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Summary. The Wilcoxon rank sum test is frequently used in statistical practice for the comparison of
measures of location when the underlying distributions are far from normal or not known in advance.
An assumption of the ordinary rank sum test is that individual sampling units are independent. In many
ophthalmologic clinical trials, the Early Treatment for Diabetic Retinopathy Scale (ETDRS) is a principal
endpoint used for measuring the level of diabetic retinopathy. This is an ordinal scale, and it is natural
to consider the Wilcoxon rank sum test for the comparison of the level of diabetic retinopathy between
treatment groups. However, under this design, unlike the usual Wilcoxon rank sum test, the subject is the
unit of randomization, but the eye is the unit of analysis. Furthermore, a person will tend to have different,
but correlated, ETDRS scores for fellow eyes. Thus, we propose a correction to the variance of the Wilcoxon
rank sum statistic that accounts for clustering effects and that can be used for both balanced (same number
of subunits per cluster) or unbalanced (different number of subunits per cluster) data, both in the presence
or absence of ties, with p-value adjusted accordingly. In this article, we present large-sample theory and
simulation results for this test procedure and apply it to diabetic retinopathy data from type I diabetics in
the Sorbinil Retinopathy Trial.
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1. Introduction
Much work has been considered over the past 20 years regard-
ing the effect of clustering on levels of significance or confi-
dence interval width. In general, in the presence of clustering,
true p-values will be underestimated and confidence interval
width will be too narrow when using standard statistical pro-
cedures that ignore clustering, because correlation between
responses for two observations in the same cluster is usually,
but not always, positive.

Most work in the area of clustered data concerns outcome
variables with a normal or binomial distribution (Rosner,
1984; Liang and Zeger, 1986). A large amount of literature
exists concerning clustered binary data in the context of devel-
opmental toxicity studies (Haseman and Kupper, 1978; Ryan,
1992; Regan and Catalano, 1999) and other medical special-
ties (Jung and Ahn, 2000; Jung, Ahn and Donner, 2001; Jung,
Kang and Ahn, 2001). Some work has also focused on ordinal
outcome variables (Rosner and Glynn, 1997). In a previous ar-
ticle, we considered the incorporation of clustering effects for
the Mann-Whitney U statistic (Rosner and Grove, 1999); sim-
ulation results were presented, but large-sample theory was
not considered. Also, this approach requires special software
which can be computationally intensive in the presence of
many tied rankings, and makes stronger assumptions in the
setting of unequal cluster sizes that may not be warranted.

In Section 2 of this article, we consider a large-sample ap-
proach, where clustering effects can be easily incorporated
with standard software (e.g., SAS PROC RANK) and can be

used for either balanced or unbalanced clustered data, both in
the presence or absence of tied rankings. Use of rank tests af-
ter stratification, by confounding variables, is also considered
in Section 2. We present large-sample theory for this test pro-
cedure and in Section 3, consider simulation studies to assess
finite sample properties. In Section 4, we present an exam-
ple using this approach based on a comparison of change in
diabetic retinopathy grade between treatment groups in the
Sorbinil Retinopathy Trial for type I diabetic patients.

2. Methods
2.1 No Clustering
For notational purposes, we first consider the case of no clus-
tering. Suppose there are two samples X and Y of size m and
n, respectively. Define the Wilcoxon rank sum statistic by

Wobs =

m∑
i=1

Rank(Xi)

where Rank(Xi ) = rank of the ith observation in the X sample
among the combined sample of m + n observations. Under
H0, we assume that the X and Y samples come from the
same underlying distribution. Hence, we refer to the combined
X and Y samples by Zi , i = 1, . . . , m + n ≡ N . We use
a randomization representation of W, obtained by randomly
assigning m of the N observations to the X sample (denoted by
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I) and the remaining observations to the Y sample as follows:

W =

N∑
i=1

δiRi (1)

where Ri = rank of Zi within the N observations in Z, and
δi = 1 if i ∈ I, δi = 0, if i /∈ I. If N is small, then we can
assess significance by generating the

(
N
m

)
possible values for

the set I. However, for large N, we consider a large-sample
approximation to the distribution of W. Under H0,

E(W ) = (m/N)

N∑
i=1

Ri = m(N + 1)/2.

Var(W ) =

N∑
i=1

R2
iVar(δi) +

N∑
i�=k

RiRkCov(δi, δk) (2)

Since Var(δi) = mn/N 2 and Cov(δi, δk) = −mn/
{N 2(N − 1)}, it follows from (2) that

Var(W ) = [mn/{N(N − 1)}]

×
N∑
i=1

R2
i − mn(N + 1)2/{4(N − 1)}

= [mn/{N(N − 1)}]
N∑
i=1

(
Ri −

1 + N

2

)2

If the distribution of Z is continuous with no ties, then

N∑
i=1

R2
i =N(N + 1)(2N + 1)/6 and Var(W ) = mn(N + 1)/12

(3)

If the distribution of Z is discrete with Q groups of tied values,
then (2) can be shown to be

Var(W ) = (mn/12)

[
N + 1 −

Q∑
q=1

(
t3q − tq

)
/{N(N − 1)}

]
. (4)

where tq = number of observations in the qth tied group,
q = 1, . . . , Q.

The test statistic under either (3) or (4) is ZW =
{W − E(W )}/{Var(W )}1/2, which is asymptotically normal
as N → ∞ (Lehmann, 1975).

2.2 Incorporating Clustering Effects
To incorporate clustering effects, we assume that the data
come in clusters where Xij denotes the score for the jth subunit
from the ith cluster in the first group, i = 1, . . . , m; j = 1, . . . ,
gi and Ykl denotes the score for the lth subunit from the kth
cluster in the second group, k = 1, . . . , n; l = 1, . . . , hk . We
define the clustered Wilcoxon rank sum statistic W c,obs by

Wc,obs =

m∑
i=1

gi∑
j=1

Rank(Xij) (5)

where ranks are determined based on the combined sample of
all subunits over the X and Y clusters combined. We assume
the subunits for a given cluster are exchangeable. We wish to
test

H0:Pr{U(Xij − Ykl) = 1} = Pr{U(Xij − Ykl) = 0},
for any i, j, k, l,

vs. H1:Pr{U(Xij − Ykl) = 1} �= Pr{U(Xij − Ykl) = 0},
for some i, j, k, l,

where U(a) = 1 if a > 0, U(a) = 1/2 if a = 0 and U(a) = 0
if a < 0. In words, the test is based on the probability that
the score from a random subunit from the X sample is greater
than the score from a random subunit from the Y sample. If
there are no ties, then under H0, this probability is 1/2, while
under H1 it is different from 1/2.

2.2.1 Balanced designs. We first consider the case of bal-
anced data, i.e., the same number of subunits (g) for all clus-
ters. Since scores for clusters assigned to the X and Y treat-
ments are identically distributed under H0, hereafter we will
drop the distinction between X and Y clusters and refer to
a combined set of Z clusters, where Zij = score for the jth
subunit of the ith cluster, j = 1, . . . , g, i = 1, . . . , m + n =
N . Suppose that m of the N clusters are assigned at random
to the X treatment and the remaining n clusters to the Y
treatment. Let δi = 1 if i ∈ I, and δi = 0 if i /∈ I denote the
indicator function of the m unique values out of {1, . . . ,N}
randomly assigned to the X group, with Pr(i ∈ I) = m/N and∑N

i=1 δi = m. We can write the distribution of the clustered
rank sum statistic W c,obs in the form

Wc =

N∑
i=1

δiRi+ where Ri+ =

g∑
j=1

Rij (6)

and Rij = rank of the jth subunit in the ith cluster among
all gN subunits over all Z clusters. Thus, we can consider
{Ri+, i ∈ I} as a random sample of size m from the population
{Ri+, i = 1, . . . ,N}. There are

(
N
m

)
elements of I. Hence, if

N is small, we could generate the entire distribution of Wc

from (6). However, since
(
N
m

)
is usually large, we consider a

large-sample approximation. We have

E(Wc) = (m/N)

N∑
i=1

Ri+ = gm(gN + 1)/2 (7)

Furthermore, since Var(δi) = mn/N 2 and Cov(δi, δk) =
−mn/{N 2 (N − 1)}, we can write

Var(Wc) = (mn/N 2)

N∑
i=1

R2
i+ − [mn/{N 2(N − 1)}]

×

{(
N∑
i=1

Ri+

)2

−
N∑
i=1

R2
i+

}

= [mn/{N(N − 1)}]
N∑
i=1

{Ri+ − g(1 + gN)/2}2

(8)

Note that (8) can be obtained directly from sampling theory
for finite populations (Hansen, Hurwitz, and Madow, 1960)
by considering {Ri+, i ∈ I} as a random sample of m clusters
that could have hypothetically been assigned to the X group
out of a finite population of N clusters. A natural large sample
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test statistic to consider based on (6), (7), and (8) is

Zc = {Wc − gm(gN + 1)/2}/{Var(Wc)}1/2 (9)

In the Appendix, we prove that Zc is asymptotically normal
if both m → ∞ and n → ∞.

2.2.2 Unbalanced designs. An assumption underlying (6)–
(9) is that the sample points from which the permutation
distribution is derived (i.e., the Ri+) are identically dis-
tributed for each cluster i. This assumption will be violated
in an unbalanced design with variable cluster sizes. There-
fore, for unbalanced designs, we let (mg , ng) = number of
clusters of size g assigned to the X and Y treatment. Denote
Ng = mg + ng for g = 1, . . . , gmax and N =

∑gmax
g=1 Ng. Let

Rij,g = rank for the jth subunit in the ith cluster of size g,
g = 1, . . . , gmax; i = 1, . . . , Ng , j = 1, . . . , g, where ranks are
computed based on the total study population of

∑gmax
g=1 gNg

subunits. Let Ig,obs = {i1, . . . , img}, 1 ≤ i1 < i2 < · · · < img ≤
Ng denote a subset of mg unique indices selected from
{1, . . . ,Ng} corresponding to clusters of size g that are ac-
tually assigned to the X treatment. The statistic Wc,obs can
then be written in the form:

Wc,obs =

gmax∑
g=1

∑
i∈Ig,obs

Ri+,g (10)

where Ri+,g = sum of ranks of all subunits in the ith
cluster of size g, i = 1, . . . ,Ng . Now consider the set

I∼
= (I1, . . . , Ig, . . . , Igmax), where Ig is a random subset of clus-

ters from the Ng clusters of size g that hypothetically could
have been assigned to the X treatment. The distribution cor-
responding to Wc,obs is

Wc =

gmax∑
g=1

(∑
i∈Ig

Ri+,g

)
≡

gmax∑
g=1

Sg =

gmax∑
g=1

Ng∑
i=1

δi,gRi+,g (11)

where δi,g = 1 if i ∈ Ig , δi,g = 0 if i /∈ Ig denote the indicator
function of the mg unique values out of {1, . . . ,Ng} hypothet-
ically assigned to the X group with Pr{i ∈ Ig} = mg/Ng and∑Ng

i=1 δi,g = mg. This is a direct generalization of (6) in the
case of unbalanced data.

If N is small, we can generate the distribution of
Wc from the

∏gmax
g=1

(
Ng
mg

)
elements of I∼

and evaluate the

significance of Wc,obs from p = 2 × min{Pr(Wc ≤ Wc,obs),
Pr(Wc ≥ Wc,obs), 0.5}. Note that the distribution will be
unique for each possible vector m∼ = (m1,m2, . . . ,mgmax).

If N is large, we will consider a large-sample test. We wish
to obtain the moments of Wc under H0. For this purpose, we
will assume that in general, the expected rank of a subunit is
a function of cluster size. Thus,

E(Wc) =

gmax∑
g=1

mg(R++,g/Ng) =

gmax∑
g=1

E(Sg) (12)

Also, we can consider {Ri+,g, i ∈ Ig} as a random sam-
ple of size mg from the population {Ri+,g, i = 1, . . . ,Ng},
g = 1, . . . , gmax. Furthermore, Sg1 and Sg2 as defined in (11) are
independent, because independent random sampling is used

to select Ig1 , Ig2 for g1 �= g2. It follows that

Var(Wc) = Var

(
gmax∑
g=1

Sg

)
=

gmax∑
g=1

Var(Sg)

=

gmax∑
g=1

[mgng/{Ng(Ng − 1)}]
Ng∑
i=1

(Ri+,g −R++,g/Ng)
2

(13)

A large-sample test statistic based on (11), (12), and (13) is

Zc =

(
Wc −

gmax∑
g=1

mgR++,g/Ng

)/
{Var(Wc)}1/2 (14)

In Theorem 1 in the Appendix, we show that Zc con-
verges in law to a N(0, 1) distribution as N =

∑gmax
g=1 Ng →

∞, provided that (a) gmax = maximum cluster size <
∞, and (b) lim N→∞mg/Ng = ξg, where 0 < ξg < 1,
g = 1, . . . , gmax.

2.2.3 Stratification. It is often the case in observational
studies that the primary comparison groups (i.e., the X and
Y groups) are not balanced on other important confounding
variables. Also, in multicenter clinical trials, stratification by
center is common and methods that control for the center
effect are important. It is desirable, in this case, to modify
Wc in equations (6) and (11) to control for confounding vari-
ables. Suppose the set of relevant confounding variables can
be summarized in terms of V strata. Let (mg,v, ng,v) = num-
ber of clusters of size g in stratum v assigned to the X and Y
treatment, and let Ng,v = mg,v + ng,v denote the number of
clusters of size g in stratum v, g = 1, . . . , gmax, v = 1, . . . ,V .
Let Ri+,g,v be the rank sum for the subunits in the ith cluster
of size g in the vth stratum. We define:

Wc,obs =

gmax∑
g=1

V∑
v=1

( ∑
i∈Ig,v,obs

Ri+,g,v

)
(15)

where Ig,v,obs is the observed subset of mg,v unique indices
selected from {1, . . . ,Ng,v}, corresponding to clusters of size
g in stratum v that are actually assigned to the X treatment.
We now consider the set I∼

= (I1,1, . . . , Ig,v, . . . , Igmax,V ), where
Ig,v is a random subset of mg,v clusters from the Ng,v clusters
of size g in stratum v that hypothetically might have been
assigned to the X treatment. The distribution corresponding
to Wc,obs is

Wc =

gmax∑
g=1

V∑
v=1

∑
i∈Ig,v

Ri+,g,v ≡
gmax∑
g=1

V∑
v=1

Sg,v

=

gmax∑
g=1

V∑
v=1

Ng,v∑
i=1

δi,g,vRi+,g,v (16)

where δi,g,v = 1 if i ∈ Ig,v, δi,g,v = 0 otherwise and∑Ng,v

i=1 δi,g,v = mg,v. Let N =
∑V

v=1

∑gmax
g=1 Ng,v denote the to-

tal number of clusters.
If N is small, we can generate the distribution of Wc

from the
∏gmax

g=1

∏V

v=1

(
Ng,v
mg,v

)
elements of I∼

and evaluate

the significance of Wc,obs from p = 2 × min{Pr(Wc ≤ Wc,obs),
Pr(Wc ≥ Wc,obs), 0.5}. For large N, we employ a large-sample
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test similar to (11)–(14) as follows:

E(Wc) =

gmax∑
g=1

V∑
v=1

mg,vR++,g,v/Ng,v =

gmax∑
g=1

V∑
v=1

E(Sg,v)

Var(Wc) =

gmax∑
g=1

V∑
v=1

[mg,vng,v/{Ng,v(Ng,v − 1)}]

×
Ng,v∑
i=1

(Ri+,g,v −R++,g,v/Ng,v)
2 (17)

with test statistic

Zc = {Wc −E(Wc)}/{Var(Wc)}1/2 (18)

In Theorem 2 in the Appendix, we show that Zc converges
in law to a N(0, 1) distribution as N → ∞, provided that
(a) gmax = maximum cluster size < ∞, (b) V < ∞ and (c)
limN→∞mg,v/Ng,v = ξg,v, where 0 < ξg,v < 1, g = 1, . . . , gmax,
v = 1, . . . ,V .

2.2.4 Relationship between the clustered Wilcoxon test statis-
tic and the Rosner-Grove clustered Mann-Whitney U statis-
tic. In a previous report (Rosner and Grove, 1999), de-
noted by RG, we introduced the clustered Mann-Whitney
U Statistic Uc,RG defined by Uc,RG =

∑
(i,j,k,l) U(Xij − Ykl)

which, for a balanced design with g subunits per clus-
ter, differs from Wc,obs in (5) only by a constant
given by Wc,RG = Wc,obs = Uc,RG + (gm)(gm + 1)/2. Thus,
E(W c,RG) = E(Uc,RG) + (gm)(gm + 1)/2 = gm(gN + 1)/2.
Furthermore,

Var(Uc,RG) = Var(Wc,RG) =
{
mng2 + mng2(g − 1)2ρ1

+2mng2(g − 1)ρ2 + mn(m + n− 2)g3(g − 1)ρ3

+mn(m + n− 2)g3ρ4

}
{1 − Pr(Zij = Zkl)}/4

(19)

where ρ1 = Corr{(U(Zij1 − Zkl1), U(Zij2 − Zkl2)}, ρ2 =
Corr{U(Zij − Zkl1), U(Zij − Zkl2)}, ρ3 = Corr{U(Zij1 −
Zk1l1), U(Zij2 − Zk2l2)}, ρ4 = Corr{U(Zij − Zk1l1), U(Zij −
Zk2l2)}; ρ1, ρ2, ρ3, and ρ4 are estimated from a method-
of-moments approach and Pr(Zij = Zkl) is estimated
by

∑
i,j,k,l

1{U(Zij − Zkl) = 1
2}/{Ng(Ng − 1)}. It can be

shown, after extensive algebra, that the variance expres-
sion in (19) is identical to Var(Wc) in (8). It follows that
Zc,RG = {W c,RG − E(W c,RG)}/{Var(W c,RG)}1/2 = Zc in (9).
Hence, the test procedures using the two approaches are
identical in the case of a balanced design. The advantage of
the approach in Section 2.2.1 is that Var(Wc) in (8) is com-
putationally trivial and the test can be easily implemented
using standard SAS software (i.e., located by clicking on
“Data Sets/Computer Codes” on the Biometrics website,
http://stat.tamu.edu/Biometrics), while Var(W c,RG) in
(19) requires special software to estimate ρ1, ρ2, ρ3, and ρ4.

For unbalanced designs, the procedures are not equiv-
alent. It is still the case that Wc,RG = Wc,obs. However,
an assumption under the RG approach is that under H0,
E{U(Zij,g − Zkl,h)} = 1/2 for all g, h = 1, . . . , gmax. In
words, the score (Zij,g) for the jth subunit of the ith clus-
ter of size g is independent of the cluster size (g). Under the
approach in Section 2.2.2, this assumption is relaxed and in-

stead E{U(Zij,g − Zkl,h)} = λgh where, in general, λgh �= 1/2
if g �= h. This leads to different expressions for the moments
of the test statistic under the two approaches. Specifically,

E(Wc,RG) =

gmax∑
g=1

mg

[
g

{(
gmax∑
q=1

qNq

)
+ 1

}/
2

]
≡ µRG �= E(Wc) in (12)

Var(Wc,RG) = E(Wc,RG − µRG)2

= E

[
gmax∑
g=1

[
Sg −mgg

{(
gmax∑
q=1

qNq

)
+ 1

}/
2

]]2

�= Var(Wc) in (13).

In general, Var(Wc) will be smaller than Var(W c,RG), due to
heterogeneity of λgh from 1/2 if g �= h. Furthermore, one
can compute Var(Wc) for unbalanced designs from (13) us-
ing standard software (e.g., PROC RANK of SAS), while
Var(W c,RG) requires special programming. We will compare
the two approaches again in the eighth simulation design in
Table 1.

3. Simulation Study
The test statistic Zc is shown in the Appendix to be asymp-
totically normal as the number of clusters gets large, for both
balanced and unbalanced designs, either in the presence or
absence of stratification variables. In this section, we present
the results of simulation studies to assess the finite sample
properties of this random variable. To assess type I error of
the test procedure in finite samples for a given m, n, and ρ,
we generate

Hij = Ti + eij , Ti ∼ N(0, ρ), eij ∼ N(0, 1 − ρ), (20)

where i = 1, . . . ,N = m + n; j = 1, . . . , gi . It follows that
Corr(Hij1 ,Hij2) = ρ.

We then computed H∗
ij = exp(Hij ). This created lognor-

mally distributed data that are typical of skewed distributions
for which rank procedures are often used. We then computed
the clustered Wilcoxon statistic in the H∗

ij scale. Note that
from (20), the data will still be exchangeable in the H∗

ij scale.
In addition, we computed the mean cluster score and per-
formed the ordinary Wilcoxon rank sum test based on the
cluster means, which we refer to as the “cluster-mean” ap-
proach. Each of these procedures was assessed in 8 different
designs. Designs 1–6 are based on continuous data with no
ties; designs 1–4 are balanced designs and designs 5–6 are un-
balanced designs. Design 7 is similar to design 2, except that
the continuous data are divided into 6 groups corresponding
to the (<20th, 20th to <40th, 40th to <50th, 50th to <60th,
60th to <80th, and >=80th) percentiles of a normal distribu-
tion, with the actual values replaced by the median value of
the normal distribution within the respective group and then
exponentiated. Thus, design 7 should be typical of datasets
with many tied values. Design 8 is a particular unbalanced de-
sign with continuous data, where the cluster-size distribution
is different for the X and Y groups, and the expected score
is a function of cluster size. This type of design should maxi-
mize the contrast between the clustered Wilcoxon procedure
in (10)–(14) and the RG approach discussed in Section 2.2.4.
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Table 1
Simulation study—type I error of clustered Wilcoxon rank sum statistic and the ordinary Wilcoxon rank sum statistic, lognormal

distribution, nominal α = 0.05, 4000 replications per cell

Wc
a Wb

Design m2 n2 m4 n4 ρ 0.05 0.2 0.5 0.8 0.05 0.2 0.5 0.8

1 20 20 — — α̂ 0.050 0.048 0.048 0.050 0.048 0.050 0.050 0.050
Cd 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.01

2 50 50 — — α̂ 0.052 0.053 0.051 0.052 0.051 0.052 0.050 0.050
C 1.02 1.00 1.00 1.01 0.99 0.98 0.99 1.01

3 — — 20 20 α̂ 0.044 0.044 0.044 0.047 0.047 0.047 0.047 0.047
C 0.97 0.99 1.01 1.01 0.99 1.00 1.01 1.01

4 — — 50 50 α̂ 0.050 0.045 0.048 0.049 0.048 0.048 0.051 0.051
C 0.99 0.99 0.99 0.99 0.97 0.97 0.98 0.99

5 10 10 10 10 α̂ 0.051 0.051 0.053 0.055 0.050 0.052 0.057 0.053
C 1.00 1.01 1.02 1.02 1.01 1.03 1.04 1.03

6 25 25 25 25 α̂ 0.052 0.051 0.048 0.053 0.052 0.047 0.046 0.044
C 1.00 1.00 1.01 1.01 1.01 1.00 1.00 1.01

7 50 50 — — α̂ 0.054 0.053 0.051 0.050 0.054 0.052 0.049 0.049
(grouped data) C 1.01 1.00 0.99 1.00 1.00 0.99 0.98 1.00

8c 30 20 20 30 α̂Wc 0.053 0.054 0.048 0.054 0.190 0.178 0.157 0.133
CWc 1.05 1.03 1.02 1.02 0.58 0.62 0.70 0.76
α̂RG 0.176 0.171 0.169 0.171 — — — —
CRG 0.65 0.61 0.60 0.62 — — — —

a Using the subunit as the unit of analysis.
b Using the cluster mean as the unit of analysis.
c E(Ti |gi = 2) = 0; E(Ti |gi = 4) = 1.

d C =
4000∑
i=1

{(W (i)
c −W c)2/3999}/mean{Var(Wc)}.

For each of the 8 designs, we assessed each procedure for ρ =
0.05, 0.2, 0.5, and 0.8, with 4000 simulations for each value of
ρ.

For each design, we computed the empirical type I error
α̂ = empirical proportion of test statistics Zc that exceed the
nominal critical value 1.96 (at a 5% significance level) and

C =

4000∑
i=1

{(
W (i)

c −W c

)2/
3999

}/
mean{Var(Wc)}

where W
(i)
c = clustered Wilcoxon rank sum statistic for the

ith simulation, i = 1, . . . , 4000. C provides an estimate of the
validity of the variance estimates in (8) and (13). The results
are given in Table 1.

For designs 1–7 in Table 1, the range of estimated type I
errors for the clustered Wilcoxon procedure is from 0.044
to 0.055, with average type I error = 0.050. The range of
estimated C statistics is from 0.97 to 1.02, with average C
statistic =1.00. For the cluster-mean procedure, the range of
estimated type I errors is from 0.044 to 0.057, with average
type I error = 0.050. The range of estimated C statistics is
from 0.97 to 1.04, with average C statistic = 1.00. Thus, sim-
ulation results indicate that the large-sample nominal type I
error and estimated variance for both the clustered Wilcoxon
and cluster mean procedures are appropriate for datasets with
≥20 clusters per group.

In design 8, we see that the unbalanced design approach in
Section 2.2.2 adequately controls the type I error of Wc for

each value of ρ. However, the RG approach has a type I error
of 0.17 − 0.18, and clearly does not preserve the size of the
test under this design. The reason is that the average rank of
the X and Y groups is not the same under H0, although it is
the same within cluster size-specific strata. The cluster mean
procedure has type I error of 0.13 − 0.19 and also does not
preserve the size of the test for the same reason. In addition,
the C statistic is close to 1 for the clustered Wilcoxon ap-
proach, but ranges from 0.60 − 0.65 for the RG approach and
from 0.58 − 0.76 for the cluster mean approach, indicating in-
appropriate variance estimation for the latter two approaches
under this design.

Another issue in comparing the clustered Wilcoxon and
cluster-mean approaches is power. For this purpose, we re-
peated the analyses in designs 1–7 of Table 1, but in (20), set
Ti ∼ (0.4, ρ) for the observations in group 2, and Ti ∼ N(0, ρ)
for the observations in group 1. The resulting power analyses
are shown in Figure 1.

For balanced designs for each method, power increased
both with an increasing number of clusters and with an in-
creasing number of subunits per cluster. Power for unbalanced
designs was generally intermediate between the power for the
two corresponding balanced designs. Also, for each of the 7
designs in Figure 1, power decreased with increasing intraclass
correlation (ρ). In 23 out of 28 cases, the clustered Wilcoxon
procedure had more power than the cluster-mean procedure,
in some instances, substantially so. The largest differences in
power (about 5–8%) occurred when the number of subunits
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Figure 1. Power comparison of clustered Wilcoxon rank sum statistic (Wc) versus the ordinary Wilcoxon rank sum statistic
(W) as a function of the intraclass correlation (ρ = 0.05, 0.2, 0.5, 0.8) for designs 1–7 described in Table 1. The values
(m2, n2, m4, n4) are listed for each design. Each power estimate is based on 4000 replications using a lognormal distribution,
and a nominal α = 0.05.

Table 2
Simulation study—type I error of ordinary Wilcoxon rank sum
test in the presence of clustering with the subunit as the unit

of analysis, nominal α = .05, 4000 replications per cell

ρ

m2 n2 0.2 0.5 0.8

20 20 α̂ 0.073 ± 0.004 0.106 ± 0.005 0.148 ± 0.006
C 1.21 1.50 1.81

50 50 α̂ 0.075 ± 0.004 0.111 ± 0.005 0.146 ± 0.006
C 1.19 1.48 1.80

All type I errors are significantly different from α = 0.05(p < 0.001).

C =
{ 4000∑

i=1
(Wc,i −W c)2/3999

}/
{mn(m + n + 1)/12}

was large (g = 4) and/or the intraclass correlation was low
(≤0.2). For very high intraclass correlation (ρ = 0.8), there
was little difference in power between the two procedures.
In general, the clustered Wilcoxon procedure has appropri-
ate type I error for at least 20 clusters per group and has a
superior power profile to the cluster-mean procedure. Differ-
ences between the procedures can be expected to widen as
the number of subunits per cluster increases.

We also studied the effect of using the ordinary Wilcoxon
rank sum test, ignoring the clustering when clustering was ac-
tually present. Both the empirical type I error and C statistic
(the design effect) were computed. Balanced designs with (m,
n) = (20, 20), (50, 50), g = 2 and ρ = (0.2, 0.5, 0.8) were
considered. The results are given in Table 2.

We see that the effect of ignoring the clustering is substan-
tial, even for ρ = 0.2. The type I error is about 7–8% for ρ =
0.2, 11% for ρ = 0.5, and 15% for ρ = 0.8. Similarly, the design
effect (C) is approximately 1.2 for ρ = 0.2, 1.5 for ρ = 0.5, and
1.8 for ρ = 0.8. Hence, the standard Wilcoxon rank sum test
is inappropriate for clustered ranked data, even for levels of
correlation as low as 0.2. Furthermore, it would be expected
that both the type I error and the design effect would increase
even further if the number of subunits per cluster was >2.

4. Example
The Sorbinil Retinopathy Trial was conducted among type I
diabetic patients who had little or no evidence of retinopa-
thy at baseline. Four hundred ninety-seven patients were ran-
domized to either Sorbinil, an aldose reductase inhibitor, or
placebo and were seen at 1-year and then at 9-month intervals,
up to 48 months. Additionally, all subjects had a scheduled
final visit at the end of the trial (maximum = 56 months).
Sixteen of the patients provided no follow-up and an addi-
tional 3 patients were missing important baseline covariates;
this resulted in 478 patients being used for the analyses in
this article, of whom 237 were randomized to Sorbinil and
241 to placebo. The analyses here are based on the diabetic
retinopathy grade at maximum follow-up, minus the diabetic
retinopathy grade at randomization. The diabetic retinopa-
thy grade at a visit is based on the ETDRS (Early Treatment
for Diabetic Retinopathy Study) grading system with grades
of 10, 20, 30, 41, 45, 55, or 61 in each eye. Higher ratings
indicate more severe retinopathy, with 10 indicating no dia-
betic retinopathy and 61 indicating proliferative (very severe)
diabetic retinopathy. In the primary analyses for this study
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Table 3
Changes in ETDRS diabetic retinopathy grade in the Sorbinil Retinopathy Trial by treatment group

Right eye Left eye Both eyes

Difference Sb Pb S P S P
scoresa n(%) n(%) n(%) n(%) n(%) n(%)

−21 2(1) 0(0) 0(0) 0(0) 2(0) 0(0)
−20 0(0) 0(0) 0(0) 1(0) 0(0) 1(0)
−11 2(1) 0(0) 1(0) 1(0) 3(1) 1(0)
−10 20(8) 10(4) 17(7) 18(7) 37(8) 28(6)

0 125(53) 122(51) 123(52) 126(52) 248(52) 248(51)
4 1(0) 0(0) 1(0) 0(0) 2(0) 0(0)
10 56(24) 71(29) 59(25) 69(29) 115(24) 140(29)
11 1(0) 1(0) 2(1) 2(1) 3(1) 3(1)
15 0(0) 2(1) 0(0) 0(0) 0(0) 2(0)
20 10(4) 13(5) 10(4) 6(2) 20(4) 19(4)
21 7(3) 10(4) 9(4) 7(3) 16(3) 17(4)
25 5(2) 3(1) 5(2) 4(2) 10(2) 7(1)
31 5(2) 7(3) 6(3) 7(3) 11(2) 14(3)
35 1(0) 2(1) 4(2) 0(0) 5(1) 2(0)
41 2(2) 0(0) 0(0) 0(0) 2(0) 0(0)

Total 237 241 237 241 474 482

W c 53, 638.5 57, 615.5 222, 253
E(W ) 56, 761.5 56, 761.5 226, 809.0
Var(W) 1, 921, 623 1, 912, 739 15, 321, 756
ZW −2.253 0.617 −1.164
p-value 0.024 0.537 0.245

a Grade at the last available follow-up visit minus grade at the randomization visit. Positive changes indicate
worsening; negative changes indicate improvement.

b S=Sorbinil group; P = placebo group.
c Observed rank sum in the Sorbinil group.

(Sorbinil Retinopathy Trial Research Group, 1990), the per-
son was used as the unit of analysis based on a composite
grade, using the joint retinopathy status of the right and left
eyes; a binary outcome was used based on a worsening by 2 or
more levels on this person-specific scale. Because potentially
information is lost by (a) collapsing eye-specific grades into
a single person-specific grade and (b) dichotomizing the out-
come as a change of 2+ levels, we used a different approach.
Specifically, in this article, we used the eye as the unit of anal-
ysis, with the change in retinopathy status for an eye com-
puted as a difference score = diabetic retinopathy grade at the
last available follow-up visit, minus the diabetic retinopathy
grade at randomization. Since the distribution of maximum
follow-up time was similar for the Sorbinil and placebo groups,
this resulted in minimal bias in estimating the treatment ef-
fect. The above difference score is an ordinal variable and thus
the Wilcoxon rank sum test is a natural method of analysis in
this setting. However, since the difference scores for two eyes
of an individual are correlated, the clustered Wilcoxon rank
sum test was used. The balanced design approach in (6)–(9)
was used because each individual with at least one follow-up
visit provided difference scores (Zij ) for each eye with no miss-
ing data, where i = 1, . . . , 478 denotes the patient and j =
1, 2 denotes the right and left eye, respectively. In Table 3,
we present the distribution of difference scores for right and
left eyes, separately and combined, as well as the standard
Wilcoxon rank sum test.

There were significant differences between Sorbinil and
placebo for the right eye (p = 0.024), in the direction of ben-
efit (i.e., smaller change scores for the Sorbinil group). How-
ever, for the left eye, no significant differences were found
(p = 0.54). For both eyes combined, based on 956 eyes, the p-
value was 0.25. However, this latter analysis is flawed, because
it does not take the clustering between difference scores for
fellow eyes into account. For this purpose, we present results
using the clustered Wilcoxon test in Table 4.

The observed rank sum in the Sorbinil group (222, 253)
and its expected value under H0(226, 809) are identical for
both the standard and clustered Wilcoxon tests. However,
Var(Wc)/Var(W ) ≈ 1.38, reflecting the increased variance due
to clustering. This results in higher p-values once clustering
is accounted for (Zc in (9) = −0.989, p = 0.32 vs. ZW in
Section 2.1 =−1.164, p = 0.25).

There were several covariates that were predictive of the
difference score. The most important was baseline total gly-
cosylated hemoglobin (TGH), an indicator of diabetic con-
trol, with higher values reflecting poorer control. Thus, to
control for possible confounding by TGH, we stratified the
sample at the approximate median (≥12 vs. < 12%). There
was a slightly higher percent of persons with TGH ≥12%
in the Sorbinil group (43%) vs. the placebo group (39%)
(Table 4). Thus, we used the clustered Wilcoxon test after
controlling for TGH (equations (15)–(18)). The results indi-
cate that E(Wc) increased after stratification (crude, 226,809;
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Table 4
Use of the Clustered Wilcoxon Rank Sum test to compare changes in ETDRS diabetic retinopathy grade in the

Sorbinil Retinopathy Trial

TGH++
Total Population Total Population

(unadjusted analysis) <12% ≥12% (adjusted for glycosylated hemoglobin)

n(S, P )∗ (237, 241) (134, 146) (103, 95) (237, 241)
Wc 222, 253+ 117, 356.5 104, 896.5 222, 253+

E(Wc) 226, 809 118, 503.1 109, 152.7 227, 655.8
Var(Wc) 21, 218, 545 9, 335, 256 11, 002, 385 20, 337, 641
Zc −0.989† — — −1.198‡

p-value 0.323 — — 0.231

++TGH = total glycosylated hemoglobin. In this example, all subjects had 2 eyes available (i.e., g = 2). There were two strata
(i.e., V = 2), with v = 1 indicating glycosylated hemoglobin <12% and v = 2 indicating glycosylated hemoglobin ≥12%. Hence,
S2,1, E(S2,1), Var(S2,1) are given in the 2nd, 3rd and 4th, rows of the glycosylated hemoglobin <12% column and S2,2, E(S2,2),
Var(S2,2) are given in the corresponding rows of the glycosylated hemoglobin ≥12% column.

∗S = Sorbinil group; P = placebo group.
+Rank sum in the Sorbinil group over 474 eyes from 237 subjects.
†Based on equation (9).
‡Based on equation (18).

adjusted, 227,656). Also, Var(Wc) decreased by about 4% af-
ter controlling for TGH. The resulting p-value was slightly
smaller (unadjusted, p = 0.32; adjusted, p = 0.23), but the
results were still not statistically significant.

5. Discussion
In this article, we have generalized the standard Wilcoxon
rank sum test to allow one to incorporate clustering effects
for ranked data. The generalized variance formulas can be
used for either balanced data (equation [8]) or unbalanced
data (equation [13]), both in the presence or absence of tied
values. In addition, covariate effects can be controlled for by
stratification (equations [15]–[18]). These test statistics were
shown to be asymptotically normal, as the number of clus-
ters gets large if the maximum cluster size is bounded and
the number of strata are finite. The simulations indicate that
the large-sample procedure has appropriate type I error if the
number of clusters is ≥20 in each group. In the case of a bal-
anced design, the approach in this article can be shown to
be identical to the clustered Mann-Whitney U approach re-
ported previously (Rosner and Grove, 1999). In the case of
an unbalanced design, the approach in Section 2.2.2 is more
general, since it allows the expected rank to be a function of
cluster size, while the clustered Mann-Whitney U approach
does not. With the latter procedure, one can obtain invalid
type I errors if the cluster size distribution differs by treat-
ment group and the expected rank is a function of cluster
size. Furthermore, the large-sample test approach is compu-
tationally trivial, with easy implementation in readily avail-
able software (e.g., SAS); thus, it does not require the spe-
cial software needed for the previous implementation. A sam-
ple SAS program (cluswilcox.sas) is found on the Biometrics
web page (http://stat.tamu.edu/Biometrics), which can
be used for either balanced (equations [6]–[9]) or unbalanced
(equations [10]–[14]) designs without additional covariates.
The output from this program for the Sorbinil Retinopathy
Trial data in Table 4, column 1 is provided after the program.
An additional sample SAS program (stratify.cluswilcox.sas)

is also provided at the same web site for stratified designs
(equations [15]–[18]).

An assumption of the methods in the article is that all
subunits within a cluster are exchangeable. This is usually
appropriate for eye-specific outcomes measured at the same
time, but may be invalid in other settings. Furthermore, in
this article, the unit of randomization is the cluster, while the
unit of analysis is the subunit. While this may be appropriate
in many clinical trial settings, in observational studies, it is
common to have both subunit-specific outcome and exposure
variables (e.g., if the presence of cataract or elevated intraoc-
ular pressure in an eye is used to predict visual field in the
same eye in glaucoma patients).
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Résumé

Le test de Wilcoxon est fréquemment utilisé en pra-
tique pour la comparaison des tendances centrales lorsque
les distributions sous-jacentes sont loin d’être normales
ou qu’elles sont inconnues. Une hypothèse du test ordi-
naire basé sur la somme des rangs est que les unités de
l’échantillon sont indépendantes. Dans beaucoup d’essais clin-
iques ophtalmologiques, l’échelle de traitement précoce pour
la rétinopathie diabétique (ETDRS) est le principal critère
de jugement pour mesurer le niveau de la rétinopathie
diabétique. C’est une échelle ordinale et il est naturel de con-
sidérer le test de Wilcoxon pour la comparaison des niveaux
de rétinopathie diabétique entre les groupes de traitement.
Cependant, avec ce plan d’étude, à la différence des situa-
tions usuelles d’utilisation du test de Wilcoxon, le sujet est
l’unité de randomisation, mais l’oeil est l’unité d’analyse. De
plus une personne tend des scores différends mais corrélés
pour les deux yeux. Donc, nous proposons une correction de
la variance du test de Wilcoxon pour les effets de groupe qui
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peut être utilisée pour les données équilibrées (même nombre
dans chaque sous-unité du groupe) ou déséquilibrées (nom-
bre différent de sous-unités par groupe), en présence possible
d’ex-aequos, avec une p-value ajustée suivant les cas. Dans cet
article, nous présentons la théorie pour les grands échantillons
et des résultats de simulation pour cette procédure de test
et l’appliquons à des données de rétinopathie diabétique (de
diabète de type I) dans l’essai “Sorbinil Retinopathy trial”.
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Appendix

Proof of Asymptotic Normality of Wc in Equations (6), (11),
and (16). We first consider the asymptotic normality of Sg in
(11) where, for the Appendix, for a dataset with N clusters,
Sg is denoted by Sg,N . In the case of a balanced design, Wc

in (6) is the same as Sg , and thus the Lemma will prove the
asymptotic normality of Wc for balanced designs. We then
extend this result to unbalanced designs in Theorem 1, and
further extend it to the general case of stratified, possibly
unbalanced, designs in Theorem 2. A sketch of this proof is
given here. The full proof is available on the Biometrics web
page (http://stat.tamu.edu/Biometrics).

Lemma: Let Sg,N =
∑

i∈Ig (Ri+,g −R++,g/Ng) where Ig is
defined in (11). Sg,N is asymptotically normal as N → ∞,
provided that (a) lim N→∞mg/Ng = ξg, where 0 < ξg < 1 and
(b) Ng → ∞ as N → ∞.

Proof. Let Zij,g denote the θth
ij,g percentile of Z in the

reference population, i.e., Pr(Z ≤ Zij,g) = θij,g. Note that we
can write Rij,g in the form Rij,g = 1 +

∑
(k,l)�=(i,j) U(Zij,g −

Zkl,g) +
∑gmax

h�=g

∑Nh

k=1

∑h

l=1 U(Zij,g − Zkl,h), and define

R∗
ij,g ≡ E(Rij,g) = 1 + {(

∑gmax
q=1 qNq) − 1}θij,g, R∗

i+,g =∑g

j=1 R
∗
ij,g. We consider the auxiliary statistic

S∗
g,N =

∑Ng

i=1{(R∗
i+,g − R∗

++,g/Ng)}δi,g ≡
∑

i∈Ig Vi,g,Ng ,

where δi,g = 1 if i ∈ Ig and Vi,g,Ng = R∗
i+,g −R∗

++,g/Ng,
i = 1, . . . , Ng, δij = 0 otherwise, and δi,g is indepen-
dent of θij,g. Thus, S∗

g,N is the randomization distri-
bution of

∑
i∈Ig,obs

(R∗
i+,g −R∗

++,g/Ng), conditional on

θ∼g = (θ11,g, . . . , θNgg,g). We first establish the asymptotic
normality of S∗

g,N and then show asymptotic equivalence
between S∗

g,N and Sg,N . Using Lehmann (1975, Corollary 3,
p. 354), we can show that S∗

g,N is asymptotically normal
as N →∞, for any θ∼g. We now must establish asymptotic
equivalence between Sg,N and S∗

g,N . From Lehmann (1975,
Corollary 2, p. 349), asymptotic normality of Sg,N will be
established if

E(Sg,N − S∗
g,N )2/Var(S∗

g,N ) → 0 as N → ∞. (A.1)

After extensive algebra, and use of sampling theory for fi-
nite populations (Hansen et al., 1960), it can be shown that

E(Sg,N − S∗
g,N )2/Var(S∗

g,N )

≤
(
g4

max/4
)

(ng/Ng)gVar(θij){1 + (g − 1)ρθ,g}{V̂ar(θi+,g)/Var(θi+,g)}

×
{

N

(N − 1)2

}(
Ng + 1

Ng

)
where ρθ,g = Corr(θij,g, θil,g), j �= l and V̂ar(θi+,g) =∑Ng

i=1(θi+,g − θ·+,g)
2/(Ng − 1), θ·+,g =

∑Ng

i=1 θi+,g/Ng. Since 0
< Var(θij) < 1, 0 < 1 + (g − 1)ρθ,g < g, and as N →∞,
ng/Ng converges in probability to 1 − ξg, where 0 < ξg < 1,

V̂ar(θi+,g)/Var(θi+,g) and (Ng + 1)/Ng each converges in prob-
ability to 1, it follows that (A.1) is satisfied and the Lemma
is proven; this implies that Zc in (9) is asymptotically normal
for balanced designs. For an unbalanced design, we consider
the following theorem.

Theorem 1: Suppose we have two samples X and Y con-
sisting of m and n clusters, respectively. Let Xij,g = score for
the jth subunit from the ith X cluster of size g, i = 1, . . . ,m,
j = 1, . . . , g; g = 1, . . . , gmax and let Y kl,g be defined similarly.
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We wish to test the hypothesis

H0 : Pr{U(Xij,g − Ykl,g) = 1} = Pr{U(Xij,g − Ykl,g) = 0}
for all g = 1, . . . , gmax vs.

H1 : Pr{U(Xij,g − Ykl,g) = 1} �= Pr{U(Xij,g − Ykl,g) = 0}
for at least one g = 1, . . . , gmax.

Let Wc , E(Wc) and Var(Wc) be defined as in (11), (12),
and (13). If (a) gmax is finite and (b) for all cluster sizes g,
mg/Ng → ξg, 0 < ξg < 1, g = 1, . . . , gmax as N → ∞, then
under H0, Zc = {Wc − E(Wc)}/{Var(Wc)}1/2 converges in
law to a N(0, 1) distribution as N → ∞.

Proof. In this proof, we denote the rank sum for the ith
cluster of size g in a dataset with N clusters by Ri+,g,N .
The overall Wilcoxon rank sum statistic is given by Wc,N =∑gmax

g=1 Sg,N . Let D = {g1, . . . , gQ} be the set of cluster sizes
such that Ngq → ∞ as N → ∞. Clearly, {Sg1,N , . . . , SgQ,N}
are independent, because the realizations of the randomiza-
tion distributions for different cluster sizes are independently
determined.

Furthermore, from the Lemma, Sgq,N is asymptoti-
cally normally distributed as N → ∞, q = 1, . . . ,Q. Let
W ∗

c,N =
∑Q

q=1 Sgq,N , E(Sgq,N ) = µgq,N ,Var(Sgq,N ) = σ2
gq,N

,

as given in (11)–(13). It follows that

EN ≡ E(W ∗
c,N ) =

Q∑
q=1

µgq,N , VN ≡ Var(W ∗
c,N ) =

Q∑
q=1

σ2
gq,N

.

Therefore, based on moment-generating function methods,
it can be shown that Z∗

c,N = (W ∗
c,N − EN )/V

1/2
N converges

in law to a N(0, 1) distribution as N → ∞. We now consider
the asymptotic distribution of Wc,N =

∑gmax
g=1 Sg,N . We can

write Wc,N −W ∗
c,N =

∑R

r=1 Shr,N , where D̄ = {h1, . . . , hR}
denote the set of indices in {1, . . . , gmax} that are not in-
cluded in D. Based on Lehmann (1975, Corollary 2, p. 349),
to prove the asymptotic normality of W c,N , it will be suf-

ficient to show that E(W c,N − W ∗
c,N )2/Var(W ∗

c,N ) → 0 as
N → ∞.

After extensive algebra, it can be shown that

E(Wc,N −W ∗
c,N )2/Var(W ∗

c,N )

≤ {N/(N − 1)}2A(h1, . . . , hR)

/
Q∑
q=1

NgqB(gq) (A.2)

where A(h1, . . . , hR) and B(gq), q = 1, . . . ,Q are positive and
bounded, and Ngq → ∞ as N → ∞, q = 1, . . . ,Q. It follows
from (A.2) that E(W c,N − W ∗

c,N )2/Var(W ∗
c,N ) → 0 as N →

∞. Thus, W c,N is asymptotically normal as N → ∞, and Zc

in (14) converges in law to a N(0, 1) distribution, as N →
∞ in the case of an unbalanced design. Finally, we state the
following Theorem for the case of a stratified design.

Theorem 2: Suppose we have two samples X and Y con-
sisting of m and n clusters, respectively. In addition, assume
that the clusters are stratified into V strata according to 1 or
more confounding variables. Let Xij,g,v = score for the jth sub-
unit from the ith X cluster of size g, from the vth stratum, i =
1, . . . ,m; j = 1, . . . , g; g = 1, . . . , gmax; v = 1, . . . ,V , and let
Y kl,g,v be defined similarly. We wish to test the hypothesis:

H0: Pr{U(Xij,g,v −Ykl,g,v)=1} = Pr{U(Xij,g,v −Ykl,g,v)=0}
for all g = 1, . . . , gmax; v = 1, . . . , V vs.

H1: Pr{U(Xij,g,v −Ykl,g,v)=1} �= Pr{U(Xij,g,v −Ykl,g,v)=0}
for at least one (g, v), g = 1, . . . , gmax, v = 1, . . . , V.

Let Wc, E(Wc) and Var(Wc) be defined as in (16) and (17).
If (a) gmax is finite, (b) V is finite, and (c) for all (g, v),

mg,v/Ng,v → ξg,v, 0 < ξg,v < 1 as N → ∞, then under H0,
Zc = {Wc − E(Wc)}/{Var(Wc)}1/2 converges by law to a N(0,
1) distribution as N → ∞.

Proof. The proof is identical to Theorem 1, where here
D = {(g1, v1), . . . , (gQ , vQ)} is the set of (cluster size, stratum)
pairs such that Ngq,vq → ∞ as N → ∞; hence, the details are
omitted.


