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The ability to learn new tasks requires that new information is

integrated into neural systems that already support other behav-

iors. To study how new information is incorporated into neural

representations, we analyzed single-unit recordings from the

prefrontal cortex (PFC), a brain region important for task acquisi-

tion and working memory, before and after monkeys learned to

perform two behavioral tasks. A population-decoding analysis

revealed a large increase in task-relevant information, and smaller

changes in stimulus-related information, after training. This new

information was contained in dynamic patterns of neural activity,

with many individual neurons containing the new task-relevant

information for only relatively short periods of time in the midst of

other large firing rate modulations. Additionally, we found that

stimulus information could be decoded with high accuracy only

from dorsal PFC, whereas task-relevant information was distrib-

uted throughout both dorsal and ventral PFC. These findings help

resolve a controversy about whether PFC is innately specialized to

process particular types of information or whether its responses

are completely determined by task demands by showing there is

both regional specialization within PFC that was present before

training, as well as more widespread task-relevant information

that is a direct result of learning. The results also show that

information is incorporated into PFC through the emergence of

a small population of highly selective neurons that overlay new

signals on top of patterns of activity that contain information

about previously encoded variables, which gives insight into how

information is coded in neural activity.
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The prefrontal cortex (PFC) is a brain region involved in
planning, decision making, working memory, and learning

new context dependent behaviors (1–3). Although many studies
have found task-related activity in the PFC for a variety of dif-
ferent behaviors (4–6), it is often unclear whether this task-
related information had always existed in PFC or whether it
emerged as a result of learning. Furthermore, in studies in which
it seems likely that new information arises as a result of training
(7, 8), how this new information interacts with preexisting in-
formation is not well understood. Given that we must continually
learn to perform new tasks, while simultaneously maintaining the
ability to perform previously learned behaviors, understanding
how new information is integrated into existing neural processing
is fundamental to understanding how the brain enables complex
and adaptive human behaviors.
To gain insight into how learning a new task affects processing

in PFC, we analyzed single-unit activity from neurons before
and after two monkeys were trained to perform two distinct
delayed match-to-sample tasks (9, 10) (Fig. 1 and Fig. S1). Using
a neural-population decoding analysis, we were able to directly
assess what information was represented in the population be-
fore training and what new information arose because of learn-
ing a new task. Our analyses sought to examine several questions
concerning the content and coding of information including:
(i) Does learning a new task change the amount of information

about basic stimulus features or does it only change the amount
of information about more complex task-related variables?
(ii) Does the new information arise because of the emergence of
a few highly selective neurons or is information evenly distrib-
uted across the population? (iii) Do neurons become specialized
to process only one type of information, as suggested by some
studies (11), or can the same neuron carry multiple types of in-
formation as other studies suggest (12)? (iv) Is the new in-
formation contained in a dynamic population code (13–15), or is
there one stationary pattern of neural activity that contains the
new information? (v) Are there differences in the information
content between dorsal and ventral PFC, and does learning af-
fect these two brain regions equally (16–20)? Thus, this work
gives insight into how new information is incorporated in neural
systems and helps clarify the key computations that are occurring
in PFC (21, 22).

Results

Neural recordings were made from two monkeys while they
passively viewed a sequence of two stimuli and after they were
trained on two delayed-match-to-sample tasks. Before training,
the monkeys fixated a central point and passively observed two
stimuli that were separated by a delay (Fig. 1C). After training,
the monkeys viewed the same sequence of stimuli and made
a saccade that indicated whether the two stimuli were identical
(Fig. 1D and Fig. S1A). In the “feature task,” the monkeys in-
dicated whether the symbols where the same (Fig. 1D); in the
“spatial task,” the monkeys indicated whether the square symbol
appeared at the same location (Fig. S1). Neurons were sampled
with an unbiased procedure, recording from all neurons that
could be isolated, and a decoding procedure was used that jointly
analyzed the activity of 750 neurons at a time recorded in separate
sessions (Methods). Results from the feature task are shown in the
main text of the article (Results), and the results from the spatial
task are shown in the supplemental figures (SI Text). (Overall, the
results were very similar between the two tasks.)
Our analysis examined the amount of information that could

be decoded from the neuronal population (evaluated as the
performance of a linear classifier) about stimulus identity or
location (i.e., which of eight stimuli were shown in the feature
and spatial tasks) and about the match/nonmatch status of a trial.
We observed little difference in the amount of information about
the identity of the first stimulus before training (Fig. 2A, blue
trace) compared with after training (Fig. 2A, red trace). In
contrast, there was a massive increase in information about the
match/nonmatch status of the trial in PFC after training. Before
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training, when the match/nonmatch status of a trial was irrele-
vant for the task, we could not decode information about
whether the two stimuli matched in shape at accuracies that were
above chance (Fig. 2B, blue trace). However, after training, when
the match/nonmatch status was critical for correctly completing
the task, we could decode this information at above-chance
levels shortly after the onset of the second stimulus [permutation
test, P < 0.005; see colored bars at the bottom of Fig. 2 A and B],
and it was possible to decode this information with close to 100%
accuracy during most of the following delay period (Fig. 2B, red
trace). This increase in match/nonmatch information across the
population was attributable to a small subset of neurons that
became highly selective for match/nonmatch information after
training (points above horizontal line in Fig. 2C), as well as
a larger number of neurons that showed a small increase in their
match/nonmatch selectivity. In fact, these highly selective neu-
rons were so informative that the top eight most selective neu-
rons contained almost all of the information that was present in
the entire population (Fig. S2A). However, the less strongly se-
lective neurons still contained significant amounts of redundant
information, as evidenced by the fact that when we excluded the
top 128 most selective neurons, we still obtained above-chance
decoding accuracies (Fig. S2B). Similar results were observed for
spatial stimuli (Fig. S3): equivalent levels of stimulus information
could be decoded during the first stimulus presentation before

and after training, and an increase in the match/nonmatch in-
formation was observed after training. A subtle difference between
tasks was an increase in position information in anticipation of
the second stimulus presentation after training in the spatial task.
Recent work has shown that neural activity in PFC shows

complex temporal dynamics, with individual neurons changing
the way they code information over the course of a trial (13–15).
To test whether the task-relevant match/nonmatch information
that emerged after training was also encoded by dynamic pop-
ulation activity, we applied a decoding analysis in which we
trained the classifier using data from one time period (as in-
dicated by the y axis on Fig. 3A and Fig. S4A) and tested the
classifier using data from a different time period (as indicated by
the x axis on Fig. 3A and Fig. S4A). If the information is rep-
resented by a stationary pattern of activity (i.e., if patterns of
neural activity that encode the match/nonmatch trial status are
the same at all time points), then training the classifier using one
time point with high information should lead to high classifica-
tion accuracy at all other time points where the information is
present. Conversely, if information is represented by dynamic
patterns of neural activity, then training the classifier at any one
time point with high information should lead to high classifica-
tion accuracy only at that time point. Fig. 3A (Right) clearly
shows that high decoding accuracy is only obtained when the
classifier is trained and tested on data from the same time point
relative to stimulus onset. Over the second delay period, the
decoding accuracy dropped from 98% correct to 68% correct
when the classifier was trained on data taken 500 ms before the
time the classifier was tested. Thus, new task-relevant infor-
mation that emerges as a result of training is contained by a dy-
namic pattern of neural activity. The dynamic nature of the
information coding was also evident in the mean firing rates of
individual neurons. Examining activity of highly selective match/
nonmatch neurons (Fig. 3B and Fig. S4B) revealed that the task-
relevant information in several neurons was present for only
short periods of time relative to the duration of the second delay
period stimulus when this information was present (e.g., the
middle neuron in Fig. 3B and the rightmost neuron in Fig. S4B),
giving rise to the dynamic coding of match/nonmatch infor-
mation seen at the population level. Additionally, firing-rate
modulations that occurred throughout the trial were attributable
to individual neurons carrying information about different vari-
ables at different points, as can be seen by the fact that the highly
match/nonmatch selective neurons also contained large amounts
of stimulus identity information (Fig. S5). Thus, task-relevant
information is incorporated into PFC by interleaving/overlapping
new information into ongoing dynamic activity that is carrying
information about other variables and consequently the absolute
firing rate level of a single neuron at a particular time point is
often highly ambiguous if the context of the larger population is
not taken into account.
The results presented thus far combined data from dorsal PFC

(areas 46 and 8a) and ventral PFC (areas 12 and 45) (Fig. 1A).
Previous research has led to conflicting findings about whether
there are distinct functional differences between dorsal and
ventral PFC (16–20), despite the clear anatomical connectivity
differences between these two regions (23). To assess whether
these brain areas have similar amounts of stimulus identity and
match/nonmatch information, we applied the same decoding
analyses separately to data from each of these areas. The results
show that both dorsal and ventral PFC contained above-chance
match/nonmatch information after the training (Fig. 4A; per-
mutation test, P < 0.005). In contrast, information about the
identity of the stimuli was largely confined to dorsal PFC, at least
for the limited stimulus set that we tested neurons with (Fig. 4B;
permutation test, P < 0.005). Similar results were seen in the
spatial task (Fig. S6) (although the onset of match/nonmatch
information was a bit longer in ventral PFC in the spatial task).
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Fig. 1. Brain regions and the feature task. (A) Dorsal (yellow) and ventral

(magenta) regions of lateral PFC where the recordings were made. (B)

Stimuli used in the feature task. The stimuli extended 28 of visual angle. (C)

Passive fixation task that was used before training. (D) Feature task. The

monkeys viewed the same sequence of images as in the passive task; how-

ever, at the end of the experiment, monkeys needed to make a saccade to

the green target if the stimuli matched or to the blue target if the stimuli did

not match.
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Thus, there are significant differences in how basic stimulus in-
formation is processed by these brain regions, whereas the newly
learned task-relevant information was more distributed. Evi-
dence also exists for variations in anatomical structure and
function within the dorsal and ventral prefrontal cortex (23, 24).
In our data set, comparison of area 46 with 8a revealed no
qualitative differences within the dorsal PFC (Fig. S7). The
match/nonmatch information was not restricted to the prefrontal
cortex: recordings made from the posterior parietal cortex (areas
LIP and 7a) of one of the monkeys after training also revealed
a similar level of match/nonmatch information in that brain re-
gion (Fig. S8), indicating that the task-relevant information
could potentially be wide-spread across several cortical areas.

Discussion

The results presented above give insight into how new task-rel-
evant information is incorporated into existing processing, in
different regions of PFC. Our results show that whereas there
was little change in the amount of basic stimulus information
before training (Fig. 2A), more complex information about
whether the stimuli matched became present throughout PFC
only after this information became relevant to the monkeys’
behavior (Fig. 2B). Additionally, our analyses revealed that the
majority of basic stimulus information was restricted to dorsal
PFC (Fig. 4B), whereas the new task-relevant information was

much more widely distributed (Fig. 4A and Fig. S8). The fact that
all regions of PFC contained the new task-relevant information is
consistent with the adaptive coding model, which proposes that
PFC can adapt to encode information about any property that is
relevant for behavior (3). Additionally, the finding that basic vi-
sual information was restricted to dorsal PFC is consistent with
domain-specific theories of PFC that claim that there are differ-
ences between different regions of lateral PFC (16, 17, 21) and
raises questions about the validity of strict integrative theories,
which claim there are no regional differences (18, 19). Anatom-
ical studies have found that the cortical areas that project to
dorsal PFC are different from those that project to ventral PFC
and that there are extensive intra-area connections within PFC
(23, 25). Based on our results and these anatomical findings, we
hypothesize that the long-range anatomical connections between
PFC and other cortical regions constrain the types of information
that PFC can encode about basic stimulus properties and that,
through learning, the task-relevant information becomes distrib-
uted more broadly via the intraarea connections within PFC.
Our results also give insight into how new task-relevant in-

formation is coded at the population and individual neuron level.
At the population level, we observed that the new information was
contained in a dynamic population code (13–15), with different
neurons carrying information at different latencies relative to the
start of the trial (Fig. 3A). These time-dependent representations
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Fig. 2. Information in PFC pre- and posttraining in the feature task. (A) Comparison of information about the identity of the first stimulus pretraining (blue)

and posttraining (red). The gray shaded regions indicate the times when the first, second, and decision stimuli were shown, the black horizontal line indicates

the level of decoding expected by chance, the color shaded regions indicate 1 SE in the decoding accuracy if different neurons were used, and the red and

blue bars at the bottom of the figure indicate times when the decoding accuracy was above chance (permutation test, P < 0.005). As can be seen, training had

little effect on stimulus identity information. (B) Comparison of information about the match/nonmatch trial status pretraining (blue) and posttraining (red).

As can be seen, there is a large increase in match/nonmatch status information after training. C, Match/nonmatch selectivity of individual neurons before

training (Left) and after training (Right). (The black horizontal line is for visualization purposes to make the pre- and posttraining differences easier to

compare.) The η
2 statistic measures the proportion of the trial-by-trial variance in firing rates explained by whether a trial is a match or a nonmatch trial. Each

point corresponds to the η
2 value of a single neuron at the latency when the neuron had its maximal selectivity (see Methods).
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could enable the PFC to keep track of when particular events
occurred and thus might be involved in the neural representation
of time. Our population analyses also revealed that a small subset
of highly match/nonmatch selective neurons emerged after train-
ing and these neurons contained almost all of the task-relevant
information that was present in the larger population (Fig. 2C and
Fig. S2A). These results raise the possibility that only a small
percentage of the population might be critical for processing par-
ticular types of information at any one point in time and that the
redundant information seen in the rest of the population (Fig.
S2B) could helpmake the circuitmore robust in the face of damage
to these highly selective neurons. This finding also has implications
for the way in which neural data are analyzed; methods that rely
exclusively on average selectivity of neurons over the whole pop-
ulation may miss the importance of such highly selective neurons.
Finally, at the single-neuron level, we observed that the new

task-relevant information was often contained in relatively short
time windows that were present in the midst of other large firing-
rate modulations that occurred throughout the trial (Fig. 3B and
Fig. S4B). These findings suggest that, unlike the results reported
in other brain regions (27), information in PFC is not coded solely
by the maximum firing rate of a neuron (e.g., see the rightmost
neuron in Fig. 3B), but, rather, that the firing rates of neurons
need to be evaluated in relation to the activity of other neurons
in the population. Additionally, we observe that these other firing-
rate modulations carry information about other variables (Fig. S5),
which shows individual neurons in PFC are multiplexing different
types of information in a single spiking sequence. Such multi-
plexing of information could be an efficient strategy that allows the
large number of time-dependent representations in PFC to be
encoded by a much smaller number of neurons. Overall, these
findings shed light on how novel information is incorporated into

PFC activity and how neural activity codes information, which
should lead to richer theories of how PFC controls behavior and
how information is coded in neural activity more generally.

Methods

Recording Methods and Task. Before training, 726 and 111 neurons were

recorded from the 2 rhesus monkeys (Macaca mulatta) while they passively

viewed the stimuli in the feature task, and 810 and 210 neurons were

recorded after training (for the spatial task, 595 and 113 neurons were

recorded before training; 814 and 214 were recorded after training). A grid

system was used for the recordings, and a map of penetrations was gener-

ated by aligning the placement of the electrodes within the grid to a mag-

netic resonance image of the cortical surface. Dorsal PFC in this study was

defined as the area containing the two banks of the principal sulcus (≤ 2mm

from the principal sulcus) and extending posterior to the arcuate sulcus,

which incorporates the posterior aspect of area 46 and parts of area 8a.

Ventral PFC was defined as the area in the convexity of the PFC lateral to the

principal sulcus (>2 mm from the center of the principal sulcus), thus in-

corporating parts of areas 12 and 45. Neurons were not prescreened for

stimulus selectivity; however, if a recorded neuron had a restricted receptive

field, the stimuli in the feature task were typically presented in its center.

The average signal-to-noise ratio of spike waveforms (in neurons that were

significantly modulated by task events) was 8.0 in the pretraining pop-

ulation and 7.2 in the posttraining population (10). To complete the task,

the monkeys needed to maintain fixation within 28 of the center of the

screen. After training, the monkeys additionally needed to saccade to

a green target stimulus on match trials and a blue stimulus on nonmatch

trials (the location of the green and blue stimuli were randomly counter-

balanced across trials, so that the decoding match/nonmatch information

was not merely reflecting a planned movement direction). The stimuli were

paired in each experimental session, so that, on nonmatch trials, the first

stimulus was always shown with the same second nonmatching stimulus.

The surgical procedures, recording methods, task details, and anatomical

localization methods have been described previously (9, 10).
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Data Analysis. The decoding analysis methods have been described previously

(14, 28, 29). Briefly, a resample cross-validation procedure was used in which

a maximum correlation coefficient classifier was trained on firing rates of

pseudopopulations of neurons (i.e., populations of neurons that were

recorded independently but treated as if they were recorded simulta-

neously). The firing rates were the average spiking activity in 500-ms bins

sampled at 50-ms sliding intervals. This classifier was then used to decode

the stimulus identity on the feature task and the stimulus position on the

spatial task (Figs. 2A and 4B and Figs. S3A and S6B). For these tasks, 11 trials

of each stimulus were used for training the classifier, and testing was done

using one trial for each stimulus. Eight different stimuli were used in the

feature task, and eight different locations were used in the spatial task, so

chance decoding on these tasks was 1/8 = 12.5%. It should be noted that

because for a given neuron the first stimulus was always paired with the

same nonmatch stimulus on nonmatching trials, information about the first

stimulus after the time when the second stimulus was shown (e.g., Fig. 2A

and Figs. S3A and S7B) could be attributable to the second stimulus (30).

When decoding the match/nonmatch trial status on the feature task (Fig. 2B,

3A, and 4A), 44 match and nonmatch trials were used for training the

classifier and 4 trials from each condition were used for testing. When

decoding the match/nonmatch trial status on the spatial task (Figs. S3B, S4A,

and S6A), 48 match and nonmatch trials were used for training and 4 trials

from each condition were used for testing. The chance decoding accuracy

for match/nonmatch information was 1/2 = 50%. All neurons that had

recordings from 12 repetitions of each stimulus on were included in the

identity decoding analysis, and all neurons that have 48 (52) repetitions on

the match/nonmatch feature (spatial) task were used. This led to at least

84% of the recordings being used for all analyses. To have maximum power

in our results, data from both monkeys were combined in all analyses. To

make a fair comparison in the decoding analyses, 750 neurons were ran-

domly selected from the pre- and posttraining datasets and passed to the

classifier (on the spatial task, only 600 neurons were used). When comparing

the decoding accuracies for dorsal vs. ventral neurons, 250 neurons were

used in the feature task and 200 neurons were used in the spatial task. This

procedure was repeated 50 times using different neurons, creating different

pseudopopulations and using different training/ test splits each time, and

the results were averaged over these 50 runs. The error bars were estimates

of 1 SEM decoding accuracy that would occur if different neurons had been

selected and were created by sampling the 750 (or 600) neurons with re-

placement, and taking the SD of the decoding results over 50 bootstrap runs.

To evaluate whether the decoding results were above chance, the labels

from the trials were randomly shuffled and the decoding procedure was run

using 10 bootstrap iterations. This procedure was repeated 200 times to get

a null distribution of the decoding accuracies that would occur by chance,

and significant time periods were defined as those in which the real

decoding accuracy exceeded all of the values in the null distribution [i.e., P <

1/200 (P < 0.005)].

To find the most selective neurons in Figs. S2, S3D, and S3E, an ANOVA

was applied to all of the training data for each neuron, and the neurons

with the smallest P value were classified as the most selective neurons. The

effect size for the selectivity of individual neurons (Fig. 2C and Fig. S3C) was

calculated using the η
2 statistic, which measures the proportion of the var-

iance explained by the match/nomatch labels (i.e., η2 is the between-class

sum of squares divided by the total sum of squares). The neurons selected in

Fig. 3B were chosen by calculating the ANOVA P values using firing rates in

bin sizes from 50–1,000 ms, sampled every 5 ms, and choosing the neurons

with the smallest P values. Because neurons have different windows of se-

lectivity, the smoothing bin size for these neurons was based on the bin size

that led to the smallest P value. (The bin sized used for smoothing is shown

above the firing rate plots for each neuron.) To calculate the decrease in

decoding accuracy when training and testing the classifier at different times,

the delay period was defined as the time period 250 ms after the offset of

the second stimulus to 250 ms before the onset of the decision stimuli, which

corresponds to 4,250–4,750 ms after the start of the trial.
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Fig. 4. Comparing information in dorsal PFC (magenta) vs. ventral PFC (green). (A) Match/nonmatch information pretraining (Left) and posttraining (Right)

reveals that, after training, there is task relevant match/nonmatch information in both dorsal and ventral PFC. (B) In contrast, information about which

stimulus was shown (stimulus identity information) was seen only in dorsal PFC in both the pretraining and posttraining data (left and right plots,

respectively).
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