
Incorporation of Particle Swarm Optimization

in Adaptive Boosting

Gaurav Mishra, Rohit Kumar, and Santanu Chaudhury

Electrical Engineering Department, Indian Institute of Technology, Delhi, India

Abstract. This paper proposes an optimized learning method for large
feature-sets using AdaBoost to produce hardware-efficient boosted de-
cision stumps. The paper also proposes a method for training decision
stumps to construct the ensemble. AdaBoost sequentially searches for
the best weak classifier in the pool and adds it to the ensemble, us-
ing weighted training samples. In the proposed method, Particle Swarm
Optimization quickens the selection of decision stumps. It is shown ex-
perimentally that the optimized method is more than 60% faster than
the exhaustive search method.

1 Introduction

An ensemble of weak classifiers is often used to produce a strong classifier[9].
AdaBoost[6, 10] provides a set of methods for combining weak classifiers to
construct ensembles. Adaboost facilitates the sequential combination of weak
classifiers to produce a strong ensemble, but does not address the optimal selec-
tion of these classifiers. In this paper, we propose a method that incorporates
Particle Swarm Optimization[7] into AdaBoost, for the optimal selection of weak
classifiers. A method to efficiently train weak decision stumps is also proposed,
as these are easily implementable on hardware[4].

Zhu et al. [2] and Zhang et al. [3] used AdaBoost to select features from
histogram of oriented gradients[8], especially for human detection. Viola et al.[1]
used AdaBoost to select an ensemble of decision stumps from a pool of weak
stumps. In such a framework, training a large pool of stumps and their optimal
selection is an important issue, which is addressed in this paper.

Evans et al. [5] used Particle Swarm Optimization (PSO) [7] to find bounds
on classes with respect to all features. The image features created and used in
the Viola-Jones framework are such that a gradient-descent approach can be
used to find local minimas in error rates produced by using single features for
training. Hence the AdaBoost procedure is suitable for and can be enhanced by
PSO.

However, PSO has not been used for the design of cascaded boosted classifiers.
The rest of the paper is organized in the following manner. The proposed method
is described in Section 2. Experimental validation is provided in Section 3, and
Section 4 concludes.

P. Maji et al. (Eds.): PReMI 2013, LNCS 8251, pp. 593–598, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



594 G. Mishra, R. Kumar, and S. Chaudhury

2 Optimized Boosting of Decision Stumps

2.1 Classifier Selection Using Adaboost

An ensemble of weak classifiers can be constructed using AdaBoost, by sequen-
tially selecting one classifier from the pool of weak classifiers and redistributing
the weights of samples. In each step, the pool of classifiers is tested on the
weighted training set, rated according to their performance, and the best clas-
sifier is selected. So, for large pools, exhaustive search becomes computationally
expensive. AdaBoost does not address the issue of optimal selection of classifiers.

In this paper, we shall propose a method to accelerate the selection procedure
of AdaBoost, using Particle Swarm Optimization. Particle Swarm optimization
initializes a set of particles (classifiers from the pool, in this case) and based on
their accuracy, converges towards the best weak classifier in the pool. We also
propose an optimized method to create the pool of decision stumps.

2.2 Proposed Method

Algorithm 1. AdaBoost

1. Input D-dimensional training samplesS = (x1, y1), (x2, y2), ...(xm, ym)
(where xi = (x1

i , x
2
i , ..., x

d
i )

T is the ith sample, yi is the class of ith sample),
number of iterations P , number of particles N , number of PSO iterations T

2. TrainD decision stumps h = (h1, h2, ..., hD), one with respect to each feature
hd : x �→ {−1,+1}

3. Initialize weights w0
i = 1/M for all i = 1...M

4. Do for p = 1...P :
(a) Select optimal classifier hp using PSO, following Algorithm 2
(b) Calculate weighted error of hp: ep = ΣM

i=1w
p
i I(yi �= hp(xi)), and coeffi-

cient αp = 1
2 log (

1−ep

ep )

(c) Update the weights: wp
i =

wp−1
i

Zp
exp{−αpyih

p(xi)}, where Zp =

2
√
ep(1− ep)

(d) Stop if ep = 0 or ep > 1/2 and set T = t− 1
5. Output y(x) = sgn(ΣP

p=1α
php(x))

Algorithm 2. Optimal Selection Using PSO

1. Input samples S = {(x1, y1, w
p
1), (x2, y2, w

p
2), .(xM , yM , wp

M )}, number of
particles N , number of PSO iterations T , pool of decision stumps h =
(h1, h2, ..., hD)

2. Randomly select N features k0 = (k01 , k
0
2 , ..., k

0
N ) and corresponding decision

stumps H0 = (hk0
1
, hk0

2
, ..., hk0

N
)

3. Initialize velocities V 0
n = 0 corresponding to each hk0

n
for n = 1...N

4. Calculate weighted errors en = ΣM
i=1w

p
i I(yi �= hk0

n
)

5. Initialize global best particle k∗ = k0n : {n = argminnen}, and corresponding
global best decision stump h∗ = hk∗



Incorporation of Particle Swarm Optimization in Adaptive Boosting 595

6. Initialize local best particles lk0n = k0n, local best decision stumps l0n = hlk0
n
,

and local best errors le0n = e0n,for n = 1...N
7. Do for t = 1...T :

(a) Update velocities:

V t+1
n = r1V

t
n + r2(lk

t
n − ktn) + r3(k

∗ − ktn) (1)

(b) Update features and take corresponding decision stumps:

kt+1
n = ktn + V t

n for n = 1...N (2)

If ktn > D then ktn = D, If ktn < 1 then ktn = 1
(c) Calculate weighted errors en = ΣM

i=1w
p
i I(yi �= hkt

n
(xi))

(d) Update local best stumps and errors:

lktn =

{
lkt−1

n if etn ≥ letn
ktn otherwise

, ltn = hlkt
n
and letn = min(letn, e

t
n) (3)

(e) Update global best stump h∗ = {ltn : n = argminnle
t
n}

8. Output h∗

In the above algorithm, r1, r2 and r3 are the constants used to control the
movement of the particles. Empirical studies have recommended the values r1 =
0.729844, r2 = r3 = 1.4961798 for the optimal convergence of PSO[11]. Van den
Berg[12] has shown that PSO is locally convergent. Hence, if enough particles are
initailized over the search space, the probability of reaching the global minima is
high. Empirical analysis has shown PSO to be reliable optimization technique[7].

2.3 Training Decision Stumps

To train decision stumps described in the proposed method, a similar approach
using PSO can be used. For example, consider a 256 × 256 2-D sample space.
Suppose we select only integer stumps, then a threshold has to be selected from
256 possibilities w.r.t. one feature. Instead of an exhaustive search, an optimized
search using PSO can be executed.

3 Experimental Validation

3.1 Datasets Used

The proposedmethod was tested on 3 databases, the INRIA pedestrian database1,
a database of faces2, and the Gissette database3 (see Table 1). The INRIA dataset

1 Available at www.pascal.inrialpes.fr/data/human/
2 Available at cswww.essex.ac.uk/mv/allfaces/index.html
3 Available in the UCI repository[13],
www.archive.ics.uci.edu/ml/datasets/Gisette

www.pascal.inrialpes.fr/data/human/
cswww.essex.ac.uk/mv/allfaces/index.html
www.archive.ics.uci.edu/ml/datasets/Gisette


596 G. Mishra, R. Kumar, and S. Chaudhury

provides images of pedestrians. The Face database contains images of faces to use
for training. HOG features were extracted from these images to train the decision
stumps. For the other datasets, extracted features were available and were used
for training purposes. Decision stumps were trained in the following manner: for
each feature, the mean value of both classes was taken, and the mean of these two
values was taken as the threshold.

Table 1. Description of Datasets

Dataset Number of Samples Number of features

INRIA 3634 1610
Faces 6078 4140
Gisette 6000 5000

The time required for training and the accuracy of resulting ensembles using
exhaustive search and optimized search were compared using these feature sets.

3.2 Results

The overall error as more features are added to the ensemble is plotted w.r.t.
training time in Fig. 1,2, and 3. The overall classification error decreases ex-
ponentially as more weak classifiers are added[6]. Clearly, the optimized search
takes less time construct an ensemble than exhaustive search. The training time
taken to achieve 10% error rate, 5%, 2% and zero classification error are tab-
ulated in Table 2. The improvement in training times using PSO search are
tabulated in Table 3. In most cases, an improvement of more than 60% is
observed.

The training method for decision stumps using PSO was tested using a sample
2D dataset shown in Fig. 4. An ensemble of 50 decision stumps is shown in Fig. 5
and of 200 decision stumps is shown in Fig. 6. Using more stumps gives a closer
approximation of the linear boundary between the classes.

Table 2. Training Time(sec)

Dataset 10% error 5% error 2% error 0 error
Exhaustive PSO Exhaustive PSO Exhaustive PSO Exhaustive PSO

INRIA 4 1 13 6 49 21 274 106
Face 19.7 3.8 45.6 15.2 175.4 60.9 1501.8 425.7
Gisette 21 8 108 41 506 198 1970 777
Car 5.6 0.8 20.8 8.4 - - - -



Incorporation of Particle Swarm Optimization in Adaptive Boosting 597

Fig. 1. Pedestrian: Training Er-
ror(%age) vs. Training Time(sec)

Fig. 2. Faces: Training Error(%age) vs.
Training Time(sec)

Fig. 3. Gissette: Training Er-
ror(%age) vs. Training Time(sec)

Fig. 4. Sample 2D Dataset

Fig. 5. Training Decision Stumps:
50 stumps

Fig. 6. Training Decision Stumps: 200
stumps



598 G. Mishra, R. Kumar, and S. Chaudhury

Table 3. Improvement in Training Time(%age)

Dataset 10%error 5%error 2%error 0 error

INRIA 75 53.84 57.14 61.31
Face 80.71 66.67 65.27 71.65
Gisette 61.9 62.03 60.86 60.55
Car 85.71 59.61 - -

4 Conclusion

In this paper we presented a modified approach to Adaptive Boosting for object
detection applications. Particle Swarm Optimization was used to improve the
time taken to construct ensembles. It was demonstrated that this reduction was
more than 60%. This method can be used to produce ensembles in a faster and
more efficient manner.

References

[1] Viola, P., Jones, M.: Robust Real-time Object Detection. International Journal of
Computer Vision (2001)

[2] Zhu, Q., Avidan, S., Yeh, M., Cheng, K.: Fast human detection using a cascade
of histograms of oriented gradients. In: CVPR 2006, pp. 1491–1498 (2006)

[3] Jia, H., Zhang, Y.: Fast Human Detection by Boosting Histograms of Ori-
ented Gradients. In: Fourth International Conference on Image and Graphics,
pp. 683–688 (2007)

[4] Miteran, J., Matas, J., Bourennane, E., Paindavoine, M., Dubois, J.: Automatic
hardware implementation tool for a discrete adaboost-based decision algorithm.
EURASIP Journal on Applied Signal Processing, 1035–1046 (2005)

[5] Evans, H., Zhang, M.: Particle swarm optimisation for object classification. In:
23rd International Conference on Image and Vision Computing, New Zealand,
pp. 1–6 (2008)

[6] Freund, Y., Schapire, R.E.: A Decision-Theoretic Generalization of on-Line Learn-
ing and An Application to Boosting (1995)

[7] Kennedy, J., Eberhart, R.: Particle swarm optimization Proceedings. In: IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

[8] Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In:
CVPR, pp. 886–893 (2005)

[9] Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-
Interscience (2004)

[10] Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated
predictions. In: Proceedings of the 11th Annual Conference on Computational
Learning Theory, pp. 80–91. ACM (1998)

[11] Eberhart, R.C., Shi, Y.: Comparing Inertia Weights and Constriction Factors in
Particle Swarm Optimization. In: Proceedings of the IEEE Congress on Evolu-
tionary Computation, San Diego, USA (2000)

[12] Bergh, F., Engelbrecht, A.P.: A Convergence Proof for the Particle Swarm Opti-
miser (2010)

[13] Guyon, I., Gunn, S.R., Ben-Hur, A., Dror, G.: Result analysis of the NIPS 2003
feature selection challenge (2004)


	Incorporation of Particle Swarm Optimization in Adaptive Boosting
	1 Introduction
	2 Optimized Boosting of Decision Stumps
	2.1 Classifier Selection Using Adaboost
	2.2 Proposed Method
	2.3 Training Decision Stumps

	3 Experimental Validation
	3.1 Datasets Used
	3.2 Results

	4 Conclusion
	References


