LRS/HRS is not reported in [35], we considered a variability,

(σLRS/µLRS) of 12.6 % and (σHRS/µHRS) of 20.9 %, which

is the statistically reported variability for a similar HfOx

device [5]. This translates to σLRS of 1.4 KΩ and σHRS

of 24 KΩ4. To fit the model with these variations, we first

fit the mean characteristics of the device. This is achieved

by tuning (I0, g0, V0, υ0, γ0, β) to match median switching

characteristics, as elaborated in [27]. The I-V curve produced

by the fitted model matches the mean switching characteristics

(Fig. 3). As observed in section II-B, the effect of the triplet

(δ0g , TCRIT , TSMTH ) on resistive switching behaviour is

statistical. Numerous simulations with a particular (δ0g , TCRIT ,

TSMTH ) needs to be performed, and the corresponding stan-

dard deviation σHRS , σLRS , σSET and σRESET needs to be

calculated. e.g the standard deviation in HRS is,

σHRS =

√

√

√

√(
1

N − 1
)

N
∑

i=1

(HRSi − µHRS)2 (1)

4Both normal and log-normal distribution are used in literature for reporting
the variability in resistive states [12], [31], [36], [37]. While we fit normally
distributed resistive states here, the same procedure can be applied to fit the
model to a log-normal distribution of HRS and LRS (Appendix A)

Input RRAM specifications:
 Mean and Variation

(μLRS ,μHRS ,μSET ,μ RESET ),(σLRS ,σHRS ,σSET ,σRESET )

Fit the Stanford-PKU model to the mean values 
using the algorithm presented in [27]

Perform Monte Carlo (MC) simulations with
variability parameters varied

From analysis of MC simulation data, find the
 (δ

g

0 , T
CRIT

, T
SMTH

) which has the least fitting error 

 

(δg

0

,TCRIT ,T SMTH ),(δg

0

,TCRIT ,T SMTH ),(δg

0

,TCRIT ,T SMTH )

Fit the model with that (δ
g

0 , T
CRIT

, T
SMTH

) 

and perform 100 simulations to verify

Fig. 4: Generic algorithm to fit variations observed in a RRAM

to Stanford-PKU model.

where HRSi denotes the HRS to which the device gets

programmed in the ith cycle for a particular triplet (we call

the set (δ0g , TCRIT , TSMTH ) a triplet). µHRS is constant for

any triplet. Therefore, we resorted to Monte Carlo simulations.

We varied each of the three variability parameters around

their default values mentioned in the model release [28]. δ0g
was varied from 0.5×10−3 to 7×10−3, in steps of 0.5×10−3.

TCRIT and TSMTH were varied from 100 to 1000, in steps of

150. This corresponds to 686 triplets. Each triplet was subject

to 100 resistive switching cycles (N = 100 in Eq. 1). We chose

N = 100 since repeated sets of 100 resistive switching cycles

resulted in almost the same standard deviation in (σHRS ,

σLRS , σSET , σRESET ) for a particular triplet. For each cycle,

HRS and LRS values were measured with the read voltage

of 200 mV. For VSET and VRESET values, we observed the

internal state of the RRAM which is modeled by the filament

gap (g). During switching operations, this gap varies between

gapmin (corresponding to LRS) and gapmax (corresponding

to HRS). VSET and VRESET were extracted by capturing the

voltage at which the filament gap crosses a certain threshold

in the direction of LRS and HRS, respectively (0.9 nm
and 0.75 nm). Simulations were performed in Cadence ADE

using Spetre simulator. The four standard deviations were

analysed for the 686 triplets in MATLAB, and the triplet which

minimizes the error was chosen as the fitting parameter.

Based on the analysis of the data obtained from Monte Carlo

simulations, the following insights were obtained. Although

(δ0g , TCRIT , TSMTH ) together decide the amount of variabil-

ity, their effect on different facets of variability was of different

degrees. δ0g had the highest effect on the amount of variability,

followed by TCRIT , while TSMTH had the least effect on

variability. Since multi-dimensional plots obscure analysis, we

analyzed the effect of the triplet on variability, in two sets of

plots. In the first set of plots (Fig. 5), we analyse the effect
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Fig. 5: Effect of δ0g on (σHRS , σLRS , σSET , σRESET ) for a constant (TCRIT = 400, TSMTH = 400) and N = 100. δ0g clearly

increases variability in all facets of resistive switching behaviour. (a) δ0g affects σSET and σRESET in the same manner, but

to different extent (b) δ0g’s effect on σLRS is almost linear (c) δ0g’s effect on σHRS is also linear, except for a saturating effect

at high δ0g .

of δ0g (TCRIT and TSMTH were fixed) on variability since

its effect was significantly higher (∼ 50×) compared to the

effect of TCRIT and TSMTH . In the second set of plots (Fig.

6), we analyse the effect of TCRIT and TSMTH on variability,

simultaneously (with δ0g fixed).

As is evident from Fig. 5, δ0g affects all aspects of variability

in a linear manner. However, the extent to which it affects each

variability is different. For example, δ0g of 3×10−3 results in

a σSET of 150 mV, while the same δ0g results in a σRESET

of 50 mV. This will be a disadvantage while fitting a certain

amount of variability if the experimental variability does not

follow the same pattern. Such a disparity is also observed in

Fig. 6, where σSET is much higher than σRESET for the

same (TCRIT , TSMTH ). Therefore, error is inevitable while

fitting variations, i.e. it may not be possible to find a triplet

which perfectly satisfies (σHRS , σLRS , σSET , σRESET ) of

a particular RRAM. Based on the results of Monte Carlo

simulations, we found the triplet that satisfied the required

variations in an over-cautious approach. If (σHRS = 24 KΩ,

σLRS = 1.4 K Ω, σSET = 100 mV, σRESET = 75 mV) is

the required variability to be fitted, we found the triplet which

satisfied (σHRS ≥ 24 KΩ, σLRS ≥ 1.4 K Ω, σSET ≥ 100 mV,

σRESET ≥ 75 mV). In other words, the accuracy of the fitting

was compromised to fit the minimum required variability in

all the four aspects. This was because, as depicted in Fig.

5 and Fig. 6, the triplet affected each variability in (σHRS ,

σLRS , σSET , σRESET ) to different degrees. The triplet (δ0g
= 3×10−3, TCRIT = 400, TSMTH = 550) which results in

a variability (σHRS = 31.47 KΩ, σLRS = 1.87 KΩ, σSET =

163 mV, σRESET = 102 mV) is the most reasonable fitting

that can be obtained in this situation. If we define variability

fitting error with equal weights to all errors, the error in fitting

is,

∆ =
∆HRS +∆LRS +∆SET +∆RESET

4
(2)

where

∆HRS =
σfitted
HRS − σdevice

HRS

σdevice
HRS

(3)

For the present fitting, (∆HRS = 31.12 %, ∆LRS = 33.5 %,

∆SET = 63 %, ∆RESET = 36 %), resulting in ∆ of 41 %.

B. Introducing double region δ0g to the Stanford-PKU model

While fitting variations (observed in IHP devices) to the

Stanford-PKU model, we faced a conflict – the disparity

between σSET and σRESET introduced by the model for a

particular triplet (see Fig. 5-(a) and Fig. 6). This is because

variability in SET and RESET operations are modeled by

the same mechanism (adding stochasticity to the gap, g) using

the same parameters (δ0g , TCRIT , TSMTH ). This reduces the

flexibility to fit it to devices with different variation during

SET and RESET processes. To enable better fitting of

variations to different devices, modifications were necessary.

The Stanford-PKU model, as presented in [28], is flexible yet

stable. This made the model capable of being accurately fitted

to the mean switching characteristics of different RRAMs

(HfOx, SiOx, TaOx) [27]. Therefore, we modified only the

variability part of the model (the deterministic part of the

model which corresponds to the mean resistive-switching

behaviour was unaltered) to minimize the error in fitting

variations. To this end, we introduced two different δ0g – one

for positive polarity (P δ0g) and one for negative polarity

(N δ0g) of the voltage across the RRAM. This adds a new

degree of flexibility while fitting experimentally observed

variations, which will usually have some disparity. Following

the procedure of Section III-A, we varied the set (P δ0g , N δ0g ,

TCRIT , TSMTH ) and analysed its effect on different aspects

of variability. As evident from the analysis of Section III-A,

P δ0g and N δ0g had the prominent effect on variability and,

therefore, we analyse their effect meticulously. Fig. 7-(a)-(d)

depicts the effect of N δ0g on all the four aspects of variability,

and each curve in the plot corresponds to a particular P δ0g .

σLRS is strongly influenced by P δ0g . Similarly, σHRS is a

strong function of N δ0g since at higher N δ0g , different P δ0g
produce almost the same σHRS . σSET has a clear linear

dependence on both P δ0g and N δ0g , while we could not

identify any clear difference between σRESET ’s dependence
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Fig. 6: Effect of TCRIT and TSMTH on (σHRS , σLRS , σSET , σRESET ) for a constant δ0g of 2.5×10−3 . No clear trend could

be observed, except that the variation is uniformly high when TCRIT is low.

on P δ0g and N δ0g . However, it is clear that by introducing

another dimension to δ0g , it is possible to fit variability more

efficiently, e.g even if one parameter N δ0g has to be fixed at

some value to satisfy a certain amount of σRESET , P δ0g can

be varied to satisfy the required variability in σSET . This was

not possible in the fitting presented in section III-A, where

P δ0g was always equal to N δ0g . Based on the analysis of

Monte Carlo simulation data, the fitting which minimized error

was (P δ0g = 2.5×10−3, N δ0g = 3.5×10−3 TCRIT = 400,

TSMTH = 250). This results in a variability (σHRS = 31.2

KΩ, σLRS = 1.42 K Ω, σSET = 147 mV, σRESET = 97 mV).

The fitting error was (∆HRS = 30 %, ∆LRS = 1.4 %, ∆SET

= 47 %, ∆RESET = 29.86 %), resulting in ∆ of 27 %. We

performed 100 cycles of resistive-switching with the Stanford-

PKU model fitted with this variability parameters. Fig. 7-(e)

depicts the variability observed in resistive states and Fig. 7-(f)

the variability observed in SET/RESET voltages.

IV. SIGNIFICANCE OF MODELING VARIABILITY: EFFECTS

AT THE CIRCUIT LEVEL

A. Device-to-device variability

So far, we focused on incorporating variability into a single

RRAM cell. As plotted (Fig. 7-(e),(f)), we are able to fit

variations in cycle-to-cycle simulations. When RRAM cells

are fabricated in an array, the cells exhibit device-to-device

variations, i.e. when observed in a common time window,

there is disparity in resistive switching behaviour of the cells.

Origin of device-to-device variability is attributed to discrep-

ancies in the fabrication processes such as variation in the

switching oxide thickness, surface roughness of the electrodes,

etching damages, etc., as well as the lack of precise control

over the defect generation and filament formation during the

‘forming’ step of a pristine device [5]. As noted in section

II-B, variability is included by adding a stochastic part (δg
multiplied with χ(t)) to the instantaneous value of the gap, g
(the deterministic part).

g =

∫
(

dg

dt
+ δg · χ(t)

)

(4)

where χ(t) is Gaussian distribution. In Verilog-A, χ(t) is

generated by the command

χ(t) = $rdist normal(seed, µ, σ) (5)

where seed is an integer which is used initialize the process of

generating random numbers. Mean, µ was set to 0 and standard

deviation, σ was set to 1 in the Stanford-PKU model, while

seed is a random integer chosen at the start of simulation.

This implies that choosing a different seed can produce a

different resistive switching behaviour, although the standard

deviation (σSET ,σHRS etc) for a large number of cycles will

be the same for a particular (δ0g , TCRIT , TSMTH ). Therefore,

two RRAM cells (simulated with different seeds) will have

different (VSET , VRESET , HRS,LRS) in the same cycle.
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Fig. 7: Effect of P δ0g and N δ0g on (σHRS , σLRS , σSET , σRESET ) for a constant (TCRIT = 400, TSMTH = 400).

Thus, by using different seeds for different cells, device-to-

device variations can be incorporated in simulations. In other

words, the RRAM model incorporated with a certain amount

of cycle-to-cycle variation will exhibit similar device-to-device

variations, when observed in a specific time window. Fig. 9-

(a) depicts the cycle-to-cycle variation (50 cycles) observed in

a single RRAM cell for a particular fitting, with seed = 1234.

To observe the device-to-device variations of the 1T1R array

in Fig. 8, we simulated the 1T1R structure with 100 differ-

ent seeds and the variability was analysed. Interestingly, the

observed device-to-device variability (in row 3) was the same

amount of cycle-to-cycle variability observed for a particular

fitting, i.e. σSET , σRESET , σHRS , σLRS observed in a device

over 100 cycles was not different from that observed over

100 devices in a particular cycle for a (P δ0g , N δ0g , TCRIT ,

TSMTH ). This is reasonable since we fitted variations in the

temporal domain and it manifests in the spatial domain when

observed at a specific time window. The IV curves of device-

to-device variability of four devices of a row, at an arbitrary

cycle is plotted in Fig. 9-(b).

B. Effect on variations on the Sense Amplifier Design

Variations in RRAM cell affect the design of the peripheral

circuitry. As an example of the effect of variations at the

circuit-level, the design of Sense Amplifier (SA) for a 1T1R

memory array is analysed. In Fig. 8, consider a device ‘A’

located in (2,3) of a 100×100 1T1R array. Whenever the cell

‘A’ is written into, the device gets programmed to a different

WL
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100
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2
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current 
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I
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I
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I
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Fig. 8: Illustration of the impact of cycle-to-cycle and device-

to-device variations on the design of the Sense Amplifier.

While sensing, the current margin is degraded in the presence

of variations in resistive states.

resistance, due to cycle-to-cycle variability. This results in a

different current every time the cell ‘A’ is read, denoted Ic−c

(blue lines in Fig. 8). Sense amplifier SA2 has to distinguish
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(a) 
cycle-to-cycle variations

RRAM Device 1

RRAM Device 2

RRAM Device 3

RRAM Device 4

(b) 
device-to-device variations

Fig. 9: (a) Cycle-to-cycle variations (50 cycles) reproduced by

the Stanford-PKU model fitted for (σHRS = 31.2 KΩ, σLRS =

1.42 K Ω, σSET = 147 mV, σRESET = 97 mV) (b) Device-to-

device variations with the same fitting; Only 4 devices depicted

for clarity of presentation.

between LRS and HRS stored in ‘A’, over different cycles.

The same SA has to be tolerant of device-to-device variations

(red lines in Fig. 8) since it is common to all the cells in

column 3. When different cells in column 3 are read (at

different instances), it will result in different currents, denoted

Id−d (even if all the cells in that column are programmed to

the same state, HRS). Therefore SA2 has to be designed

to tolerate the higher of the two variations (cycle-to-cycle

and device-to-device). Since all the sense amplifiers in the

peripheral circuitry of the array are identical in structure (same

design, W/L), they must be designed to tolerate device-to-

device variations across the array (green lines in Fig. 8).

Device-to-device variability is usually reported across the array

and not across a row/column. For example, the reported cycle-

to-cycle variability for a Al/Ge/TaOx/Pt device is: (σSET =

0.48 V, σRESET = 0.25 V, (σ/µ)LRS = 25%, (σ/µ)HRS

= 80%). The device-to-device variability across the array

is (σSET = 0.39 V, σRESET = 0.29 V, (σ/µ)LRS = 5%,

(σ/µ)HRS = 26%) [15]. Clearly, the cycle-to-cycle dispersion

is greater than device-to-device dispersion for both HRS and

LRS for this device. In this case, the SA for such devices

must be designed to tolerate cycle-to-cycle variations.

1T-1R array

 

EN

I
read

V
BIAS

N
1 N

2

BL

 WL

SL
D D

I
read

I
REF

Current-mode SA

Fig. 10: Current-mode SA [38], [39] used to evaluate the effect

of RRAM variations. Current from the RRAM cell IREAD and

IREF are compared. ‘D’ and ‘D’ are precharged to VDD when

EN is low. When EN goes high, one of them discharges at a

faster rate, which is reinforced by the positive feedback formed

by cross-coupled inverters (shaded yellow).

For IHP’s devices fitted in this paper, mean IHRS and ILRS

will be 1.8 µA and 18 µA, respectively. We adopted the

current-mode SA proposed in [38], to differentiate between

HRS and LRS. As shown in Fig. 10, the current IREAD from

the 1T–1R array is mirrored by N1-N2 pair and compared with

IREF in a current-mode SA. The op-amp biases the drain of

transistor N1 at a constant voltage, VBIAS to ensure that N1

is in saturation. To read from a cell, VBIAS of 0.8 V was used

and 1 V was applied at BL, resulting in an effective voltage

VREAD of 0.2 V (the SL is held at 0.8 V by the op-amp,

Fig. 10). The SA of Fig. 10 was designed in 250 nm CMOS

technology and simulated to verify read-out of HRS (1.8 µA)

and LRS (18 µA). IREF was chosen to be 10 µA, midway

between the mean ILRS and IHRS . Bit Error Rate (BER) is

one of the important performance metrics in the design of

SA and is typically evaluated by performing Monte Carlo

(MC) simulations. We performed 4000 MC simulations first

without RRAM variations i.e.. the effect of CMOS variations

(process and mismatch) on the BER was analysed. The BER

was found to be 0 (0 errors in 4000 simulations). We then

performed another set of 4000 MC simulations with RRAM

variations of σHRS = 31.2 KΩ and σLRS = 1.4 KΩ. The

BER of the SA in the presence of RRAM variations was

0.4% (16 errors in 4000 simulations). It must be noted that

the difference between the two BERs is not huge in this case

since the SA ‘accommodates’ variations, i.e. 1.8 µA ± 2 µA

is still sensed as HRS and only significant deviations from

mean IHRS are sensed erroneously. Nevertheless, including

RRAM variations did give a realistic estimate of the BER

and will be even more useful in analysing other RRAM-based

circuits where variations affect circuit-performance more lin-

early. Depending on whether the application can tolerate such

a BER, the SA needs to be re-designed to be more error-

tolerant (e.g. by increasing size of transistors) or separate

error detection/correction circuit needs to be included. This

will increase the area and hardware complexity of the read-out
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circuitry. In this manner, incorporating variations in RRAM

models can enable variability-aware design of the SA and also

aid in determining the effects of variability at the circuit-level

(e.g. increased area etc.).

V. PROSPECTS OF THE PROPOSED VARIABILITY FITTING

METHODOLOGY TO OTHER PHYSICS-BASED MODELS

In this work, for the first time, we elucidate the fitting of

the variability measured from fabricated RRAM devices to a

physics-based model. Stanford-PKU RRAM model was used

as the base physics-based model for incorporating variations.

The literature on RRAM models is growing rapidly and there

are many other models proposed in recent years. Some of them

are capable of reproducing variability in simulations. In this

section, we discuss four other relevant physics-based models

which are capable of producing variability. We throw light on

how each of them models variability, and discuss the prospects

of fitting variability to them.

The work in [18] studies the effect of device-level variations

on circuit and system. This work [18] builds on the physics-

based model presented in [40] and incorporates variations

by adding a variable resistor (called ‘Monte Carlo resistor’)

between the top and bottom electrode of the RRAM. How-

ever, the underlying physics-based model to which variations

were augmented, is a two-dimensional filament (both length

and width of the filament). Therefore, the number of model

parameters were twice the number of model parameters in

the model we adopted [28], which is a single dimensional

filament (length). Consequently, using [18]’s approach, the

process of fitting the model to the median characteristics of

a RRAM (which has to performed before fitting variations)

becomes challenging. Further, [18] incorporates variability in

resistive states (by fitting the variable resistor to experimen-

tally observed variations) and does not report anything about

variability in VSET /VRESET .

The work in [41] also models variability in a physics-based

model. The approach of this work is radically different as

variability is incorporated by introducing fluctuations in Ea,

the energy barrier for ion migration. The energy barrier was

randomly generated from a uniform distribution between 0.7

and 1.7 eV (with a mean of 1.2 eV ) and, could reproduce the

variability observed in a HfOx RRAM.

The model proposed in [42], [43] uses the switching energy

as the threshold which triggers the change of state (HRS ↔
LRS). The model abstracts resistive switching to a conduction

module (to model the dynamic resistance of the RRAM) and

state module (to model the RRAM’s state). Both modules

together constitute a compact model. Variability is included in

the model by multiplying the conduction function f(v, s) by

the probability density function rj(v, s) [42]. Moreover, this

work has the capability to capture how variability evolves over

time (numerous cycles) by using an additional variable in its

state module, a capability not supported by the Stanford-PKU

model.

The compact model presented for OxRAM devices in [44]

is similar to Stanford-PKU model in the sense that the resistive

switching is modeled by the growth and shrinkage of a

conductive filament. But the key state variable is the radius

of the filament. In this model, device-to-device variability is

modeled by introducing stochasticity in charge transfer co-

efficient (α) and the thickness of the oxide (Lx). The work

does not report anything about cycle-to-cycle variability.

To summarize, all these models have the capability to

reproduce variations in simulations. But no procedure is

proposed by these model developers to fit certain variability

to their models, i.e. the relation between variation in Ea

and σHRS for the model in [41], how much variation in

the radius of the filament is needed to produce a particular

σLRS for the model in [44] etc. Our contribution meets

this need by proposing a generic algorithm to fit a certain

amount of variability5 by first fitting the median switching

characteristics to a physics-based model [27] and, then fitting

variations by tuning the variability parameters. Furthermore,

the manner in which resistive-switching is modeled and the

key parameter tweaked to include variability, is different in

all the models. Therefore, our variability fitting methodology

cannot be directly applied to these models. However, it can

be adapted to these models by incorporating stochasticity in

the key state variable in a controlled manner e.g. for the

model in [41], Ea can be Gaussian distributed with a mean

µEa and standard deviation σEa and a relation between the

produced variability σHRS and σEa can be formulated. In

others words, the amount of variability reproduced by the

model can be varied by tuning the parameter σEa (to fit to

σHRS exhibited by the device). Depending on how σEa affects

the four aspects of variability (σHRS , σLRS , σSET , σRESET ),

additional variables or modifications may be required to reduce

the fitting error.

VI. CONCLUSION

Variability observed in resistive-switching behaviour is a

key impediment for commercialization of RRAM technology.

In this work, we have proposed an algorithm to fit certain

amount of variability (obtained from RRAM characterization)

to the Stanford-PKU model. Further, we have modified the

model to enable better fitting of variations (reducing the fitting

error from 41 % to 27 %). It was also verified that the model

incorporated with cycle-to-cycle variability can also repro-

duce device-to-device variability, in simulations. The proposed

methodology will enable circuit and system designers to fit

variability to the Stanford-PKU model. Although the presented

methodology was verified only on the Stanford-PKU model,

the insights gained in this work can be useful to fit variability

to other analytical RRAM models that exist in literature. If

variability in RRAMs cannot be eradicated, at best, they must

be modeled accurately to facilitate the design of variability-

aware circuits and systems.

ACKNOWLEDGMENT

This research was funded by Deutsche Forschungsge-

meinschaft (DFG) -Integrierte Memristor-Basierte Rechner-

Architekturen (IMBRA) (Project number 389549790).

5amount of variability observed is different in different RRAMs depending
on the switching oxide, bilayer/single layer etc.
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APPENDIX A

FITTING LOG-NORMAL DISTRIBUTION OF HRS AND LRS

The log-normal distribution is a probability distribution

whose logarithm has a normal distribution. Suppose the

random variable X has a normal distribution with expected

value µ and standard deviation σ. The density function of

this distribution is given by the function f , where

f(x) =
1√
2πσ

.e
−(x−µ)2

2σ2 (6)

We denote X: N(µ, σ2) as a normal distribution. Then, if

Y = eX (7)

Y is said to be a log-normal random variable i.e. ln(Y ) is

normally distributed (ln(Y ) = X). The distribution of Y is

called a log-normal distribution with mean µlog and standard

deviation σlog .

µlog =
1

N

N
∑

i=1

ln(yi) (8)

σlog =

√

√

√

√

1

N − 1

N
∑

i=1

[ln(yi − µlog)]2 (9)

The density function of the log-normal distribution Y is given

by the function g, where

g(y) =
1

y.σlog.
√
2π

.e

−(ln(y)−µlog)2

2σ2
log (10)

While analysing RRAM variability data, we noticed incon-

sistency in the way the resistance variability was reported

by researchers. Some report that both HRS and LRS are

normally distributed [5]; some report that LRS variation

follows a normal distribution, while HRS a log-normal distri-

bution [12], [36] and, some report that both are log-normally

distributed [31], [37]. To demonstrate the applicability of our

fitting methodology to a log-normal distribution, we elucidate

the fitting methodology presented in Section III-A and III-B

considering a log-normal distribution for HRS and LRS
(in principle, our fitting methodology can be applied even

when only the HRS is log-normally distributed). We used

the following procedure to demonstrate fitting log-normal

variations (in resistive states) to the Stanford-PKU model.

1) Since the raw data for HRS and LRS distribution was

not available, we generated a sample population for

HRS and LRS with the size of 1000 based on the

distribution presented in III-A. Then we fitted this data

to a log-normal distribution in order to find the target

fitting point. The target fitting point was: µHRS
log = 11.6,

σHRS
log = 0.22, µLRS

log = 9.3, and σLRS
log = 0.13.

2) We followed the procedure of Section III-A/Section

III-B by calculating σHRS and σLRS based on Eq. 9

instead of Eq. 1.

3) The triplet (δ0g , TCRIT , TSMTH ) was varied and the

new standard deviation (σHRS
log , σLRS

log , σSET , σRESET )

was collected and analysed. The triplet which minimizes

the error in fitting was chosen as the variability fitting

parameter.

For the single region fitting (Section III-A), the fitting was

(δ0g = 3×10−3, TCRIT = 400, TSMTH = 400) and for the

two-region fitting (Section III-B), the fitting was (P δ0g =

3×10−3, N δ0g = 4×10−3 TCRIT = 850, TSMTH = 850).

In this manner, our proposed algorithm can be used to fit a

quantum of variability in the resistive states (the distribution

may be normal or log-normal) to the Stanford-PKU RRAM

model.

APPENDIX B

CHANGE IN THE VERILOG-A CODE OF STANFORD-PKU

RRAM MODEL TO IMPLEMENT TWO DIFFERENT δ0g

The change to the Stanford-PKU model was done by

introducing two new input parameters (P δ0g and N δ0g) that

determine the δ0g value based on the polarity of the applied

voltage on RRAM:

...

parameter real P δ0g = 0.0025;

parameter real N δ0g = 0.0035;

...

real δ0g;

...

if(Vtb > 0)

δ0g = P δ0g ;

else

δ0g = N δ0g ;

where V tb denoted the voltage between top and bottom

electrode.
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[35] E. Pérez, D. Maldonado, C. Acal, J. Ruiz-Castro, F. Alonso, A. Aguilera,
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