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Abstract

An accurate description of the electrode–electrolyte interfacial impedance is critical to the

development of computational models of neural recording and stimulation that aim to improve

understanding of neuro–electric interfaces and to expedite electrode design. This work

examines the effect that the electrode–electrolyte interfacial impedance has upon the solutions

generated from time-harmonic finite-element models of cone- and disk-shaped platinum

microelectrodes submerged in physiological saline. A thin-layer approximation is utilized to

incorporate a platinum–saline interfacial impedance into the finite-element models. This

approximation is easy to implement and is not computationally costly. Using an iterative

nonlinear solver, solutions were obtained for systems in which the electrode was driven at ac

potentials with amplitudes from 10 mV to 500 mV and frequencies from 100 Hz to 100 kHz.

The results of these simulations indicate that, under certain conditions, incorporation of the

interface may strongly affect the solutions obtained. This effect, however, is dependent upon

the amplitude of the driving potential and, to a lesser extent, its frequency. The solutions are

most strongly affected at low amplitudes where the impedance of the interface is large. Here,

the current density distribution that is calculated from models incorporating the interface is

much more uniform than the current density distribution generated by models that neglect the

interface. At higher potential amplitudes, however, the impedance of the interface decreases,

and its effect on the solutions obtained is attenuated.

1. Introduction

Metal microelectrodes have long been used by basic scientists

for stimulating and recording electrical signals from neural

tissues in an effort to enhance our understanding of neural

systems. Recently, in addition to their continued experimental
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value, they have found clinical application in the form of neural

prostheses [10, 44, 46, 54]. For electrical stimulation with

microelectrodes, however, tissue damage has been correlated

to both charge per phase and charge density [24–26, 47], where

these parameters are defined as the integral of the current or

current density, respectively, over one half cycle of a stimulus.

Additionally, the current density distribution on the surface of

an electrode is highly dependent upon the electrode geometry

[17, 28, 41, 50, 51, 56]. Recent advances in nano- and
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micro-fabrication technologies have opened the way for more

calculated electrode designs. Thus the desire to intelligently

design microelectrodes and stimulus protocols to minimize

tissue damage and to increase the success for recording and

stimulating targeted neural structures has inspired research

into mathematical and computational modeling of the electric

phenomena surrounding metal microelectrodes. Most of this

work, however, has not considered the effect that the electrode–

tissue interface has on the system. In fact, even for electrodes

of any size, only a few simulation studies thus far have

incorporated the effects of this interface [7–9, 15].

The electrode–tissue interface is complex, and a thorough

description of its electrical properties depends upon both

the electrode material as well as the specific tissue type.

Electrode–electrolyte interfaces are also complex, but they are

well studied, and may provide a tractable approximation to the

electrode–tissue interface. In the present paper, we consider

an electrode–electrolyte interface in which the electrode is

platinum and the electrolyte consists of physiological saline

(0.9% NaCl). According to the Gouy–Chapman–Stern theory,

in the range of 25–37 ◦C, physiological saline will form an

electrical double layer at the electrode surface that possesses

a characteristic thickness of approximately 1 nm [3, pp 544–

57]. This double layer consists of (1) a Helmholtz layer, which

contains specifically adsorbed ions and solvent molecules, and

(2) a diffuse layer, which consists of solvated ions and solvent

molecules [3, pp 12–13]. The complicated characteristics of

the electrode–electrolyte interface arise primarily because the

charge carriers differ in the two phases, with electrons carrying

currents in metals and ions carrying currents in electrolytes.

Current may be passed from one phase to another by either non-

Faradaic or Faradaic means. When current is passed in a non-

Faradaic, or capacitive, manner, electrons do not pass between

the two phases, but rather opposing charges are accumulated

at the interface and current flows via the redistribution of ions

in the solution and electrons in the metal. Faradaic current

may pass through the interface if elements are present in

the solution or the metal that can be oxidized or reduced.

In this case, electrons are passed between the metal and the

electrolyte via redox reactions. In most situations, both non-

Faradaic and Faradaic currents flow through the electrode–

electrolyte interface, and electrical models must represent both

phenomena.

Although electrode–electrolyte systems demonstrate

linear characteristics at low driving potentials, they possess

nonlinear characteristics at higher driving potentials. Thus

small sinusoidal voltage inputs elicit phase-lagged sinusoidal

current outputs. When voltage sinusoids of large amplitude

are applied however, the output is distorted by harmonics.

Schwan was the first to study the nonlinearity of this system

and to introduce the concepts of the limit voltage and limit

current of linearity for the electrode–electrolyte interface

[42, 43]. These limits mark the onset of significant

nonlinearity and divide the system into linear and nonlinear

regimes.

For microelectrodes, the electrode–electrolyte interface

may present an extremely large impedance that varies as a

function of the overpotential between the electrode and the

solution. In fact, depending on the experimental conditions,

this impedance can be several orders of magnitude greater

than all other impedances found in the system. In this paper,

different methods for incorporating the electrode–electrolyte

interface into finite-element models of microelectrodes are

developed and compared. The effects of the electrode–

electrolyte interface on the current density distribution

surrounding the microelectrodes are then characterized as a

function of the ac driving potential amplitude and frequency

as well as the electrode shape and size. Finally, implications

for future computational models and for neural stimulation

protocols are discussed.

2. Methods

2.1. Construction of the model using the finite-element

method

Simulations were performed with the finite-element method

in the COMSOL Multiphysics modeling environment.

Models were constructed with 2D axisymmetry using

COMSOL’s predefined quasi-static small meridional currents

electromagnetics module. This module operates under the

assumption that magnetic effects are negligible, and to each

domain in the simulation it applies the following governing

equation for the electric scalar potential, V:

∇ · [(σ + iωε0εr)∇V ] = 0. (1)

Here, σ and εr are the conductivity and relative permittivity of

the material, respectively, ω = 2π f is the angular frequency

of the driving source in the system, ε0 is the permittivity of

vacuum, and i is the imaginary number. In this equation, V

is represented as a phasor, and thus it can take on complex

values that contain information regarding both its amplitude

and phase. The current density, J, is a complex valued vector

related to the electric scalar potential by Ohm’s law:

J = −(σ + iωε0εr)∇V. (2)

Models were constructed of both cone- and disk-shaped

insulated metal microelectrodes submersed in a physiological

saline solution. The conical electrode geometries were

constructed to reflect the dimensions of a standard Levick-

style electrode [18], which is often used by the basic

research community and can be fabricated by pushing an

electrolytically etched metal wire through a pulled glass

capillary. The corresponding model was built in the COMSOL

simulation environment by constructing an upside-down

platinum cone (σ = 94.35 × 105 S m–1 and εr = 1) with a base

radius of 100 µm and a height of 500 µm. Silica insulation

(σ = 10−14 S m–1 and εr = 4.2) was constructed around the

cone, leaving a length of 5 µm exposed at the tip. The

insulation was made such that its thickness upon transverse

section would be equal to the radius of the metal cone in the

same section. The tip of the metal cone was then rounded

to give it a curved radius of 100 nm. The sharp corner of

the insulation was also rounded to prevent singularities. To

complete the geometry, the electrode was surrounded by a

cylinder of physiological saline (σ = 1 S m–1 and εr = 80)

that measured 1 mm in height and 1 mm in diameter. The
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(A) (B)

Figure 1. Panel (A) shows the relationship between the two domains schematically, and panel (B) provides the governing equations for the
two domains as well as the boundary conditions that join them to create the thin-layer approximation. The circuits presented in panel (A)
depict the components of the electrode–electrolyte and silica–electrolyte interfacial impedances. The variable Ym-layer refers to the
admittance of the metal–electrolyte interface, while the variable Ys-layer refers to the admittance of the silica–electrolyte interface.

base of the electrode was placed flush with the upper end

of this cylinder. Next, appropriate boundary conditions were

identified. The potential at the outer curved surface of the

saline cylinder was defined to be ground (V = 0), and its two

ends were defined to be insulating. The surface of the silica

insulation that fell flush with the end of the saline cylinder was

also defined to be insulating, and the driving potential was

applied to the base of the metal cone. The solutions presented

in section 3 will demonstrate that the electric potential falls

very rapidly with distance from the electrode tip, and for

this reason, the ground applied in these models sufficiently

approximates a ground placed at infinity. For this same reason,

defining the two ends of the saline cylinder to be ground

instead of electrically insulating does not affect the solution.

For all simulations, of both cone and disk geometries, it was

assumed that the platinum electrode was operated around its

equilibrium potential. This simplifies the mathematics, and

the overpotential is just the voltage difference between the

platinum electrode and the neighboring saline solution.

The disk electrode geometry was built in a similar manner.

In this case, a platinum cone was constructed to have a height

of 105 µm and a base radius of 21 µm. Next, the cone was

insulated with a uniform thickness that measured 1 µm on

transverse section. In order to expose a metal disk of 1 µm

radius, a 5 µm length was cut from the tip of the insulated

cone. Finally, the electrode was surrounded by a cylinder of

saline measuring 200 µm in height and 200 µm in diameter.

Boundary conditions were defined to be the same as those

used in the conical electrode geometry, and the materials were

assigned the same electrical properties.

Larger cone and disk electrodes were constructed by

scaling the previously described geometries, including their

saline domains, in both physical dimensions by factors of 10

and 100. Meshing for all geometries was performed using

the Delaunay algorithm, applied as a default by COMSOL

Multiphysics. The disk electrode geometries were constructed

to be significantly smaller than the conical electrode

geometries because meshing the thin uniform insulation on

a disk electrode greatly increases the computational cost of

the model.

2.2. Incorporation of the electrode–electrolyte interface

Although several models to represent the impedance of the

platinum–saline interface have been proposed, the electrical

model adopted in this paper is that of Richardot and McAdams

[40]. This model was chosen because (1) it provides a physical

interpretation for each component of the interfacial impedance,

(2) it sufficiently captures the trends of the impedance, and

(3) a large amount of experimental data has been collected for

its validation. The model consists of two parallel components:

a pseudocapacitive constant phase angle impedance, which

represents the non-Faradaic flow through the interface,

and a charge transfer resistance described by the Butler–

Volmer equation, which represents the Faradaic processes

(figure 1(A)).

The pseudocapacitive constant phase angle impedance,

ZCPA, is described mathematically by Richardot and McAdams
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in a standard form:

ZCPA = K(iω)−β . (3)

where K and β are considered to be constants in most early

studies of the electrode–electrolyte interface, but Richardot

and McAdams have examined these values and demonstrated

that while they remain relatively constant at low driving

voltages, they show a strong dependence on overpotential

when those voltages are increased. Richardot and McAdams

collected data regarding the dependence of K and β on the

amplitude of a 10 mHz ac potential applied to platinum

electrodes submersed in a phosphate buffered 0.9% NaCl

solution. It is a reasonable first approximation to consider

the values of K and β to be independent of frequency, and

therefore these data were used in this present work to generate

a formulation for ZCPA that is dependent upon overpotential

and is applicable to both linear and nonlinear regimes.

The Faradaic processes occurring at the electrode–

electrolyte interface are described by a charge transfer

resistance derived from the Butler–Volmer equation, which

applies to systems limited by reaction kinetics and does not

account for mass-transfer or diffusional effects [3, pp 98–107]:

RCT(η) =
η

I0

(

eαa
nF
RT

η − e−αc
nF
RT

η
)−1

(4)

where R is the gas constant, T is the temperature in Kelvin, F is

Faraday’s constant, n is the number of electrons per molecule

participating in the reaction, I0 is the exchange current, η is

the overpotential, and αa and αc are transfer coefficients.

Additionally, in the linear regime of the electrode–

electrolyte interface, when the system is operated at small

overpotentials, RCT can be simplified to a constant quantity

that is independent of overpotential [22, 23]:

RCT =
RT

nFI0

. (5)

Simulations were performed both with and without the

assumption of linearity, and thus, the model circuit to

represent the electrode–electrolyte interface takes on two

different forms. For simulations performed with small driving

potentials under the assumption of linearity, an overpotential-

independent formulation of the electrode–electrolyte interface,

Zpe, was utilized. In this formulation, ZCPA was defined

by applying constant values for K and β to equation (3),

and RCT was described by its low-amplitude approximation,

equation (5). Values used for the constants found in

equations (3) and (5) were consistent with published low-

amplitude values [23, 40]. These values were normalized for

electrode surface area appropriately: K = 1.57 � m2 s−β, β =

0.91, n = 2, I0 = 6.41 × 10−4 A m−2 and T = 298 K.

For the nonlinear regime, when the driving potential

becomes large, K and β must be described as functions of

overpotential. Richardot and McAdams collected the pertinent

data for platinum electrodes submersed in a physiological

saline solution with applied ac potentials up to 900 mV

in amplitude [40]. Utilizing these data, the values for K

were fitted to a Gaussian curve centered at 0 mV amplitude
(

K = A e−(
|η|

σ
)2)

, and the values for β were fitted to a fourth-

order polynomial (β = a|η|4 + b|η|3 + c|η|2 + d|η| + e). Curve

fitting in Matlab determined the values of the coefficients:

A = 1.5785 � m2 s−β, σ = 0.1552, a = −3.736, b =

3.852, c = 0.3697, d = −1.2112, e = 0.9244. The resulting

functions, K(η) and β(η) were incorporated into equation (3)

for the constant phase angle impedance to obtain a function

ZCPA(η). Also in the nonlinear regime, the current flowing

through the Faradaic processes becomes highly dependent

upon overpotential. Thus, the function RCT(η), presented as

equation (4), was combined in parallel with ZCPA(η) to obtain

the total impedance of the platinum–electrolyte interface,

Zpe(η), which was utilized for simulations in the nonlinear

regime. Values for the coefficients found in equation (4)

were adopted from McAdams and Jossinet and normalized

for electrode surface area as necessary [23]: I0 = 6.41 ×

10−4 A m−2, αa = 0.5, αc = 0.5, n = 2 and T = 298 K.

Two strategies were used to incorporate the impedance

of the electrode–electrolyte interface into the finite-element

models. The first was to model a thin layer of uniform

thickness and of uniform electrical properties at the interface of

the metal and the saline, an approach similar to that employed

by Huang et al [15]. This thin layer was constructed such

that it extended into the saline domain and did not affect the

geometry of the electrode. For the disk electrode geometries,

the uniform layer was rounded at the edge of the disk so that

a curvature was formed with a radius equal to the thickness of

the layer and a center located at the junction of the metal

and the silica. Thin layers ranging from 5 nm to 20 nm

were constructed in this way. As stated in the introduction,

the double layer has a thickness on the order of a single

nanometer. However, constructing and subsequently meshing

layers smaller than 5 nm became exceedingly difficult and

computationally costly. Also due to the large computational

demand of these models, this strategy was applied only

to initial simulations performed under the assumption of

linearity, and no nonlinear simulations were performed with

this approach. The results will demonstrate, however, that

the two strategies for incorporation of the interface yield very

similar solutions in the linear regime, and thus the inability

to utilize thin uniform layers in the nonlinear regime is not

problematic. Appropriate values for the electrical properties

σ and εr used to describe the layers were determined with the

following relationship:

σ + iωε0εr =
t

Zpe

(6)

where t is the thickness of the layer, and the overpotential-

independent form of Zpe is applied.

The second strategy taken to incorporate the effects

of the electrode–electrolyte interface into the finite-element

models was to impose a thin-layer approximation. This

approximation has been reported previously in the literature as

a technique to replace finite-thickness cell membranes in order

to reduce computational cost while calculating transmembrane

voltage in finite-element simulations [39]. It is based upon

the assumption that all current flowing through the layer has

only a normal component and that the volume of the layer

can be replaced by an infinitely thin layer. The total current

density passing through the layer is then equal to the normal
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component of the current density that would flow through a

thin layer of finite thickness:

J =
(σ + iωε0εr) (V1 − V2)

t
(7)

where V1 − V2 is the potential difference across a layer of

thickness t. In cases such as ours where the conductivity,

permittivity, and thickness of the layer are not directly known,

these values can be substituted for the full admittance, Y, of

the layer. This approximation was easily implemented in the

COMSOL Multiphysics modeling environment by creating

two separate domains on each side of the infinitely thin

layer and then assigning appropriate boundary conditions.

After meshing the entire geometry, the platinum and silica

subdomains were assigned to Domain 1, and the saline

subdomain was assigned to Domain 2. Both domains were

governed by equation (1) for the electric scalar potential, but

the nodes in Domain 1 were solved for values of V1, and those

in Domain 2 were solved for values of V2. Nodes that fell on

the boundary between the two domains were solved for both

V1 and V2, and these two values were related at the platinum–

saline interface with a boundary condition, which for Domain

1 was

−n · J = (V2 − V1)Ylayer (8)

where n is the vector normal to the boundary. Ylayer was

made equal to the inverse of the overpotential-independent Zpe

for simulations under the assumption of linearity and Zpe(η)

for simulations in the nonlinear regime. Here η is equal to

|V1 − V2| because Zpe(η) is symmetric about zero and the

platinum electrode is being operated around its equilibrium

potential. For Domain 2, the appropriate boundary condition

was obtained by multiplying the right-hand side of equation (8)

by −1. To generate the normal current density profiles

presented in section 3 for models incorporating the thin-

layer approximation, the expression on the right-hand side

of equation (8) was applied.

2.3. Incorporation of the insulator–electrolyte interface

Although modeling the platinum–electrolyte interface is the

primary concern of this paper, in order to achieve a more

accurate and complete simulation environment, it is also

necessary to appropriately address the impedance presented

by an electrode’s insulator–electrolyte interface. Without

representation of this interface, solutions showed an excessive

amount of current leaking through the insulation. Although

parylene is gaining increasing popularity as an electrode

insulator, silicon dioxide (silica) was chosen as the dielectric

material for the present simulations because it is also a

common insulator for neural electrodes [1, 11, 18] and because

the impedance of the silica–electrolyte interface has already

been characterized [4].

The physical nature of the silica–electrolyte interface

is similar to that of the platinum–electrolyte interface with

the exception that the silica surface is generally much more

reactive due to the abundance of hydroxyl groups capable

of interacting with protons and hydroxyl ions present in the

electrolyte. The reaction of the surface hydroxyl groups with

protons and hydroxyl ions creates a ‘primary’ surface charge,

which is capable of adsorbing supporting electrolyte cations

and anions via (1) the formation of a compact layer of ion

pairs directly opposing primary surface charges, somewhat

similar to the Helmholtz layer of the platinum–electrolyte

interface, and (2) the formation of a diffuse layer to balance

the remaining surface charge [57]. Bousse and Bergveld have

provided a theoretical description of the impedance arising at

the silica–electrolyte interface in response to a small sinusoidal

signal input and have supported their model with experimental

verification in NaCl electrolytes having concentrations ranging

from 10−2 M to 10−4 M and pH values ranging from 2 to 10 [4].

They described a circuit model in which a strictly electrostatic

double layer capacitance (CDL) is arranged in parallel with

a second pathway comprising the Warburg impedance (ZW)

placed in series with a capacitance (Ca) that arises from

the adsorption of H+ and OH− ions onto the silica surface

(figure 1(A)).

In comparison to the platinum–electrolyte interface, the

silica–electrolyte interface is not greatly dependent upon the

potential applied across it. For this reason, the impedance of

this interface, Zse, was calculated as a function of frequency

alone using the theory described by Bousse and Bergveld, and

this impedance was applied to all models [4].

After adopting the experimentally supported assumption

that the charge in the compact layer is equal in magnitude

and opposite in sign to the charge located in the diffuse layer,

the system of equations numbered 9–12, 14 and 15 provided

in [4] could be solved simultaneously for the values of the

circuit components CDL, Ca and ZW. These components were

then combined according to the electrical circuit presented

in figure 1(A) to arrive at a value for Zse(f ). This solution

describes the charge, potential and double-layer impedance

that would be naturally generated at the silica–saline interface

when no external potentials are applied. The calculation was

performed for 0.9% NaCl of pH 7.0 at T = 298 K, and values

used for the constants were consistent with the literature [4, 5,

49, 52]: εw = 7.08×10−10 F m−1; Cstern = 0.2 F m2; pHpzc =

2.2; δ = 7.5 × 10−4; Ns = 5 × 1018 m−2; [H+] = 6.022 ×

1019 ions m−3; [OH−] = 6.022 × 1019 ions m−3; DH+ =

9.311 × 10−9 m2 s−1; and DOH− = 5.273 × 10−9 m2 s−1.

Because modeling a thin layer of uniform thickness along

the entire shaft of the silica-insulated electrode would require

prohibitive computational power, this method was not used.

Instead, the thin-layer approximation was the only technique

used to incorporate the silica–electrolyte interface into the

finite-element models. The method for the implementation of

the thin-layer approximation in the COMSOL Multiphysics

modeling environment was the same as that described for the

electrode–electrolyte interface with a single addition: when

the thin-layer approximation was applied for the silica-saline

interface, and the thin layer of uniform thickness was applied

for the electrode–electrolyte interface, the condition V1 =

V2 was enforced at the boundary between the metal and the

thin, uniform, high impedance layer. To generate the normal

current density profiles presented in section 3 for models of this

type, the normal current density was measured at the platinum

boundary in the domain containing the saline and the high

impedance layer.
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The complete system of equations that describes both

Domains 1 and 2 as well as the boundary conditions required

to apply the thin-layer approximation to both the electrode–

electrolyte and the silica–electrolyte interfaces is presented in

figure 1.

2.4. Solution of the models

For simulations performed under the assumption that the

electrode–electrolyte interfacial impedance is linear and

independent of overpotential, the Direct (UMFPACK) solver

was applied using the general solution form. For simulations

using the full overpotential-dependent formulation of the

electrode–electrolyte interfacial impedance, a nonlinear

iterative solver based on the damped Newton method was

applied in conjunction with the Direct (UMFPACK) linear

solver using the general solution form. The solutions were

observed to be independent of initial conditions. It is important

to note that despite the application of a nonlinear solver, the

governing equation forces all potentials in the model to vary

sinusoidally. Thus, the solutions obtained using the nonlinear

solver carry information about the fundamental frequency

alone.

Although a large range of frequencies was explored,

10 kHz was applied to the majority of the simulations. This

frequency was chosen because it is an important component

of electrical stimuli, which often consist of pulse durations on

the order of 100 µs.

3. Results

3.1. Controls and validation

To confirm the validity of the FEM models, simulations were

performed of a 1 µm radius spherical electrode of infinite

conductivity surrounded by a sphere of physiological saline.

A driving potential was applied to the electrode, and the ground

was placed at the outside boundary of the saline sphere. Due to

the simple geometry of this system, analytical solutions could

be derived, and the computationally generated solutions could

be compared to them.

First, the linear FEM model was assessed using

systems that incorporated the platinum–saline interface

with a thin layer of finite thickness or a thin-layer

approximation. The total impedance of the system was

calculated from the computational solutions by dividing the

driving potential by the total current flowing through the

ground. Using frequencies ranging from 100 Hz to 100 kHz,

the computationally generated value for the total system

impedance never deviated from the analytical solution by more

than 0.01%. The nonlinear FEM model was assessed in a

similar manner. In this case, the platinum–saline interface was

incorporated using only the thin-layer approximation, and the

interfacial impedance was modeled with a full overpotential-

dependent formulation. With frequencies ranging from 100 Hz

to 100 kHz, and driving potential amplitudes up to 500 mV, the

computationally generated value for the total impedance was

never more than 0.1% different from the analytical solution.
The domain size was validated by constructing cone

and disk electrodes inside larger saline cylinders, which

Figure 2. Bode magnitude plots of experimental and simulated Pt
electrodes. Franks et al ( ) and Meyer et al (•) have published
experimentally generated data [13, 30]. For comparison, Bode plots
are presented for 1 cm2 (△), 8200 µm2 (♦) and 11 300 µm2 (⊓⊔)
simulated disk electrodes.

had heights and diameters that were twice as large as the

dimensions described in section 2. The electrodes remained

the same size and were submerged to the same depth inside

the saline. With these geometries, linear models were solved

at 10 mV and 10 kHz both with no interfacial impedance

and with a 5 nm thin uniform layer. Nonlinear models were

solved at 10 kHz with a thin-layer approximation over a

range of driving potential amplitudes from 10 mV to 500 mV.

Larger saline domains were also constructed around electrode

geometries that were scaled by a factor of 100, and these

models were treated using the nonlinear solver and the thin-

layer approximation. In all of these simulations, the total

system impedance never differed more than 0.25% from

the impedance generated with the original, smaller saline

domain. Additionally, the normal current density profile plots

were almost visually indistinguishable. A second series of

analogous control experiments confirmed that models defining

the bottom of the saline cylinder to be insulating generated

the same solutions as models that defined this boundary to

be ground. In this series of experiments, the total system

impedance did not deviate by more than 0.02%.

In addition to these controls, we confirmed convergence

for a subset of the linear and nonlinear FEM models of cone-

and disk-shaped electrodes by decreasing the element size.

Increasing the number of elements by more than five times

caused less than a 2.5% deviation in the value of the total

system impedance.

For external validation, Bode magnitude plots were

generated for simulated disk electrodes of 1 cm2, 8200 µm2

and 11 300 µm2 areas. The results are shown in figure 2

for comparison to published experimental data [13, 30]. The

simulated disk electrodes are scaled copies of the geometry

described in section 2, and provide only an approximation

to the geometries fabricated by Franks et al [13] and Meyer

et al [30]. Bode magnitude plots were generated using the

nonlinear FEM model. Franks et al recorded the Bode plot for

a 1 cm2 Pt electrode in 0.9% NaCl using a 10 mV perturbation

potential amplitude. Meyer et al measured the Bode plot for a
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8200 µm2 Pt disk in a deoxygenated phosphate buffered saline

at pH 7.2 using a 10 mV RMS signal. Figure 2 demonstrates

that the simulated data compare to the experimental data

well. The small discrepancy between the data collected by

Meyer et al and the simulated 8200 µm2 (51 µm radius)

disk electrode may represent real limitations for the model.

However, this discrepancy could also be the result of using an

experimental electrode with a surface area slightly larger than

what was reported. This could be caused by an oblique cut

of the insulated wire electrode or by chipping the electrode

insulation. A simulated 11 300 µm2 (60 µm radius) disk is

plotted to demonstrate that a slightly larger electrode matches

the experimental data very well.

3.2. Linear electrode simulations

The first simulations of electrodes were performed using

models that did not incorporate the electrode–electrolyte or

the insulator–electrolyte interfaces. This was accomplished

by defining a single domain over the cone and disk electrode

geometries. No layer of uniform thickness was modeled,

and no thin-layer approximation was applied. Surface plots

of the norm of the current density, which is defined as

‖J‖ =
√

|Jr |
2 + |Jz|

2, where Jr and Jz are the radial and

vertical components of the current density respectively, are

presented in panels (A) and (C) of figure 3. The results for the

magnitude of the current density passing through the surface

of the electrode, |n · J|, where n is the vector normal to

the electrode surface, are presented in panels (B) and (D).

Because ‖J‖ and |n · J| are functions of phasor magnitudes,

they represent peak current densities, not RMS values. The

plots in figure 3 provide a basis for comparison to subsequent

simulations presented in this paper as well as to simulations

and calculations performed in other works analyzing similar

electrode geometries [28, 41, 50, 51, 56]. The horizontal

axes in panels (B) and (D) of this figure are measured in

arc length, which is the distance traveled along the surface

of the electrode away from the line of axial symmetry. The

results presented in this figure were calculated with a driving

potential of 10 mV and a frequency of 10 kHz. Note the highly

nonuniform current density profile. It displays a focused

current density at the tip of the conical electrode and at the

edge of the disk electrode. As a reference, panel (D) also

plots the analytical solution for the current density profile

of a disk electrode embedded in an infinite insulating plane

passing the same total current as the simulated electrode.

The analytical distribution was generated by calculating the

average current density over the surface of the disk using

the computational solution, and then applying this value to

equation (15) of [56]. The computational solution matches

the analytical solution extremely well. No analytical solution

is available for the conical electrode geometry; however, the

current density profile is consistent with that of previously

published work [28].

Initial simulations designed to explore the effects of

the electrode–electrolyte interface upon the current density

profile applied a small 10 mV driving potential at a 10 kHz

frequency to ensure linearity of the system and to allow the use

(A) (B)

(C) (D)

(a) (b)

(a) (b)

Figure 3. (A) Surface plot of the norm of the current density, and
(B) the current density profile for a conical electrode geometry in
which all influences of the electrode–electrolyte interface are
neglected. Panels (C) and (D) provide analogous information for a
disk electrode. Solutions were generated for a 10 mV driving
potential at a 10 kHz frequency. Both analytical and computational
solutions are provided in panel (D). The traces overlap almost
identically. For panels (A) and (C), scale (a) describes the current
density in the saline solution, and scale (b) describes the current
density in the platinum and silica of the electrode. Both scales are
linear. Scale (a) has a maximum of 52 850 A m–2 for (A) and
89 820 A m–2 for (C). Scale (b) has a maximum of 104 600 A m–2

for (A) and 102 400 A m–2 for (C). The minimum for all scales is
0 A m–2.

of the overpotential-independent formulation of the interface.

Under these conditions, the electrode–electrolyte interface

was implemented using both techniques: (1) construction

of a thin layer of uniform thickness and (2) application of

the thin-layer approximation. For the models constructed

with thin uniform layers, thicknesses of 20, 10 and 5 nm

were utilized. Normal current density profiles and surface

plots for both cone and disk geometries were generated with

these simulations, and the results are displayed in figure 4.

For each geometry, the surface plots obtained using the

two techniques were virtually indistinguishable, and for this

reason figure 4 presents surface plots generated using the

thin-layer approximation only. The current density profiles,

however, demonstrate small differences between the two

techniques, showing that incorporation of the electrode–

electrolyte interface with a thin layer of uniform thickness

creates a current density profile that is less uniform and

greater in magnitude than the solutions generated with the

thin-layer approximation. These differences are minimized

as the thickness of the uniform layer becomes smaller, and

it appears that as the thickness is decreased from 20 nm to

5 nm, the solutions obtained by modeling the thin uniform

layers converge onto the solution generated with the thin-layer

approximation. Most importantly, all of these models

incorporating the electrode–electrolyte interface demonstrate
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(A) (B)

(C) (D)

Figure 4. Current density profiles (A) and surface plot of the norm of the current density (B) for electrodes of conical geometry for which
the electrode–electrolyte interface has been incorporated with either the thin-layer approximation or a thin layer of uniform thickness and
uniform electrical properties. Panels (C) and (D) display analogous information for a disk. Solutions were generated with a 10 kHz driving
potential of 10 mV amplitude. Panels (B) and (D) show surface plots for solutions generated with the thin-layer approximation. All solutions
were obtained under the assumption of linearity. The linear color scales in the upper right apply to panels (B) and (D). The minimum of each
color scale for both panels is 0 A m–2. The maximum for scale (a) is 190 A m–2 for (B) and 426 A m–2 for (D). The maximum for scale (b) is
1022 A m–2 for (B) and 393 A m–2 for (D). The inset in (C) provides a magnified view of the current density profile near the edge of the disk.

greatly reduced current densities in comparison to those

observed in figure 3.

Careful inspection of figure 4 reveals an apparent

discrepancy between the current density profiles for the thin

layer approximation, which are flat, and the corresponding

surface plots, which show peaks in regions of high curvature.

This discrepancy is most apparent at the edge of the disk

electrode, and it is an effect created by the radial component

of the current density, which is included in the calculation

of the norm but is not represented by the normal current

density depicted in the profile plots. The radial component

of the current density demonstrates a strong peak near

the edge of the disk. Models that adopt a thin layer of

uniform thickness demonstrate this disparity between the

norm and the normal current as well. For these models,

however, the disparity arises at the interface of the saline

and the high impedance layer—not immediately at the surface

of the electrode. The radial current density does not pass

through the electrode–electrolyte interface, and although it

cannot cause electrode corrosion, it may still contribute to

tissue damage. But because the normal current density directly

represents the current flowing through the interface, and

because it provides important information that complements

the surface plots, it is the quantity that is utilized for the current

density profiles provided in this work. The phenomenon

described here is observed for the cone electrode geometries

as well; however, its effect is less pronounced.

3.3. Nonlinear electrode simulations

Simulations were then advanced into the nonlinear regime

by incorporating the full overpotential-dependent electrode–

electrolyte interfacial impedance and by applying a nonlinear

iterative solver. The low computational cost demanded by the

thin-layer approximation enabled solutions to be calculated

quickly despite the application of an iterative solver. Both the

amplitude of the driving potential as well as its frequency can

have a large effect on the current density distribution formed

at the surface of the electrode. To demonstrate the influence

that the amplitude of the driving potential has on the current

density distribution, figure 5 provides surface plots and current

density profiles for a conical electrode driven at a frequency

of 10 kHz and potential amplitudes ranging from 10 mV to

500 mV. Figure 6 presents similar data for a disk electrode. In

each case, the current density profile is observed to be uniform

when the system is driven at low potentials. As the driving
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(A) (B) (C)

(D) (E) (F) (G)

Figure 5. Current density profiles (A) and surface plots of the norm of the current density (B)–(G) generated for a cone electrode including
the effects of the electrode–electrolyte interface by application of the thin-layer approximation. The nonlinearities of the electrode–
electrolyte interface were incorporated by adopting an overpotential-dependent formulation of the interfacial impedance. The solutions
presented in this figure were obtained at 10 kHz with varying driving potential amplitudes. The linear color scales apply to panels (B)–(G).
The minimum of each color scale for all panels is 0 A m–2. The maxima, however, are different for each panel, and are provided here in units
of A m–2: 10 mV (B), (a) 182.99 and (b) 969.145; 100 mV (C), (a) 1068.939 and (b) 4612.831; 200 mV (D), (a) 2526.141 and (b) 11 860;
300 mV (E), (a) 13 700 and (b) 66 820; 400 mV (F), (a) 106 100 and (b) 369 300; and 500 mV (G), (a) 420 600 and (b) 1173 000.

(A) (B) (C)

(D) (E) (F) (G)

Figure 6. Current density profiles (A) and the surface plots of the norm of the current density (B–G) generated for a disk electrode including
the effects of the electrode–electrolyte interface by application of the thin-layer approximation. The nonlinearities of the electrode–
electrolyte interface were incorporated by adopting an overpotential-dependent formulation of the interfacial impedance. The solutions
presented in this figure were obtained at 10 kHz with varying driving potential amplitudes. The linear color scales apply to panels (B)–(G).
The minimum of both scales is 0 A m–2 for all panels. The maxima, however, differ for each panel, and they are presented here in units of
A m–2: panel B, (a) 298.069 and (b) 176.844; panel (C), (a) 1510.116 and (b) 991.956; panel (D), (a) 3845.971 and (b) 2401.713; panel (E),
(a) 22 490 and (b) 12 550; panel (F), (a) 173 100 and (b) 101 000; and panel (G), (a) 577 300 and (b) 378 600.
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(A)

(B)

(C)

Figure 7. Current density profiles obtained for a disk electrode at a
range of frequencies for three independent driving potential
amplitudes: 100 mV (A), 300 mV (B) and 500 mV (C). Solutions
were generated using the nonlinear solver and the
overpotential-dependent formulation for the electrode–electrolyte
interface.

potential is increased, however, the current density profile

becomes increasingly nonuniform, with the largest current

densities being located in regions of high curvature—the tip

of the cone and the edge of the disk. Thus, the electrode–

electrolyte interface is seen to have a profound effect on the

current density profile at low driving potentials, but this effect

attenuates at larger potentials where the current density profile

begins to match the profiles that were generated from models

that neglected the interface (figure 3).

In addition to its dependence upon the magnitude of the

driving potential, the current density profile is also influenced

by the frequency at which the system is driven. Figure 7

demonstrates this by plotting the current density profile for

a disk geometry solved at a range of frequencies for each of

three different driving potential values. In all cases, higher

frequencies lead to increased nonuniformity. Results are

similar for the cone geometry (data not shown).

Because the electrode–electrolyte interface possesses a

significant capacitive component, one expects the phase of the

current density to lag substantially behind the driving potential.

The spatial variation of this phenomenon can be observed
and studied using the nonlinear time-harmonic simulations
applied in this work. Surprisingly, however, the phase of
the normal current density does not demonstrate significant
spatial variation along the arc length of the electrode. In fact,
in solutions generated at 10 kHz over a range of amplitudes
from 10 mV to 500 mV, the maximum variation of the phase
within a single solution is less than 1% for both cone and disk
geometries. The average phase of the current density passing
normal to the electrode tip, however, does vary substantially
from one solution to another across this range. For a conical
electrode, at 10 kHz, the average phase of the current density
relative to the driving potential is 81.9◦ at 10 mV, 72.8◦ at
100 mV, 64.9◦ at 200 mV, 60.2◦ at 300 mV, 58.7◦ at 400 mV
and 58.4◦ at 500 mV. Values for a disk-shaped electrode are
similar. Somewhat unexpectedly, however, the frequency has
only a minimal effect upon the phase of the current density. In
fact, for a cone-shaped electrode at 300 mV, the average phase
of the current density passing normal to the electrode surface
differs by only 1.2% as the frequency is varied from 100 Hz
to 100 kHz.

In order to explore the dependence of the current density
distribution on electrode size, nonlinear simulations were
performed on cone and disk electrodes that were scaled in
both physical dimensions to be 10× and 100× larger than
the previously modeled electrodes. In the same manner as
the smaller electrodes, increasing the frequency and/or
amplitude of the driving potential caused the current density
profile to become more nonuniform. Interestingly however,
as the electrode size was increased, the current density
distribution was observed to advance into nonuniformity at
progressively lower driving potentials. This is demonstrated
in figure 8, which plots the current density profile for disk
electrodes with 10 µm and 100 µm radii. The same trend was
observed in simulations of cone electrodes.

For all models, incorporation of the silica–electroyte
interface was critical. Without it, an excessive amount of
current leaked through the region of the insulation nearest
to the exposed platinum surface. When the interface is
incorporated, however, the current density passing through the
insulation is very low. For this reason, modeling this interface
to be perfectly insulating produces no visible effect upon the
current density profiles generated at the electrode surface. But
such an approximation does not accurately describe the shunt
capacitance generated across the insulation. This capacitance
is significant, despite the low current densities, due to the large
surface area of the insulator–electrolyte interface. In fact, for
the 1 µm radius disk electrode geometry driven at 10 kHz
and 100 mV, 43.6% of the total current is shunted through the
insulation. When the system is driven at 300 mV, the shunted
current comprises 13.0% of the total current, and at 500 mV,
it comprises 1.3%. The conical electrode shunts much less
current because, unlike the disk, its insulation increases in
thickness to match the increasing platinum radius.

4. Discussion

Results of the present work demonstrate that as the driving
potential amplitude and frequency increase, the current density
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(A)

(B)

Figure 8. Dependence of the current density distribution on the
electrode size. Panel (A) plots the normalized current density for a
disk electrode with a 10 µm radius operated at a frequency of
10 kHz and a range of driving potential amplitudes. Panel (B) plots
the same data for a disk electrode with a 100 µm radius.

progresses from a uniform to a nonuniform distribution.

Similar observations have previously been described in the

literature. In a seminal series of works, Newman derived an

analytical solution for the current density on the surface of a

disk electrode embedded in an infinite, insulating plane, first

by solving Laplace’s equation alone, and then by incorporating

interfacial resistances to model both Butler–Volmer faradaic

currents and mass transfer as well [32, 33]. He explained that

under conditions in which there is negligible voltage drop

at the electrode–electrolyte interface relative to the ohmic

drop in the solution, a highly nonuniform primary current

density distribution is created at the electrode surface. He then

demonstrated that a much more uniform secondary current

density distribution may be established if the resistance to

faradaic flow is relatively large compared to the solution

resistance. Next, by modeling the interface as a capacitor and

resistor in parallel and considering ac driving potentials, he

determined that at high frequencies, the nonuniform primary

distribution prevails, while at low frequencies a much more

uniform secondary distribution is obtained [34]. Nisancioglu

and Newman, Antohi and Scherson, and Myland and Oldham

expanded on these original works to model a disk electrode

in the time domain while providing overpotential-independent

capacitive and resistive properties to the electrode–electrolyte

interface [2, 31, 35, 36]. Together they showed that in

response to both current and voltage steps, the current density

distribution at the disk electrode progresses from a nonuniform

primary distribution to a uniform secondary distribution.

Our research contributes to these works by utilizing full

overpotential-dependent formulations of both resistive and

capacitive interfacial components, and by incorporating

these into finite-element models of platinum disk and cone

electrodes.

Experimental observation of the spatial distribution of

the current density at microelectrode surfaces is difficult.

Electrochemists have long been aware of nonuniform effects

during electrodeposition [6]. Suesserman et al used a

microelectrode to probe the surface of a 35 mm diameter

copper disk electrode driven with an alternating current

of variable frequency [50]. Using this technique, they

mapped the potential fields generated around the 35 mm

disk and observed the progression from a secondary to

a primary current density distribution as the frequency

was increased. Electrogenerated chemiluminescence

(ECL) has provided another means by which to observe

the current density distribution [12, 21, 38, 55].

Maus et al have studied the nonuniform current density of

disk, band and cone shaped Pt and Pt/Ir microelectrodes using

9,10-diphenylanthracene (DPA) in a benzonitrile solvent [21].

They observed increased current density at regions of high

curvature, such as the edge of a disk, the end of a band, and

the tip of a cone. Furthermore, they noted that the greatest

nonuniformity was obtained under conditions supporting

very high electrode currents. Specifically, nonuniformity

increased with increasing frequency and with increasing DPA

concentrations. Greater DPA concentrations caused a decrease

in the Faradaic resistance of their system, an effect that is

analogous, in the current study, to increasing the driving

potential. The results of the present work, therefore, are in

accord with the available experimental data.

The aim of the current work is to study the electrode–

electrolyte interface over a range of overpotentials relevant to

both neural recording and stimulation. The primary electrode

geometries presented in figures 3–7, however, are very small

for stimulating electrodes. Jensen et al used a small conical

Pt–Ir electrode to stimulate rabbit retinal ganglion cells in

vitro [16]. Their electrode had a surface area of 16 µm2

and the same dimensions as the primary conical electrode

modeled in the present work. They acknowledged, however,

that the charge densities required to stimulate the cell at a

100 µm displacement exceeded the limit for safe prolonged

stimulation. Stimulation with a 1 µm radius Pt disk electrode

(3 µm2) has not been described in the literature thus far, but

platinum black disk electrodes with 5 µm radii (79 µm2) are

commonly used for this purpose [14, 45, 48]. Additionally,

Sekirnjak et al have studied epiretinal electrical stimulation

using electroplated platinum disk electrodes with radii ranging

from ∼3 to 12.5 µm (∼28 to 491 µm2), and they have found

that even the smallest of these electrodes may indeed be safe

for clinical application [45]. But electrodes that have already

found clinical use tend to be much larger, having characteristic

dimensions on the order of hundreds of micrometers or more

[37, 54]. It is therefore important to emphasize that the trends

identified by modeling the smaller electrodes in figures 3–7 are

observed in larger electrodes as well. Figure 8 demonstrates

an additional trend, however, that electrodes of increasing

size advance into nonuniform current density distributions at

progressively lower overpotentials.
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The dependence of the current density distribution on

overpotential may have important implications for asymmetric

biphasic stimulus waveforms. Charge-balanced biphasic

waveforms were originally introduced to minimize the

severe electrode corrosion and tissue damage observed with

monophasic stimuli [19]. Asymmetric charge-balanced

biphasic waveforms consist of a low-amplitude, long-duration

phase either preceding or succeeding a large-amplitude, short-

duration phase. They have been promoted as a potential

means to achieve low threshold local neural activation while

simultaneously minimizing electrode corrosion and tissue

damage [20, 27, 29]. Because the amplitudes of the voltage

in the two phases of these asymmetric stimuli are different,

the current density distribution during the two phases will

also differ. This will create an unbalanced charge injection

at different locations on the electrode surface, which predicts

a corrosive reshaping of the electrode, and possibly tissue

damage.

Although the amplitude of the driving potential has

the greatest impact upon the current density distribution, the

frequency has a significant impact as well. Because the

interface possesses a large capacitive component, increased

frequencies cause a decrease in the interfacial impedance

and an increase in the nonuniformity of the current density

distribution. Recognizing this trend, it may be suggested

that in order to limit electrode corrosion and possibly tissue

damage, stimulus waveforms should be filtered to remove

unnecessary high frequency components. Square-shaped

pulses are commonly employed as stimulus waveforms,

and these shapes possess many high-frequency components.

For this reason, low-pass filtering may produce measurable

benefits.

Due to their large charge storage capacities, Faradaic

electrodes, namely iridium oxide electrodes, are currently

favored for use in the development of neural prostheses.

Although no simulations of the iridium oxide–saline interface

were performed in this work, the impedance of this interface

also exhibits a strong dependence on both the amplitude and

frequency of the driving potential [30, 53], and therefore it

can be expected that the current density distribution at this

interface will demonstrate trends similar to those observed at

the platinum–saline interface. An important difference can

be expected, however. Because iridium oxide is capable of

undergoing reversible redox reactions, the dependence of its

interfacial impedance upon overpotential amplitude is likely

to be less symmetric about its operating potential than it

is for platinum. Additionally, iridium oxide electrodes are

frequently operated around a biased anodic potential. Due to

these asymmetries, the current density distribution is likely

to differ significantly for electric potential deviations in the

anodic and cathodic directions.

The current density profiles obtained in the linear

regime by implementing the thin-layer approximation for

the electrode–electrolyte interface are very similar to those

obtained by implementing a thin layer of uniform thickness.

Both representations of the interface act strongly to increase

the uniformity of the current density. In fact, this is

not surprising as McIntyre and Grill observed a similar

phenomenon in their simulations of metal microelectrodes
coated with a resistive layer [28]. The greatest differences
in the current density profiles generated by the two methods
were localized to the edge of the disk electrode geometry
and to the tip of the conical electrode geometry. However,
figure 4 demonstrates that even these discrepancies are not
large. Additionally, while the real metal-electrolyte double
layer does possess volume, the electrical properties of this
volume are certainly not uniform. Thus modeling the interface
as a thin layer of uniform thickness with uniform electrical
properties must also be recognized as an approximation, and
it remains uncertain which representation of the interface—
the thin-layer approximation or the thin layer of uniform
thickness—more accurately reflects the reality.

Importantly, meshing a thin layer of finite thickness
demands a large computational cost. Implementation of the
thin-layer approximation, however, is not costly. Additionally,
construction of a thin finite layer around a complex geometry,
such as a cone, is highly time consuming. The thin-
layer approximation, therefore, possesses several significant
practical advantages in comparison to the alternative method.

5. Conclusions

The platinum–saline interfacial impedance was incorporated
into finite-element models of microelectrodes using two
approaches: (1) the construction of a thin layer of uniform
electrical properties and (2) the application of a thin-layer
approximation. Solutions were generated for a large range of
driving potential amplitudes and frequencies. Incorporation
of the electrode–electrolyte interface demonstrates the largest
effect on solutions under conditions that maximize the
magnitude of the interfacial impedance. When the impedance
is large, the current density distribution is uniform, and
when it is small, the current density distribution becomes
nonuniform, resembling solutions obtained using models that
do not incorporate the interface. Thus, due to the influence of
the interfacial impedance, the current density progresses from
a highly uniform profile at low driving potential amplitudes and
frequencies to a highly nonuniform profile as the amplitude and
the frequency are increased. These observations reinforce the
need to operate stimulating electrodes at the lowest possible
potentials, they suggest possible difficulties for asymmetric
charge-balanced biphasic waveforms, and they predict that
some benefit may be obtained by limiting unnecessary high-
frequency components in electrical stimuli.
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