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Abstract

Purpose—To determine whether the addition of standardized uptake value (SUV) from PET 

scans to CT lung texture features could improve a radiomics-based model of radiation pneumonitis 

(RP) diagnosis in patients undergoing radiotherapy.

Methods and Materials—Anonymized data from 96 esophageal cancer patients (18 RP-

positive cases of Grade ≥ 2) were collected including pre-therapy PET/CT scans, pre-/post-therapy 

diagnostic CT scans and RP status. Twenty texture features (first-order, fractal, Laws’ filter and 

gray-level co-occurrence matrix) were calculated from diagnostic CT scans and compared in 

anatomically matched regions of the lung. Classifier performance (texture, SUV, or combination) 

was assessed by calculating the area under the receiver operating characteristic curve (AUC). For 
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each texture feature, logistic regression classifiers consisting of the average change in texture 

feature value and the pre-therapy SUV standard deviation (SUVSD) were created and compared 

with the texture feature as a lone classifier using ANOVA with correction for multiple 

comparisons (p < 0.0025).

Results—While clinical parameters (mean lung dose, smoking history, tumor location) were not 

significantly different among patients with and without symptomatic RP, SUV and texture 

parameters were significantly associated with RP status. AUC for single-texture-feature classifiers 

alone ranged from 0.58–0.81 and 0.53–0.71 in high-dose (≥ 30 Gy) and low-dose (< 10 Gy) 

regions of the lungs, respectively. AUC for SUVSD alone was 0.69 (95% confidence interval: 

0.54–0.83). Adding SUVSD into a logistic regression model significantly increased the mean AUC 

across 11–18 texture features by 0.08, 0.06, 0.04 in the low-, medium-, and high-dose regions, 

respectively.

Conclusions—Addition of SUVSD to a single texture feature improves classifier performance 

on average, but the improvement is smaller in magnitude when SUVSD is added to an already 

effective classifier using texture alone. These findings demonstrate the potential for more accurate 

assessment of RP using information from multiple imaging modalities.
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I. INTRODUCTION

Radiation pneumonitis (RP) is a symptomatic lung toxicity caused by an inflammatory 

response to radiation (1). This response allocates a cascade of cytokines to the radiation-

damaged tissue (2) and can lead to the development of RP with varying severity. Patients 

with thoracic malignancies who undergo radiation therapy (RT) can thus develop a range of 

RP symptoms, including cough, dyspnea, fever, and even death (3). Therefore, development 

of a reliable method to predict future onset of RP is critical to assess patient-specific risk 

associated with thoracic RT. Such an approach could help designate at-risk patients and 

facilitate earlier intervention or earlier RP diagnosis and treatment by modifying the 

radiation treatment plan or initiating steroid administration to reduce the severity of eventual 

symptoms.

RP onset has been correlated with treatment variables such as dose and the volume of lung 

irradiated (4), as well as lung density or texture change as quantified by computed 

tomography (CT). Our laboratory previously (5) analyzed the dose-dependent change in 20 

CT texture features as potential predictors of RP. Linear modeling showed a significant 

relationship between the change in texture feature values and development of grade ≥ 2 RP 

for 12 of these 20 features, even when controlling for dose. Earlier studies indicated that CT-

based texture features show promise as a means to distinguish between healthy and diseased 

lung tissue. Chabat et al. (6) illustrated textural differences in CT images between three 

forms of obstructive lung disease and normal lung tissue using a Bayesian classifier. 

Mattonen et al. (7) demonstrated the ability of texture features in CT images to predict 
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cancer recurrence in non-small cell lung cancer (NSCLC) patients undergoing stereotactic 

ablative radiotherapy.

Although CT texture provides quantitative assessment of structural changes in the lung 

induced by RT, the inflammatory roots of RP have prompted a search for additional 

biological predictors of RP, including cytokines and other immune response factors. Oh et al. 

(8) and Craft et al. (9) found alpha 2-macroglobulin (α2m), an acute-phase protein involved 

in the inflammatory response, to be the best candidate for a predictive biomarker of early RP 

onset. Naqa et al. (10) determined the post- to pre-therapy ratios of α2m and interleukin-6 

(IL-6) to be predictive of RP development in NSCLC patients. Castillo et al. (11, 12) 

hypothesized that patients with naturally stronger immune responses would also be more 

susceptible to RP development and examined [18F]-2-fluoro-2-deoxyglucose (18F-FDG) 

uptake levels in the lungs from pre-therapy positron emission tomography (PET) scans of 

NSCLC patients (11) and esophageal cancer patients (12). The functional data conveyed by 

the parameter SUV95, indicative of pre-RT “background” lung inflammation, was found to 

be predictive of subsequent symptomatic RP (11, 12).

The present study examined the association between development of symptomatic RP in 

esophageal cancer patients following RT and measures of the distribution of 

standardized 18F-FDG uptake values in the lungs of those patients prior to RT. It also 

assessed the improvement in a model for RP diagnosis, which combines dose-dependent 

texture feature changes in CT as well as 18F-FDG uptake in pre-therapy PET scans, over a 

model that incorporates only CT texture feature changes.

II. METHODS AND MATERIALS

A. Patient Population

A retrospective database of 106 esophageal cancer patients who received curative RT at The 

University of Texas M.D. Anderson Cancer Center was compiled as previously reported in a 

study that assessed the utility of CT texture features alone to study RP development (5). 

Each patient had a pre-treatment CT scan, a treatment planning scan and at least one post-

treatment CT scan available. Only 96 of these patients also had pre-treatment standardized 

uptake value (SUV) data and could be included in the present study.

The severity of RP for each patient at first presentation was determined retrospectively 

through consensus of three clinicians using the Common Toxicity Criteria for Adverse 

Events, version 4 (CTCAE v4), as described previously (5). Upon review of clinical notes 

including baseline respiratory function, treatment plan, and pre- and post-RT imaging, each 

patient was assigned a binary value for RP status, which was evaluated up until 6 months 

after completion of RT or until esophagectomy: 1 indicated presence of symptomatic RP 

(Grade ≥ 2), and 0 indicated absence of symptomatic RP (Grade < 2).

B. PET Images

A subset of the PET images used by Castillo et al (12) were acquired with calculated SUV 

values. For each patient, the raw PET images were converted to SUV maps on a pixel-by-

pixel basis according to the following equation:
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(1)

The voxels of the registered SUV map that were within the lung boundaries of the lung ROI 

then were used to generate a histogram of SUV values, from which the following statistics 

were calculated for each patient: the mean (SUVmean), maximum (SUVmax), standard 

deviation (SUVSD), and 50th, 60th, 70th, 80th, 90th and 95th percentile SUV values 

(SUV50–95). This resulted in a single value for each statistic to characterize the pre-treatment 

tracer uptake in the lungs. The degree of overlap between high-uptake (e.g., SUV95 or 

higher) and high-dose regions of the lung was not evaluated, as it had been previously 

determined that this relationship did not contribute to the risk of RP in the parent database 

(12).

C. CT Images

Changes between pre-treatment and post-treatment diagnostic CT images, all of which were 

acquired with intravenous contrast, were analyzed as described previously (5). In summary, 

following application of in-house automated lung segmentation and demons deformable 

registration between the pre- and post-therapy diagnostic CT scans and treatment-planning 

scans/dose maps of each patient, pairs of anatomically matched 32×32-pixel ROIs were 

automatically placed in the lungs (mean: 703 ROI pairs per patient). Dose-dependent change 

of each of 20 texture features distributed among first-order, fractal, Laws’ filter, and gray-

level co-occurrence matrix (GLCM) classes, described elsewhere (13), was computed within 

each pair of ROIs. For each feature, a patient-specific average change in feature value was 

calculated in three dose regions (0–10 Gy, 10–30 Gy, and > 30 Gy), according to:

(2)

where  is the average change in that feature value over all ROIs located in dose 

region d of patient p,  is the number of ROIs located in dose region d of patient p, and 

 and  are the computed feature values in ROI i of dose region d in the pre-

therapy and post-therapy scan of patient p, respectively. While the prior study (5) used a 

cohort of 106 patients, the present study used texture results from the subset of 96 patients 

who also had pre-treatment SUV data.

D. Statistical Analysis

Patient Characteristic Comparisons—Patient characteristics and treatment parameters 

were summarized using frequency tables. Associations with symptomatic RP were evaluated 

using the Chi-squared test for categorical variables and the Mann-Whitney U-test for 

continuous variables. Groups with an incidence of fewer than five patients were combined 

for Chi-squared testing. A p-value < 0.01 was used to assess significance.
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SUV Variable Selection—SUV variables with the highest ability to distinguish between 

RP-positive and RP-negative patients were initially identified using Student’s t-tests (p < 

0.05). Correlation among these SUV variable candidates was tested using Pearson’s product 

moment correlation. Of the correlated variables, only the one with the lowest p-value was 

chosen for inclusion in the logistic regression model.

ROC Analysis of Single Variables—Receiver operating characteristic (ROC) analysis 

was used to evaluate the RP classification performance of mean lung dose (MLD) and 

volume of lung receiving more than 20 Gy (V20), which have both been previously used as 

dosimetric predictors of RP (4). The area under the ROC curve (AUC) was calculated for 

these variables. Additionally, ROC analysis was used to evaluate the performance of each 

CT texture feature and the SUV variable individually. AUC values for CT texture features 

were computed using the average change in each feature from pre- to post-therapy 

diagnostic CT scans in each dose region (low, medium, and high). AUC values were also 

calculated for all pre-treatment SUV variables. Significance of AUC values was indicated by 

95% confidence intervals (CIs) that did not overlap 0.5.

Regression Modeling of Multiple Variables—Previous linear regression modelling on 

this database of cases indicated that texture feature change was significantly related to RP 

status, even when controlling for random patient effects and mean dose in each ROI (5). 

Thus, logistic regression models for RP as a function of two features to calculate the AUC 

were constructed according to:

(3)

where RP is the binary radiation pneumonitis status (grade ≥ 2 is positive), SUV is the SUV 

variable identified as described above, and ΔFVj is the mean dose-dependent change in 

selected texture feature values between the pre- and post-therapy CT scans. Models were 

created for each of 20 texture features (j) across low, medium, and high dose regions. 

Analysis of variance (ANOVA) was performed using a Chi-squared test at an α=0.05 level 

to determine whether addition of SUV to ΔFV significantly improved model fit and 

corrected for multiple comparisons using the Bonferroni approach (p < 0.0025). Only 2 

features were included in each regression model at one time as our previous modeling in this 

database indicated that over-fitting occurs with more than two features (5, 14).

ROC Analysis of Multiple Variables—Patient data were divided into 50% training data 

and 50% test data by random sampling, maintaining the ratio of RP-negative to RP-positive 

cases (i.e., Fukunaga-Hayes method (15)). Following model training with the training data 

using Equation 3, each model was used to assess RP diagnosis for each case in the test set, 

and an AUC value was calculated. This partitioning and calculation process was repeated 

1,000 times, and the average AUC value and confidence intervals over these iterations were 

obtained.

All statistical analysis was performed using Revolution R v. 6.0.
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III. RESULTS

Patient characteristics are summarized in Table 1. Of the 96 patients, 19% developed RP 

grade ≥ 2. Patients with tumor histology other than adenocarcinoma were more likely to 

develop RP. Incidence of RP was not related to smoking history, RT modality, MLD, V20, or 

the time interval between CT scans and RT in our database (p < 0.01).

Figure 1 compares the pre- and post- therapy CT scans and the pre-therapy SUV map of a 

patient who did not develop symptomatic RP with those of a patient who developed grade 5 

(fatal) RP. SUV parameter values for the 96 patients are summarized in Figure 2. SUVSD 

differed the most between the RP-negative and RP-positive groups (p = 0.015), while 

SUVmax differed second most (p = 0.027). Because SUVSD was significantly correlated with 

SUVmax (r = 0.806), SUVSD alone was selected for inclusion into the model. The AUC 

values obtained from RP status classification based on each SUV parameter alone are 

depicted in Figure 3, demonstrating that SUVmax and SUVSD are the only parameters with 

AUC values significantly different from 0.5, equaling 0.71 (95% CI: 0.56–0.85) and 0.69 

(95% CI: 0.54–0.83), respectively.

Our previous work (5) identified 12 CT texture features distributed among 4 feature classes 

that were associated with RP status even when controlling for mean dose in each ROI using 

linear regression modelling (indicated with ‘*’ in Table 2). In the present study, ROC 

analysis for each CT texture feature in each dose region resulted in feature-averaged AUC 

values > 0.5 as listed in Table 2. For 17 of these features, AUC values differed significantly 

from 0.5 in at least one dose region (indicated with ‘+’ in Table 2). However, with the 

exception of the low dose regions, these values were generally higher (by 0.02 and 0.03 for 

medium and high dose regions on average, respectively) than those obtained previously (5), 

likely due to the reduced database size. ROC curves created for MLD and V20 resulted in 

AUCs of 0.625 (95% CI: 0.469–0.782) and 0.615 (95% CI: 0.469–0.761), respectively, 

indicating no significant differences from 0.5. This demonstrates that, unlike SUVSD or 

texture features, MLD and V20 did not correlate with RP in our database. To combine two 

discriminators, logistic regression models comprising one CT texture feature and SUVSD 

were used and AUC values of the classifiers were computed. With the addition of SUVSD, 

AUC values improved by 0.08, 0.06, and 0.04 on average in the low-, medium-, and high-

dose regions, respectively, over classification based on the single texture feature alone. 

ANOVA comparisons of these logistic regression models using Chi-squared tests corrected 

for multiple testing (p < 0.0025) showed SUVSD significantly improved model fit when 

added to 19 of the 20 CT texture features in at least one dose region (indicated by ‘^’ in 

Table 2). SUVSD improved AUC in 18 texture features calculated in lower dose regions, 

where the single texture feature average AUC was lower in value, compared to 11 texture 

features calculated in high dose regions.

IV. DISCUSSION

Although the means and medians of SUV values for pixels within the lungs do not appear to 

vary much between RP-positive and RP-negative patients, the RP-positive group tends to 

exhibit a greater frequency of high SUV values (associated with higher FDG uptake) in the 

Anthony et al. Page 6

Med Phys. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lung (Figure 1). This tendency leads to selection of SUVSD as a viable candidate for model 

improvement, while this variable’s correlation with SUVmax justifies the exclusion of 

SUVmax from model building. Since the logistic regression models for RP assessment 

improve significantly in at least one dose region when SUVSD is individually paired with 19 

of the 20 CT texture features, it is highly likely that SUVSD provides information 

independent from that provided by texture analysis. This finding was expected, as SUV 

measures baseline lung inflammation prior to RT, while CT texture feature changes are 

indicative of radiation-induced reactionary biologic processes. Although texture change 

demonstrated in post-therapy CT scans may be influenced both by radiation dose and by the 

development of RP (which itself is affected by radiation dose), our prior work has shown 

that CT texture change is related to RP development even when controlling for dose (5). A 

more thorough approach to determine independence of SUV variables from CT texture 

changes would involve linear modeling of texture feature change as a function of several 

variables, including SUV parameters, to determine whether these radiation-induced changes 

are affected by pre-RT lung inflammation. Our previous work demonstrated that use of three 

features in this limited database does not significantly improve the model fit, likely due to 

over-fitting (5, 14). This result may change if tested on a larger sample size with more 

positive cases.

The AUC values obtained from this study should be validated using an independent patient 

cohort because this data set was also used to select the SUV variable included in the 

analysis. While the texture classifiers were selected in an independent database (13), 

repeating ROC analysis on an independent data set is still recommended due to the low 

prevalence of positive cases among these patients. This is particularly important given that a 

relatively slight but representative reduction in this data set (two RP-positive and eight RP-

negative cases out of the initial 106 cases) resulted in higher AUC values across features 

compared with the results obtained by Cunliffe et al (5). Nevertheless, the AUC value for 

ΔFV was significantly higher than 0.5 for 11, 15, and 17 texture features for low, medium, 

and high dose regions, respectively. Although there were an insufficient number of RP 

events to parse the dataset into training and validation sets for selecting the SUV parameter, 

such a partitioning was done when calculating confidence intervals for the AUC values in 

Table 2. The bivariate model built using the 50%/50% data partition resulted in the smallest 

95% CIs for AUC values compared to a 75%/25% partition or leave-one-out cross 

validation. Because it resulted in similar or slightly lower AUC values, the 50%/50% data 

partition ensured a more conservative estimate of the AUC, which was prudent given the 

small number of positive cases in our database.

This study analyzed a subset of data reported on by Castillo et al.(12), who demonstrated 

that SUV95 had AUC values of 0.676 for classifying RP, which is comparable to the AUC 

calculated in this study using SUDSD (0.69). In the present study, SUVSD improved the AUC 

in a regression model primarily when the CT texture feature under consideration was a poor 

classifier by itself. That is, the utility of SUVSD was limited in the presence of other good 

classifiers of RP. This finding was demonstrated by the less dramatic increase in feature-

averaged AUC of 0.04 for the high-dose measurements, where texture feature changes were 

more likely to occur and provide diagnostic information. Furthermore, significant 

improvements in model fitting with the addition of SUVSD occurred less frequently in high 
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dose versus low dose regions. On the other hand, SUVSD improved AUC more frequently 

and by a wider margin for low- and medium-dose measurements, where texture feature value 

change was less pronounced and thus a poorer classifier. SUVSD had this effect despite the 

fact that, on its own, its AUC value (0.69) was less than or equal to the average AUC value 

across many texture features, which attests to the independence of the SUV data from the 

CT texture feature data. Furthermore, SUV data were gathered from pre-treatment scans 

alone, thus potentially providing prognostic information to clinicians prior to the design of 

the radiotherapy plan.

Dosimetric parameters such as V20 and MLD, which have been shown to correlate with RP 

in large analyses utilizing pooled, multi-institutional data for both standard fractionated (16, 

17) and hypo-fractionated photon treatments (18) delivered with 3DCRT or IMRT as well as 

for proton treatments (19), did not reach significance in the current data set. While other 

dosimetric parameters such as V5 could have been studied, it is unlikely that results would 

differ because dosimetric parameters tend to be highly correlated (17). Furthermore, analysis 

of the parent dataset from which the dataset in the present study was obtained indicated no 

correlation of V5, V10, V20, V30, or MLD with RP development, a finding that is not 

expected to change in this smaller subset (12).

Contrary to other studies (11, 12), the present work demonstrated that CT texture change 

correlates with RP development. Other groups compared pre-treatment CT Hounsfield unit 

(HU) statistics calculated over the entire lung volume to SUV and determined that CT values 

were not associated with RP. The present study calculated texture in many (> 700) small 

regions of the lung and tracked the planned dose to these regions, instead of characterizing 

CT texture throughout the lung using a single HU statistic. Results demonstrated that texture 

changes in high dose regions are more strongly associated with RP status. Furthermore, 

changes in texture before and after treatment were quantified, thus controlling for patient-

dependent effects that may be indicative of underlying co-morbidities or differences in CT 

acquisition parameters (13). Finally, half of the features reported here were higher-order 

features that are mathematically derived (i.e., agnostic features that do not correlate with 

changes that are readily identified by eye), thus harnessing the full power of radiomics (20).

Future work would incorporate a larger and independent patient cohort with a greater 

number of positive cases, particularly since PET-based features were identified and tested in 

the same database. Further AUC analysis could include linear modeling of AUC as a 

function of the number of variables used to verify the effect of SUVSD as a predictor. Other 

SUV variables could also be evaluated as predictors, although Castillo et al showed that 

SUV variables were highly correlated, thus conjecturing that predictive models would not 

improve with addition of more than a single SUV parameter (12). The most relevant features 

could then be combined into a single classifier, enabling evaluation of false-positive/false-

negative rates once a single cut-off value along the ROC curve is identified. The time 

interval effects on sensitivity and specificity could potentially be evaluated in a larger dataset 

which prospectively tracks RP development. Such effects could not be studied in the current 

data set due to the uncertainty in identifying the exact time of RP development that resulted 

from retrospective data collection (5).
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The texture of SUV maps themselves could also be analyzed as a next step in texture 

analysis for prediction of RP. Several studies have already examined relationships between 

FDG-PET texture features and cancer outcomes. El Naqa et al. have found texture-based 

features from SUV images to be predictive of tumor response in head and neck and cervical 

cancers (21) and more correlated with local control in NSCLC patients than CT texture 

features (22). Yip et al. found the temporal change in PET texture features before and after 

chemo-radiation to be more predictive of patient response than SUVmean or SUVmax (23). 

Such PET-based radiomics could easily be applied toward prediction of RP. However, 

texture features from SUV images in the thorax suffer from errors attributable to motion 

(22), and there is an evident need to standardize the texture analysis methodology applied to 

SUV images (24).

This pilot study demonstrated that quantitative image analysis (i.e., radiomics) has the 

potential to assess development of symptomatic RP, particularly when a patient’s baseline 

CT scan is used as a control. Similarly to other studies of this clinical endpoint (5, 12, 17), 

our work is limited by the uncertainty in RP diagnosis that is associated with retrospective 

identification through the medical record. It remains to be determined, ideally in a 

prospective clinical trial, whether these quantitative techniques could impact clinical care. 

Given the emergence of trials testing immunotherapy drugs such as PD-1 inhibitors in 

conjunction with RT, for which there is an increased incidence of RP induction (25), 

automated techniques that could identify patients requiring closer clinical management 

could be used as a secondary endpoint in such trials.

V. CONCLUSION

This study found SUVSD to be significantly correlated with development of symptomatic 

(Grade ≥ 2) RP. When distinguishing patients with symptomatic RP from those without, 

inclusion of SUVSD in a logistic regression model significantly improved model fit and 

increased the AUC over the use of dose-dependent CT texture feature changes as lone 

classifiers; this improvement was most pronounced in lower dose regions. To our 

knowledge, this is the first study to examine lung CT texture features together with whole-

lung FDG PET information as potential predictors of treatment outcomes following 

radiotherapy.
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Figure 1. 

(From left to right) Spatially registered pre-therapy CT scans, post-therapy CT scans and 

pre-therapy SUV maps for two different patients. The patient in the top row did not develop 

symptomatic RP. The patient in the bottom row developed grade 5 (fatal) RP. SUV color 

maps are presented on the same scale.
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Figure 2. 

Mean SUV parameter values across patients, separated by RP status. Error bars indicate one 

standard deviation. Significant differences using Student’s t-test (p < 0.05) among groups 

are delineated with an asterisk (*).
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Figure 3. 

AUC values for SUV variables as lone classifiers. (Error bars indicate 95% CI of AUC). 

SUVmax and SUVSD are the only variables whose AUC values are significantly different 

from 0.5.
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