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ABSTRACT. We consider classes of functional differential equation models which arise in attempts to de-

scribe temporal delays in HIV pathogenesis. In particular, we develop methods for incorporating arbitrary

variability (i.e., general probability distributions) for these delays into systems that cannot readily be re-

duced to a finite number of coupled ordinary differential equations (as is done in the method of stages). We

discuss modeling from first principles, introduce several classes of nonlinear models (including discrete

and distributed delays), and present a discussion of theoretical and computational approaches. We then

use the resulting methodology to carry out simulations, perform parameter estimation calculations, and fit

the models to experimental data. Results obtained suggest the statistical significance of the presence of

delays and the importance of including delays in validating mathematical models with experimental data.

We also show that the models are quite sensitive to the mean of the distribution which describes the delay

in viral production, whereas the variance of this distribution has relatively little impact.
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1. BACKGROUND

Viruses are obligate parasites with a multitude of pathways for infecting and reproducing within their

target hosts. The Human Immunodeficiency Virus (HIV) is a lentivirus that is the causative agent for

the slow, progressive, and fatal Acquired Immune Deficiency Syndrome (AIDS). According to a Joint

United Nations Programme on HIV/AIDS June 2000 report, there were approximately 34.3 million
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individuals infected with HIV/AIDS worldwide at the end of 1999, including 24.5 million in sub-

Saharan Africa [19]. HIV-related illness and death is and will continue to be an important clinical and

public health issue as well as an international security, stability, and development issue. Clearly it is

imperative that we attain a greater understanding of HIV/AIDS viral infection dynamics.

When an HIV virion comes into contact with an uninfected target cell, the viral envelope glycopro-

teins fuse to the cell’s lipid bilayer at a CD4 receptor site. For HIV, the core of the virus is composed

of single-stranded viral RNA and protein components. The moment a virion contacts the appropriate

receptor site, the cell is described as beingacutely infected. The viral core enters the cell where the

protein components enable transcription and integration of the viral RNA into viral DNA and then in-

corporation into the cellular DNA (provirus). With its altered cellular DNA, the cell produces capsids

and protein envelopes and transcribes multiple copies of viral RNA. The cell assembles a virion by

encasing the viral RNA in a capsid and then a protein envelope. The new virion pushes out through the

cell membrane budding off in chains of virions (though sometimes single virions do float away). If the

acutely infected cell survives through this first viral release, it can subsequently become achronically

infectedcell. Note that in the chronic stage, it is possible for the cells to continue to divide and to

produce virions, albeit at a different rate than acutely infected or non-infected cells.

Clearly neither the time from viral infection to viral production (sometimes called theeclipse phase

[10, 14, 18]) nor the transformation from acute infection to chronic infection are instantaneous. It is

known that the first viral release occurs approximately 24 hours after the initial infection, while some-

what after this release (perhaps several hours), the cellular dynamics change to those characteristic of

a chronic infection [8, 9, 10, 13, 16]. Development of mathematical models and the associated numer-

ical techniques that incorporate these delays into models for HIV infection dynamics is the primary

motivation for our efforts here.

One approach to modeling systems with delays is sometimes referred to as themethod of stagesand

is described in [6, 7, 9, 12, 13]. Models of HIV infection dynamics with delays have been shown to

produce dramatically different conclusions than those without delays. Mittler, et. al. [13] show that

including a delay in the viral production of infected cells dramatically changes the estimates of viral

clearance. Grossman, et. al., [9] show that including a delay model for death of infected cells results in

different conclusions about residual transmission of infection in the presence of drugs that effectively
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reduce viral load. Lloyd [12] shows that failing to include delays in models for HIV infection dynamics

results in underestimates of the basic reproductive numberR0, which in turn results in overly optimistic

conclusions about treatment efficacy. We remark that all of the previously cited papers represent the

delays using a gamma distribution to describe the delay kernel, and reduce the resulting system of

integro-differential equations to a system of (non-delayed) ordinary differential equations, which can

easily be simulated using standard mathematical software. An alternative method (an implementation

of which is a focus of this paper) that first converts a delay system into an abstract evolution equation

(before numerical simulation) was described in [1, 2, 4]. This approach allows for simulation of systems

with general kernels describing the delay distributions, and does not require that the model be reduced

to a system of ODEs.

In this paper, we concentrate on the mathematical modeling of viral dynamics, focusing in particular

on the mathematical aspects and biological nature of the delays. We also extend previous modeling

work on HIV infection dynamics forin vitro laboratory experiments from the (continuous) delay dif-

ferential equations developed in [5], which in turn were based on a discrete dynamical system from

[11].

2. MODELS

We begin with a modification of the system of ordinary differential equations developed in [5] given

by

(2.1)

_V (t) = �cV (t) + nAA(t) + nCC(t)� pV (t)T (t)

_A(t) = (rv � ÆA �  � ÆX(t))A(t) + pV (t)T (t)

_C(t) = (rv � ÆC � ÆX(t))C(t) + A(t)

_T (t) = (ru � Æu � ÆX(t)� pV (t))T (t) + S ;

for 0 � t � tf with tf finite, where the parameters and the compartments are described in Tables 1 and

2, respectively, andt is the continuous independent time variable. In the first equation, the�pV (t)T (t)

term is designed to account for the biological fact that upon infecting a cell, a virion is unable to infect

additional target cells. Models possessing this term are inherently different from manyin vivo models

in which the (large) number of target cells is assumed to be constant. If over the time scale of interest,
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Notation Description
c Infectious viral clearance rate
nA Infectious viral production rate for acutely

infected cells
nC Infectious viral production rate for chronically

infected cells
 Rate at which acutely infected cells become

chronically infected
rv Birth-rate for virally infected cells
ru Birth-rate for uninfected cells
ÆA Death-rate for acutely infected cells
ÆC Death-rate for chronically infected cells
Æu Death-rate for uninfected cells
Æ Density dependent overall cell death-rate
p Probability of infection
S Constant rate of target cell replacement

TABLE 1. in vitro model parameters

Notation Description
V Infectious viral population
A Acutely infected cells
C Chronically infected cells
T Uninfected or target cells
X Total cell population (infected and uninfected)

(A+ C + T )

TABLE 2. in vitro model compartments

theT variable were a constantT0 (such as in [13, 15, 17]), the equation would be

_V (t) = �(c + pT0)V (t) + nAA(t) + nCC(t)

and we could define a new coefficientc0 = c + pT0 for theV (t) term. For ourin vitro model, we do

not have this situation, as the target cell population is not replenished and thus not held constant in the

experiment. In other computational results (not reported on here), we omitted the�pV (t)T (t) term

from the first equation of (2.1) and were also able to attain reasonable fits for our limited data set (albeit

with different parameters in the models) along with statistically significant results analogous to those

reported below.

This model, and all subsequent modifications, were designed with the goal of gaining a deeper un-

derstanding ofin vitro experiments (such as those described in [20]). Thus, our model and discussions

here deal exclusively with the simulation of and goodness of fit toin vitro data. However, we also
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wish to develop approaches that may be used as an aid in understandingin vivo phenomena and thus

our methods must be sufficiently flexible to accommodate information (from HIV infected subjects)

concerning inter-individual and intra-individual delay time variability.

We call attention in (2.1) to the terms describing the rates of change in the population of virions,

acutely infected cells, chronically infected cells, and uninfected cells (_V (t), _A(t), _C(t), and _T (t),

respectively, in (2.1)). In particular, we should comment on the form of the nonlinear terms (e.g.,

pV (t)T (t)). Terms such aspV (t)T (t) are obviously only first approximations to the density dependent

(on V andT ) component of the rate of new infections. A more realistic model requires that this

term, dependent on bothV (t) andT (t), be bounded in the limit, i.e., saturation should be modeled

in the nonlinear term so that in the limit it is (at least) affine inV or T . While we use this term in

our uncertainty analysis below, for well posedness considerations the termpV T is more appropriately

replaced by a functionp(V; T ) wherex 7! p(x); x = (V; T ) is globally Lipschitz (see [1] for the

standard form of this assumption). However, for our initial purposes in modeling discussions, the

simpler term will suffice.

The data from [20] is depicted on a log plot (note the exponential growth) in Figure 2.1. Clearly

the number of data points is insufficient to carry out (with any degree of confidence) rigorous inverse

problem (delay parameter estimation) investigations or to perform a legitimate statistical analysis with

models such as (2.1) and its extensions discussed below. However, to illustrate our methodology, we can

still perform the inverse problem calculations (fully aware of their inadequacies) to obtain an estimate

of the delays and then compare these calculated values with the experimentally accepted ones.

3. MODELING OF DELAYS AND VARIABILITY

As mentioned in Section 1, it is known that there exist temporal delays between viral infection and

viral production and between productive acute infection and chronic infection.

A central focus of our modeling effort has been on attempting to obtain reasonable mathematical

representations of these delays. The problem of how to mathematically represent these phenomena is

decidedly nontrivial and includes issues such as how to account for intra-individual variability (e.g.,

intercellular variability arising within a single infected individual or laboratory assay) and/or inter-indi-

vidual variability arising between individual subjects or data from multiple assays. In the present paper,

we do not specifically address these different sources of variability, although our model is sufficiently
5
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FIGURE 2.1. Log plot of experimental data (10 observations) from [20].

flexible to account for either type. These issues are highly significant and dealing with the levels of

variability and the resulting mathematical ramifications is a primary focus of this paper.

Let the delay in the first equation in (2.1) be modeled by treating the delay time� between acute

infection and viral production as a probabilistic quantity (i.e., a random variable) with distribution

P1(�) so that the first equation in (2.1) is replaced by (see the appendix for a more detailed discussion

of the foundations underlying such an equation)

(3.1) _V (t) = �cV (t) + nA

Z 0

�1

A(t+ �)dP1(�) + nCC(t)� pV (t)T (t) :
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Likewise, let the delay between acute infectivity and chronic infectivity (with distributionP2(�)) be

represented in altered forms of the second and third equations of (2.1) by

_A(t) = (rv � ÆA � ÆX(t))A(t)� 

Z 0

�1

A(t + �)dP2(�) + pV (t)T (t)(3.2)

_C(t) = (rv � ÆC � ÆX(t))C(t) + 

Z 0

�1

A(t+ �)dP2(�) :(3.3)

Note that assuming Dirac distributions with atoms at(��1) ; (��1 � �2) < 0 respectively, forP1, P2

reduces the system to

(3.4)

_V (t) = �cV (t) + nAA(t� �1) + nCC(t)� pV (t)T (t)

_A(t) = (rv � ÆA � ÆX(t))A(t)� A(t� �1 � �2) + pV (t)T (t)

_C(t) = (rv � ÆC � ÆX(t))C(t) + A(t� �1 � �2)

_T (t) = (ru � Æu � ÆX(t)� pV (t))T (t) + S ;

for 0 � t � tf wheretf finite. Moreover it becomes the special case

(3.5)

_V (t) = �cV (t) + nA
R 0

�1
A(t + �)k1(�)d� + nCC(t)� pV (t)T (t)

_A(t) = (rv � ÆA � ÆX(t))A(t)� 
R 0

�1
A(t + �)k2(�)d� + pV (t)T (t)

_C(t) = (rv � ÆC � ÆX(t))C(t) + 
R 0

�1
A(t+ �)k2(�)d�

_T (t) = (ru � Æu � ÆX(t)� pV (t))T (t) + S ;

wheneverP1, P2 possess probability densitiesk1, k2 respectively. In the subsequent discussions in

this paper, all numerical simulations for each of the systems of functional differential equations (FDE)

given above were performed using the methods described in Section 4. Figure 3.1 depicts simulations

of the system (3.4) with and without simple discrete delays (i.e.,�1 = 26 and�2 = 3 in (3.4) vs. the

undelayed system in (2.1)). Both the undelayed system solutions and the delayed system solutions were

computed using the method described in Section 4 forN = 32 with the parameters described in Table

3. Not surprisingly, the presence of nonzero delays has a dramatic effect upon the simulation. Issues

relating to the exact nature of� and whether or not it should be modeled as a fixed value for each cell

or distributed across cells and how this distribution can be represented, are the focus of Section 3.1 and

Appendix A.
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FIGURE 3.1. Simulations of (3.4) with (�1 = 26, �2 = 3) and without (�1 = 0, �2 = 0)
discrete delays.

3.1. Fixed Delays Versus Distributed Delays.If we assume that the delays�1, �2 are fixed for each

cell, then we can precisely describe the capacity of each member of the population (of infected cells) to

produce virions as a function of time. In other words, exactly�1 units of time after a cell becomes in-

fected, it begins producing virus. Exactly�2 units of time later, that same cell then becomes chronically

infected (assuming it lives to this stage).

Such a system can be obtained from (3.1)-(3.3) along with the equation for_T by assuming Heaviside

distributions with unit jumps at��1 < 0 and��1� �2 < 0. This corresponds to Dirac delta “densities”
8



and results in the system

(3.6)

_V (t) = �cV (t) + nA
R 0

�1
A (t+ �) Æ��1 (�) d� + nCC (t)� pV (t)T (t)

_A (t) = (rv � ÆA � ÆX (t))A (t)� 
R 0

�1
A (t + �) Æ��1��2 (�) d� + pV (t)T (t)

_C (t) = (rv � ÆC � ÆX (t))C (t) + 
R 0

�1
A (t + �) Æ��1��2 (�) d�

_T (t) = (ru � Æu � ÆX (t)� pV (t))T (t) + S ;

which is exactly the system (3.4). A simulation of this system is depicted in Figure 3.1.

In order to overcome the (biologically untenable) assumption that each cell begins producing virus at

a fixed time after infection, a number of authors have used a Gamma function as the distribution for the

time to viral production of infected cells (see Section 1). A Gamma distribution is just one example of

a number of distributions which could be used to model this process. The primary advantage to using

the Gamma distribution is that the distributed delay system can be rewritten as a system of ODE’s and

readily simulated using standard software packages. The derivation of this equivalent system of ODEs

when the viral production delay is modeled with a Gamma distribution can be found in [13].

In this work, we considered a variety of normalized kernels for density functions (i.e., the model

given by (3.5)) which we tacitly assumed exist for all distributions of interest (except of course, the

Dirac distribution with masses at��1 and��1 � �2). In particular, we considered simulations using

density functions consisting of a triangular hat function and an inverted quadratic. Since these systems

do not reduce to a system of ODE’s, alternate numerical methods are required to simulate the dynamics

of the modeled system. These are the subject of our discussions in Section 4.

The hat and inverted quadratic kernels (each of which have finite support) are described by

k̂(s;�; �; s1; s2) =
K̂(s;�; �)�[s1;s2](s)R 0

�1
K̂(�;�; �)�[s1;s2](�)d�

(3.7)

where

K̂(�;�; �) =

�
2�

�2
+

1

�

�
1� 2�

�

��
�[���

2
;�](�)

+

�
�2�

�2
+

1

�

�
1 +

2�

�

��
�[�;�+�

2
](�)
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FIGURE 3.2. Sample graphs of the hatk̂ and inverted quadratic~k kernels.

and

~k(s;�; �; s1; s2) =
~K(s;�; �)�[s1;s2](s)R 0

�1
~K(�;�; �)�[s1;s2](�)d�

(3.8)

where

~K(�;�; �) =
1

(� � �)2 + �

respectively and with mean�, width �, and support[s1; s2] � R. Here�[a;b] is the indicator function

of the interval[a; b]. Sample graphs of these functions are depicted in Figure 3.2. Note that in order to

preserve the normalization, the height of these kernels automatically scales with changes in the width

�. Moreover, the support for the hat kernelk̂ is always
�
�� �

2
; �+ �

2

�
if s1, s2 are chosen so that

s1 < �� �
2
, s2 > �+ �

2
(which we have done in all the calculations reported on in this paper). We use

the�[s1;s2] notation in thêk kernel only for consistency in notation in comparing kernels below.

4. NUMERICAL IMPLEMENTATION

For those interested in the mathematical aspects of simulating an FDE system, this section contains

the necessary mathematical and numerical analysis foundations. In Section 4.1, we describe the con-

version of the FDE system to an abstract evolution equation (AEE) system as well as provide existence

and uniqueness results for a solution to the FDE (proofs are given in Appendix B). Section 4.2 contains

details on the numerical implementation along with the convergence results for our numerical method.
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In order to approximate solutions to the systems described in (3.4) and (3.5), we first converted them

to an AEE and then approximated in a space spanned by piece-wise linear splines (i.e., in a Galerkin

approach). We were able to numerically calculate the generalized Fourier coefficients of approximate

solutions relative to the splines, and with these coefficients, recover an approximation to the solutions

of (3.4) or (3.5).

4.1. Abstract Evolution Equation Theory. We briefly summarize the well-developed theory [1, 2, 3,

4] pertinent to our efforts. When considering the discrete delay system (3.4), we take�1; �2 > 0 and

without loss of generality assumer > �1 + �2 > 0 is finite throughout.

Let

x (t) = (x1 (t) ; x2 (t) ; x3 (t) ; x4 (t))
T = (V (t) ; A (t) ; C (t) ; T (t))T

and

xt (�) = x (t + �) ; �r � � � 0; r 2 R
+ :

Our system, as described in (3.4) or (3.5), can then be written as

(4.1)

_x (t) = L (x (t) ; xt) + f1 (x (t)) + f2 (x (t� �1)) + f3 (x (t� �1 � �2)) + f4 (t)

for 0 � t � tf

(x (0) ; x0) = (� (0) ;�) 2 Z ; � 2 L2 (�r; 0;R4)

wheretf is finite and for(�; �) 2 Z = R
4 � L2 (�r; 0;R4),

L (�; �) =

2
66666664

�c 0 nC 0

0 rv � ÆA 0 0

0 0 rv � ÆC 0

0 0 0 ru � Æu

3
77777775
� + n1A

�
Æ(1;2)

�
(4;4)

Z 0

�r

� (�) dP1 (�)

+1
��
Æ(3;2)

�
(4;4)

� �Æ(2;2)�(4;4)
�Z 0

�r

� (�) dP2 (�) ;
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f1 (�) =

2
66666664

�p�1�4
�Æ �P4

i=2 �i
�
�2 + p�1�4

�Æ �P4
i=2 �i

�
�3

�Æ �P4
i=2 �i

�
�4 � p�1�4

3
77777775
;

f2 (�) = n2A
�
Æ(1;2)

�
(4;4)

� ;

f3 (�) = 2
��
Æ(3;2)

�
(4;4)

� �Æ(2;2)�(4;4)
�
� ;

f4 (t) = [0; 0; 0; S]T ; 0 � t � tf :

Moreover,� is the initial time history of the system on[�r; 0], {P1, P2} are probability distributions,

andZ = R
4 � L2 (�r; 0;R4) is the state space. Here

�
Æ(i;j)

�
(4;4)

denotes a 4 by 4 matrix with a one in

the(i; j)th element and zeros elsewhere. Then1A and then2A are model dependent parameters which are

either zero ornA depending on the delay distribution corresponding to the choice of either (3.4) or (3.5)

as the model. Thus for a distributed delay (with distributionP1), n1A = nA andn2A = 0. Conversely, for

a discrete delayn2A = nA andn1A = 0. The1 and2 parameters are defined similarly.

Following the discussion in [1] regarding the existence and uniqueness of a solution to (4.1), we

consider the following definitions and lemmas.

The norm on the spaceZ is defined as

k(�; �)kZ =

�
j�j2 +

Z 0

�r

j� (�)j2 d�
�1=2

; (�; �) 2 Z :

Clearly,Z is a Hilbert space with inner product

h(�; �) ; (�;  )iZ = �T � +

Z 0

�r

� (�)T  (�) d� ;

for (�; �) ; (�;  ) 2 Z.

For the following discussion, denotej�j as the norm onRn and the induced norm onRn�n andk�k as

the norm onL2 (�r; 0;R4).
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As discussed in Section 2, the nonlinearities exemplified by terms such aspx1x4 are biologically

unrealistic. However, these nonlinear terms inf1 can be replaced by standard saturation limited non-

linearities such as

px1x4 by p1 (x1)x4

andÆxixj by Æi (xi)xj (for i; j = 2; 3; 4) ;

where

p1 (x1) =

8>>><
>>>:

0 x1 < 0

px1 0 � x1 � �x1

p�x1 �x1 < x1 ;

(4.2)

and

(4.3) Æi (xi) =

8>>><
>>>:

0 xi < 0

Æxi 0 � xi � �xi

Æ�xi �xi < xi ;

(for finite upper bounds�xi 2 R
+ ; i = 1; 2; 3; 4), and wheref1 can be replaced by

~f1 (�) =

2
66666664

�p1 (�1) �4
� �P4

i=2 �i
�
Æ2 (�2) + p1 (�1) �4

� �P4
i=2 �i

�
Æ3 (�3)

� �P4
i=2 �i

�
Æ4 (�4)� p1 (�1) �4

3
77777775
; � 2 R

4 :(4.4)

Note thatpi andÆi are globally bounded functions satisfyingp1 (x1) � p�x1 andÆi (xi) � Æ�xi. Indeed

they are differentiable, satisfyingp01 (x1) � p andÆ0i (xi) � Æ.

Now we can prove the global existence and uniqueness of a solution to

(4.5)

_x (t) = L (x (t) ; xt) + ~f1 (x (t)) + f2 (x (t� �1))

+f3 (x (t� �1 � �2)) + f4 (t) for 0 � t � tf ;

(x (0) ; x0) = (� (0) ;�) 2 Z

13



with tf finite, through the following series of steps. We first defineF = L+ ~f1+f2+f3 onZ�R4�R4

by

F ((�; �) ; �; �) = L (�; �) + ~f1 (�) + f2 (�) + f3 (�) :

Lemma 4.1. The functionF = L+ ~f1 + f2 + f3 : Z � R
4 � R

4 ! R
4 is differentiable.

Proof. Given that all pertinent components of the equation (4.5) are differentiable, we can conclude

that the functionF is differentiable.

Lemma 4.2. For all ((�; �) ; �; !) ; ((�;  ) ; �; �) 2 Z � R
4 � R

4 the functionF = L + ~f1 + f2 + f3

satisfies a global Lipschitz condition

(4.6) jF ((�; �) ; �; !)�F ((�;  ) ; �; �)j � KL fj� � �j+ k��  k+ j� � �j+ j! � �jg

for some fixed constantKL > 0.

Proof: See B.1 for proof.

Remark4.3. Note that in the above Lemma,KL may not necessarily be the minimal Lipschitz constant;

we merely wish to emphasize its existence for use in a subsequent theorem.

Following the standard arguments for the existence and uniqueness of the solution to an ODE on

a finite intervalI = [0; tf ], we begin by noting that as a consequence of the Second Fundamental

Theorem of Calculus, we can rewrite (4.5) as

(4.7)

x (t) = � (0) +
R t
0
fL (x (�) ; x�) + ~f1 (x (�)) + f2 (x (� � �1))

+f3 (x (� � �1 � �2)) + f4 (�)gd� t 2 I ;
= � (t) � r � t < 0 :

We now make the following definition.
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Definition 4.4. Let successive approximationsto the solution of (4.7) on[�r; tf ] be defined forj =

0; 1; 2; : : :, as

(4.8)

y0 (t) =

8<
: � (0) t 2 I

� (t) �r � t < 0

yj+1(t) = � (0) +
R t
0
fL �yj (�) ; (yj)��+ ~f1 (yj (�)) + f2 (yj (� � �1))

+f3 (yj (� � �1 � �2)) + f4 (�)gd� t 2 I ;
= � (t) � r � t < 0 :

Theorem 4.5.Given a finite intervalI, supposeL+ ~f1 + f2 + f3 satisfies both Lemma 4.1 and Lemma

4.2. Then there exists a unique solution to (4.5) onI.

Proof: See Appendix B.2 for proof.

In our simulations, where the states do not exceed the predefined upper bounds in (4.2), (4.3), we

know that these solutions solve (4.1) as well as (4.5). In any case (4.5) is the biologically meaningful

system.

4.2. The Abstract Evolution Equation Implementation. The system described by (4.5) can be writ-

ten in a form that facilitates a discussion regarding its approximation which is developed fully in [4]

and will only be summarized here.

Define the nonlinear operatorA : D (A) � Z ! Z by

D (A) = f( (0) ;  ) 2 Z :  2 H1 (�r; 0;R4)g
A ( (0) ;  ) =

�
L ( (0) ;  ) + ~f1 ( (0)) + f2 ( (��1)) + f3 ( (��1 � �2)) ;

d
d�
 
�
:

With this definition, we can then write (4.5) in the form

(4.9)
_z (t) = Az (t) + f5 (t)

z (0) = z0 ;

wheref5 (t) = (f4 (t) ; 0) 2 Z andz0 2 Z.

Let
�
ZN ; PN ;AN

	
be our approximation scheme for (4.9) satisfying the conditions of Theorem

3.1 in [4], whereZN is a spline subspace ofZ, PN is the orthogonal projection ofZ ontoZN , and

AN is the approximating operatorAN = PNAPN . Thus, using
�
ZN ; PN ;AN

	
we can generate an

15



approximation to the formulation described by (4.9), which we denote by

(4.10)
_zN (t) = ANzN (t) + PN (f4 (t) ; 0)

zN (0) = PN (�; �) :

As before, the second Fundamental Theorem of Calculus implies that an alternative description of

(4.10) is

zN (t) = PN (�; �) +

Z t

0

�ANzN (�) + PN (f4 (�) ; 0)
	
d� :

Theorem 4.6.Given the systems described in (4.5) and (4.10) with(�; �) = ( (0) ;  ), 2 H1 (�r; 0;R4),

under the conditions of Lemmas 4.1 and 4.2, we havezN (t) ! y (t) = (x (t; ; f4) ; xt ( ; f4)), as

N !1, uniformly int on the finite intervalI.

Proof. The functionf4 is clearly inL2(I) and thus Theorem 2.2 in [1] directly implies our desired

conclusion.

As in [4], we choose hat functions (piece-wise linear splines) as our basis forZN
1 (the subspace of

ZN spanned by the hat functions). Thus, if we partition[�r; 0] by tNj = �j (r=N) ; j = 0; : : : ; N , we

can then define the basiŝ�N =
�
�N (0) ; �N

�
by

�N =
�
eN0 ; e

N
1 ; : : : ; e

N
N

�
 In

whereIn is then� n identity matrix and theeNj ’s are characterized by

eNj
�
tNi
�
= Æij; i; j = 0; : : : ; N :

Therefore, an element inZN
1 can be written as

zN = �̂N�N =
NX
j=0

�
eNj (0) ; eNj

�
aNj ; with aNj 2 R

N :

DenoteAN as the matrix representation ofAN restricted toZN
1 and letwN (t) andFN (t) be defined

such thatzN (t) = �̂NwN (t) andPN (f4 (t) ; 0) = �̂NFN (t) respectively. By construction we have
16



thatAN �̂N = �̂NAN , which implies that solving (4.5) forzN (t) is equivalent to solving

(4.11)
_wN (t) = ANwN (t) + FN (t) t 2 I ;
wN (0) = wN

0

for wN (t), where�̂NwN
0 = PN (�; �).

We remark that if we are able to obtainwN , the product̂�NwN converges uniformly int on I to the

solution of (4.5)

lim
N!1

�̂NwN
�
t; wN

0 ; F
N
�
= (x (t; �;  ; f4) ; xt (�;  ; f4)) :

For the numerical simulation of (4.11), it is necessary to computePN (;  ) for any(;  ) 2 Z and

AN�N for �N 2 R
n . SincePN (;  ) is the orthogonal projection of(;  ) 2 Z ontoZN , PN (;  )

is uniquely determined by the�N 2 R
N such that

D
�̂N�N � (;  ) ; �̂N

E
Z
= 0

or equivalently,

(4.12)
D
�̂N ; �̂N

E
Z
�N =

D
�̂N ; (;  )

E
Z
:

Thus, solving (4.12) for�N yieldsPN (;  ) = �̂N�N for any(;  ) 2 Z and implies thatFN (t) is

uniquely defined by

FN(t) =
�D
�̂N ; �̂N

E
Z

��1 D
�̂N ; (f4(t); 0)

E
Z
:

To calculateAN�N , first consider the action ofAN applied to�̂N�N , an element ofZN . We know

that for any�N 2 R
n

AN �̂N�N = PN
�
A�̂N�N

�
= PN

�
L
��
�N (0)�N

�
; �N�N

�
+ ~f1

�
�N (0)�N

�
+f2

�
�N (��1)�N

�
+ f3

�
�N (��1 � �2)�

N
�
; D
�
�N�N

��

and thatAN �̂N�N = �̂NAN�N . Thus

0 = �̂NAN�N � PNfL ���N (0)�N
�
; �N�N

�
+ ~f1

�
�N (0)�N

�
+ f2

�
�N (��1)�N

�
+f3

�
�N (��1 � �2)�

N
�
); d

d�

�
�N�N

�g
17



and

0 = h �̂N ; �̂NAN�N � fL ���N (0)�N
�
; �N�N

�
+ ~f1

�
�N (0)�N

�
+ f2

�
�N (��1)�N

�
+f3

�
�N (��1 � �2)�

N
�
; d
d�

�
�N�N

�g iZ
which implies that

D
�̂N ; �̂N

E
Z

�
AN�N

�
= h �̂N ; fL ���N (0)�N

�
; �N�N

�
+ ~f1

�
�N (0)�N

�
+ f2

�
�N (��1)�N

�
+f3

�
�N (��1 � �2)�

N
�
;
d

d�

�
�N�N

�g iZ :

Therefore, for any� 2 R
n , the action ofAN on�N is defined by

AN�N =
�D
�̂N ; �̂N

E
Z

��1

h �̂N ; L ���N (0)�N
�
; �N�N

�
+ ~f1

�
�N (0)�N

�
+ f2

�
�N (��1)�N

�
+f3

�
�N (��1 � �2)�

N
�
;
d

d�

�
�N�N

� iZ :

With these characterizations, we can now calculatewN(t) and thuszN (t) (onI), and thus a numerical

approximation to the solution of (4.5). Note that the characterization of the FDE system allows us to

include both discrete and distributed delays in any modeling and simulation investigations.

5. NUMERICAL RESULTS

5.1. Results for the FDE Approach. We carried out numerous simulations and inverse problem calcu-

lations using the methodology outlined above for problems with discrete and distributed delay systems.

The initial conditions for all our simulations were

(V0; A0; C0; T0) = (0; 1:5� 105; 0; 1:35� 106) ;

the parameters are those defined in Tables 1 and 3, and all of the presented plots are from simulations

run withN = 32 basis elements.

5.1.1. Statistical Significance of the Delays.Employing ideas given in the discussions regarding a

statistical testing methodology for model comparisons in inverse problems in [3], we examined the

statistical significance of the presence of both types of delays in fitting the models (3.4) to experimental

data provided by Dr. Michael Emerman. We used the data consisting of the total cellsX from [20]

(sampled at time-pointsti; i = 1; 2; : : : ; 10, denoted by the vector̂y, and depicted in Figure 2.1). We
18



Parameter V alue
c 0:12
nA 0:1194
nC 1:6644� 10�6

 8:7625� 10�4

rv 0:035
ru 0:035
ÆA 0:0775
ÆC 0:0257
Æu 0:0160
Æ 5:4495� 10�13

p 1:3359� 10�6

S 0:0

TABLE 3. in vitro model parameter values

Optimization Variables p� � �1 � �2 J�

q = (p; 0; 0) 4:0115� 10�7 - - 8:6329� 105

q = (p; �1; 0) 1:3696� 10�6 24:278 - 6:1638� 104

q = (p; �1; �2) 1:3321� 10�6 24:234 2:8806 4:2386� 104

TABLE 4. Results from the inverse problem.

then carried out inverse problems for estimating the parametersp, p and�1, andp, �1, and�2, using a

least squares criterion. That is, we first estimatep holding�1 = �2 = 0, then estimatep and�1 with

�2 = 0, and finally estimatedp, �1, and�2 simultaneously. Note that we used delta distributions for

both delays (in the appropriate simulations) in solving the inverse problem, although the methods apply

readily to more general distributions.

We employed a cost function using a residual sum of squares formula

(5.1) J (q) = J (p; �1; �2) =
1

10

vuut 10X
i=1

jŷi � (A (ti; q) + C (ti; q) + T (ti; q))j2

and optimizedJ using the Nelder-Mead nonlinear iterative routine in Matlab (fminsearch). The results

of the inverse problems are summarized in Table 4, with the optimal parameter values denoted byp�,

� �1 , � �2 and the corresponding fit with the valueJ (q�) by J�.

We then investigated the statistical significance by using the test described on page 523 of [3]. The

reader should be aware that the statistics we used here are only asymptotically�2’s as the sample size

becomes infinite. With only the ten data points we have to use here, one can rightfully question the

legitimacy of our use of the tests given in [3]. None the less, we use these tests here to give some
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indications of the relevance of improved fits to data. We first considered a null hypothesis ofno delay

in the acutely infected to viral production step. This generated a test statistic of

UN
10 ((p

�; 0; 0) ; (p�; � �1 ; 0)) = 10
J (4:0115� 10�7; 0; 0)� J(1:3696� 10�6; 24:278; 0)

J(1:3696� 10�6; 24:278; 0)
�= 130:06 :

With this test statistics, we can use a�2(1) test to reject the hypothesis at all (useful) confidence levels.

This suggests that the presence of a delay in the model is statistically significant. That is, the improved

fit to data obtained by including the delay is not simply due to the increased degrees of freedom in the

model. We also calculated the statistic to determine the significance of both delays versus no delay and

found

UN
10 ((p

�; 0; 0) ; (p�; � �1 ; �
�
2 )) = 193:67

and the significance of two delays versus one delay, obtaining

UN
10 ((p

�; � �1 ; 0) ; (p
�; � �1 ; �

�
2 )) = 4:54 :

As expected, the presence of two delays also appears to be statistically significant. However, it is

interesting to note that for a null hypothesis of onlyone delay(i.e.,�2 = 0), the improvement in the fit

to data due to the addition of a second delay to the inverse problem is not significant (i.e., we can only

reject the hypothesis�2 = 0 at 95% or lower confidence levels). This suggests that the modeling of

the delay between infection and production is somewhat more critical than modeling a delay between

acute productivity and chronic infection in developing an accurate mathematical representation.

5.1.2. Comparison to data.In Figure 5.1 we compare experimental data and an AEE based simulation

(generated using parameters from Tables 3 and 4) with two optimal discrete delays of� �1 = 24:23 and

� �2 = 2:88. Clearly, our simulation (with the above parameters) is a very good fit to the experimental

measurements. However, as mentioned before, we should be wary of drawing decisive conclusions

given the sparsity of experimental observations.

5.1.3. Kernel Analysis.Given our limited data and the results from Section 5.1.1, we further examined

the nature of the delay by numerically simulating our system using the method described in Section 4

and the different kernels described in Section 3.1. Specifically, we studied the effect of different�’s,
20
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FIGURE 5.1. Data from [20] and simulation using� �1 = 24:23, � �2 = 2:88, and parame-
ters from Tables 3 and 4.

different�’s, and kernel smoothness upon the system, and only present here some of our findings from

these investigations.

To assess the effect of the mean on the kernelk1 (the kernel from the_V equation), we letk1 = k̂ and

performed simulations for a variety of means, the results of which are depicted in Figure 5.2. For this

simulation, we let the second kernelk2 = k̂, but kept its mean fixed at�2 = �1 � 3 (where�1 is the

mean ofk1). Note that as the mean varies, we observe a dramatic temporal shift in the peaks of various

compartments. The simulations run using the hat kernel~k exhibited virtually identical sensitivity to the

perturbation of�.
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FIGURE 5.2. Simulations of (3.5) usingk1 = k̂(t; �1; 1;�48; 0) andk2(t) = k̂(t; �1 �
3; 1;�48; 0) for several values of�1.

Figure 5.3 depicts simulations in which we vary the width� of a kernel. We let

k1(t) = k̂(t;�26; �;�48; 0)

k2(t) = k̂(t;�29; �;�48; 0)

and simulated (3.5). As the� decreases, the numerical solution calculated using the hat kernel rapidly

approaches the one calculated using the Heaviside distribution. This coincides with the intuitive notion

that as� ! 0, the hat kernel approaches a Dirac delta function. Indeed, from the graphs, it appears that

changing the� has little to no effect upon the simulation. We remark that the simulations computed
22
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FIGURE 5.3. Simulations of (3.5) usingk1 = k̂(t;�26; �;�48; 0) and k2(t) =

k̂(t;�29; �;�48; 0) for several values of�.

using the inverted quadratic kernel with varying� exhibit behavior virtually identical to those using the

hat kernel and are thus not depicted here.

For (�1; �2; �; s1; s2) = (�26;�29; 1;�48; 0), the numerical simulations of (3.5), using the normal-

ized hat kernel and the normalized inverted quadratic kernel are compared in Figure 5.4. If we compare

these behaviors with that of the discrete delay system depicted in Figure 3.1, we observe that kernel

shape does not appear to have a significant effect upon the simulation. Other simulations also confirmed

that the qualitative behavior of solutions does not vary greatly between the discrete delay systems and

systems with the continuous kernels~k, k̂ with mean equal to the discrete delay.

Figure 5.2 depicts simulations of (3.5) withk1(s) = k̂(s;�1; 1;�48; 0) for a variety of means�1,

while Figure 5.3 depicts simulations of the same system withk1(s) = k̂(s;�26; �;�48; 0) and a variety
23
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FIGURE 5.4. Simulations of (3.5) with thêk and~k kernels.

of widths (�). Both of these cases suggest that the dominant parameter is�1. However, it is still

possible thats1 or s2 has a significant influence upon the system, since they determine the kernel

support (at least in the case of~k). It is not useful to study the support independent of� when using

k1(s) = k̂(s; �; �; s1; s2), and thus we only examine the ramifications of varying the support ofk1 = ~k.

Our interests were focused upon parameter ranges in whichk1(�+
�
2
)� k1(s2) andk1(�� �

2
)� k1(s1)

to prevent interference between� and the domain of the kernel support. Over a wide range of values

for s1 ands2 (that satisfied our criteria) there were negligible differences between the simulations, with

the results being almost identical to those in Figure 5.4. Clearly the dominant parameter in~k, from

among�1, �, s1, ands2, is the mean�1.
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6. CONCLUSIONS

We have mathematically modeled a biological system (using coupled functional differential equa-

tions) that arises in the study of HIV infection dynamics and offered a derivation supporting a non-

deterministic mathematical treatment of the biological delays. We converted these equations to an

abstract evolution equation to facilitate analysis and numerical approximation of the system. We used

a �2 statistical test to support our claim as to the significance of the presence of the delays in fitting

experimental data. Additionally, our numerical sensitivity analysis for a distributed delay (i.e., FDE)

approach yielded the information that the approximate system appears to be highly sensitive to the

mean of the delay kernel but not to the width or the smoothness of the kernel.
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APPENDIX A. DERIVATION OF MODEL

Here we present a brief derivation from first principles (with assumptions based on the biology) that

supports the mathematical form in treating the delays as stochastic or random variables.

Let us first consider the delay between initial acute infection and initial chronic infection of a cell.

It is biologically unrealistic to expect an entire population of cells to simultaneously change infection

characteristics��2 (��2 > 0) hours after initial viral infection. Therefore, suppose that the delay between

initial acute infection and chronic infection varies across the cell population (thus mathematically char-

acterizing the intercellular variability) according to a probabilistic distribution�P2 with density�k2. We

denote byC(t; �) the subpopulation consisting of chronically infected cells that either maintained their

acute infection characteristics for� time units or are the progeny of those same cells. In other words,

for some� > 0, there exists a subpopulationC(t; �) of the chronically infected cells which either spent

� hours as acutely infected cells (before converting to chronically infected cells) or are descendants of
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cells that spent exactly� hours as acutely infected cells. Thus, the rate of change in this subpopulation

of cells is governed by

_C (t; �) = (rv � ÆC � ÆX (t))C (t; �) + A (t� �) ;

where

X(t) = A(t) + C(t) + T (t)

and the expected value of the population of chronic cells is given by integrating over the distribution

�P2, over all possible delays, obtaining

(A.1) C (t) = E2[C(t; �)] =
R1
0
C(t; �)�k2(�)d� :

Therefore, the rate of change in the total population of chronic cells is governed by

(A.2)

_C (t) = E2[ _C (t; �)]

= (rv � ÆC � ÆX (t))C (t) + 
R1
0
A (t� �) �k2 (�) d�

C (0) = C0 ;

whereC0 is the initial condition for the total chronically infected cell population.

Next, we consider the delay between viral infection and viral production for the acutely infected cells

A (t). Again, it is unreasonable to expect the entire population of acutely infected cells to simultane-

ously commence viral production��1 (��1 > 0) hours after infection. We suppose that the delay between

infection and production (for acutely infected cellsA(t)) varies across the population with probability

distribution �P1 and corresponding density�k1. We also partition the expected total viral populationV

into those virionsVA produced by acutely infected cells and those virionsVC produced by chronically

infected cells so that

V = VA + VC :

We then denote byVA(t; �) the subpopulation of virus which are produced by an acutely infected cell

� hours after being infected. Thus, the rate of change in this subgroup of virions is governed by

_VA(t; �) = �cVA(t; �) + nAA(t� �)� pVA(t; �)T (t) :
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To obtain the (expected) number of virus at timet that have been produced by acutely infected cells,

we must integrate over the distribution�P1, over all possible delays

VA(t) = E1[VA(t; �)] =
Z 1

0

VA(t; �)�k1(�)d� ;

which yields the governing equation for this larger subpopulation of virions

_VA(t) = E1[ _VA(t; �)]

= �cVA(t) + nA

Z 1

0

A(t� �)�k1(�)d� � pVA(t)T (t) :

To account for the chronically infected cells as a source of virions, we denoteVC as the subpopulation

of virions produced by chronically infected cells. Thus the equation describing the rate of change in

the size of this subpopulation is

_VC(t) = �cVC(t) + nCC(t)� pVC(t)T (t) ;

where the expected valueC of the total population of chronically infected cells is defined in (A.1).

Therefore, the governing equations for the total population of virus are described by

_V (t) = E1[ _VA(t; �) + _VC(t)]

= �c(VA(t) + VC(t)) + nA

Z 1

0

A(t� �)�k1(�)d� + nCC(t)� p(VA(t) + VC(t))T (t)

= �cV (t) + nA

Z 1

0

A(t� �)�k1(�)d� + nCC(t)� pV (t)T (t)

V (0) = V0 ;

whereV0 is the initial condition for the total virions population.
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Moreover, we assume that theA andT subclasses have no subpopulation structures, and are therefore

governed by

_A(t) = (rv � ÆA � ÆX (t))A (t)� 

Z 1

0

A (t� �) �k2 (�) d� + pV (t)T (t)(A.3)

A(0) = A0(A.4)

_T (t) = (ru � Æu � ÆX (t)� pV (t))T (t) + S(A.5)

T (0) = T0 ;(A.6)

with initial conditionsA0 andT0. Note that in (A.3), the rate term with the delay (representing the

delayed conversion ofA toC) is simply the negative of the delay rate term in (A.2).

Finally, we make the change of variableski(�) = �ki(��) so that the densities are now defined on

(�1; 0) instead of(0;1) (we do this to be consistent with the notation of Section 4 which is standard

in the FDE literature), and obtain the system

_V (t) = �cV (t) + nA

Z 0

�1

A (t+ �) k1 (�) d� + nCC (t)� pV (t)T (t)

_A (t) = (rv � ÆA � ÆX (t))A (t)� 

Z 0

�1

A (t+ �) k2 (�) d� + pV (t)T (t)

_C (t) = (rv � ÆC � ÆX (t))C (t) + 

Z 0

�1

A (t + �) k2 (�) d�

_T (t) = (ru � Æu � ÆX (t)� pV (t))T (t) + S ;

which is identical to (3.5).

APPENDIX B. DETAILS OF PROOFS

B.1. Proof of Lemma4.2: Let

M =

2
66666664

�c 0 nC 0

0 rv � ÆA 0 0

0 0 rv � ÆC 0

0 0 0 ru � Æu

3
77777775
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and observe that we have

(B.1)
jF ((�; �) ; �; !)� F ((�;  ) ; �; �)j � jL (�; �)� L (�;  )j+

��� ~f1 (�)� ~f1 (�)
���

+ jf2 (�)� f2 (�)j+ jf3 (!)� f3 (�)j :

The first, third, and forth terms in the sum on the right hand side of (B.1) are easily bounded by

jL (�; �)� L (�;  )j =

����M (� � �) + n1A
�
Æ(1;2)

�
(4;4)

Z 0

�r

(� (�)�  (�)) dP1 (�)

+1
��
Æ(3;2)

�
(4;4)

� �Æ(2;2)�(4;4)
�Z 0

�r

(� (�)�  (�)) dP2 (�)

����
� max fjM j ; jnAj ; 2 jjg (j� � �j+ k��  k) ;

jf2 (�)� f2 (�)j =
���n2A �Æ(1;2)�(4;4) (� � �)

���
� jnAj j� � �j ;

and

jf3 (!)� f3 (�)j =
���2 ��Æ(3;2)�(4;4) � �Æ(2;2)�(4;4)� (! � �)

���
� 2 jj j! � �j :

To bound the second term, note that the multidimensional Mean Value Theorem implies that for�; � 2
R
4

~f1 (�)� ~f1 (�) =

Z 1

0

D
D ~f1 (� + � (� � �)) ; � � �

E
d� ;

where the4� 4 matrix valued function is given by

D ~f1 =
h

@ ~f1
@�1

@ ~f1
@�2

@ ~f1
@�3

@ ~f1
@�4

i
:

Define�
 = fx 2 R
4 : xi � �xi; i = 1; 2; 3; 4g and recall the definition of~f1 in (4.4). Forx 2 �
,D ~f1

is linear and
���D ~f1

��� � K1
L

�
�

�

for some constantK1
L > 0 that depends upon�
. OnR4 n �
, D ~f1 is

constant and hence
���D ~f1

��� � K2
L

�
�

�

for some constantK2
L > 0 that depends upon�
.

29



By the properties of integrals and Cauchy-Schwarz we then know that

��� ~f1 (�)� ~f1 (�)
��� �

Z 1

0

���DD ~f1 (� + � (� � �)) ; � � �
E��� d�

�
Z 1

0

���D ~f1 (� + � (� � �))
��� j� � �j d�

� max
�
K1

L; K
2
L

	 j� � �j :

Combining these results we obtain the global Lipschitz condition (4.6) for

KL = max
�jM j ; jnAj ; 2 jj ; K1

L; K
2
L

	
:

B.2. Proof of Theorem4.5: The general idea of our proof is to show that the successive approxima-

tions defined in (4.8) converge to a unique solution of (4.7).

Let the residual function of two functionsz, w be defined as

(B.2)
e (t; z; w) = jz (t)� w (t)j+ kzt � wtk+ jz (t� �1)� w (t� �1)j

+ jz (t� �1 � �2)� w (t� �1 � �2)j ;

for z; w 2 L2 (�r; tf : R4), t 2 [�r; tf ] and denote

E (t; z) = L (z (t) ; zt) + ~f1 (z (t)) + f2 (z (t� �1)) + f3 (z (t� �1 � �2))

for z 2 L2 (�r; tf ;R4), t 2 [�r; tf ]. Note that bothe andE areL2 functions and as such may not be

defined in a pointwise sense, but will be used in theL2 sense below.

If we consider the residual for the functionsyj+1 andyj, we find that fort 2 I andj > 0

e (t; yj+1; yj) =

����
Z t

0

(E (�; yj)� E (�; yj�1)) d�

����+

Z t+�

0

(E (�; yj)� E (�; yj�1)) d�


+

����
Z t��1

0

(E (�; yj)� E (�; yj�1)) d�

����+
����
Z t��1��2

0

(E (�; yj)� E (�; yj�1)) d�

����
� KL

Z t

0

e (�; yj; yj�1) d� +

KL

Z t+�

0

e (�; yj; yj�1) d�


+KL

Z t��1

0

e (�; yj; yj�1) d� +KL

Z t��1��2

0

e (�; yj; yj�1) d�
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� KL

�
3

Z t

0

e (�; yj; yj�1) d� +


Z t

0

e (�; yj; yj�1) d�


�

� KL

�
3 + max

�
1;
p
r
	� Z t

0

e (�; yj; yj�1) d�

and thus

(B.3) e (t; yj+1; yj) � KR

Z t

0

e (�; yj; yj�1) d� ;

whereKR = 4KLmax f1;prg.
Note that the case forj = 0 (with t 2 I) is special

e (t; y1; y0) = jy1 (t)� y0 (t)j+ k(y1)t � (y0)tk+ jy1 (t� �1)� y0 (t� �1)j

+ jy1 (t� �1 � �2)� y0 (t� �1 � �2)j

=

����
Z t

0

(E (�; y0) + f4 (�)) d�

����+

Z t+�

0

(E (�; y0) + f4 (�)) d�


+

����
Z t��1

0

(E (�; y0) + f4 (�)) d�

����+
����
Z t��1��2

0

(E (�; y0) + f4 (�)) d�

����
�

Z t

0

(KL je (�; y0; 0)j+ jSj) d� +


Z t+�

0

(KL je (�; y0; 0)j+ jSj) d�


+

Z t��1

0

(KL je (�; y0; 0)j+ jSj) d� +

Z t��1��2

0

(KL je (�; y0; 0)j+ jSj) d�

� 3 jSj jtj+ 3KL

Z t

0

je (�; y0; 0)j d� +


Z t+�

0

(KL je (�; y0; 0)j+ jSj) d�


� 3 jSj jtj+ 3KL

 
j� (0)j jtj+ jtj 12

�Z t��1

��1

jy0 (�)j2 d�
� 1

2

+ jtj 12
�Z t��1��2

��1��2

jy0 (�)j2 d�
� 1

2

+

Z t

0

�Z �

��r

jy0 (�)j2 d�
� 1

2

d�

!
+

 Z 0

�r

�Z t+�

0

(KL je (�; y0; 0)j+ jSj) d�
�2

d�

! 1

2

� 3 jSj jtj+ 3KL

 
j� (0)j jtj+ 2 jtj12

�Z t

�r

jy0 (�)j2 d�
� 1

2

+

Z t

0

�Z t

�r

jy0 (�)j2 d�
� 1

2

d�

!

+

Z t

0

(KL je (�; y0; 0)j+ jSj) d�
�Z 0

�r

d�

� 1

2

� 3G (t; �) +
p
rG (t; �)
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where

G (t; �) = fjSj+KL (3 j� (0)j+ k�k)g jtj+KL j� (0)j jtj 32 + 2KL k�k jtj
1

2 :

Thus

e (t; y1; y0) � KRKG

KL

max
n
jtj 12 ; jtj 32

o
for

KG = jSj+KL (4 j� (0)j+ 3 k�k) :

We claim that from (B.3) and thej = 0 case, we have

(B.4) e (t; yn+1; yn) � KRKG

KL

(KR jtj)n
(n)!

max
np

t; jtj 32
o
; t 2 I :

Clearly, this is true forn = 0, and the general case follows easily from induction using (B.3). Using

the estimate (B.4), we can then infer that

1X
j=0

e (t; yj; yj�1) � KRKG

KL

1X
j=0

(KR jtj)(j)
(j)!

max
np

t; jtj 32
o

� KRKG

KL
max

np
t; jtj 32

o
eKRjtj :

Thus, by the comparison test,
P1

j=0 e (t; yj; yj�1) converges uniformly fort 2 I, which proves that

fyj (t)g converges uniformly for allt 2 I. Denotelimj!1 yj (t) asy (t). Since theyj ’s are continuous

and converge uniformly toy, we see thaty is both continuous onI and satisfies (4.5) by taking limits

in (4.8). Note that this also yieldsy absolutely continuous on[0; tf ]

To prove the uniqueness of our solution, suppose we have two distinct solutionsfy; ~yg 2 L2 (�r; tf ;R4)

to (4.7). Using the same arguments as in establishing (B.3), we have

e (t; y; ~y) �
����
Z t

0

(E (�; y)� E (�; ~y)) d�

����+

Z t+�

0

(E (�; y)� E (�; ~y)) d�


+

����
Z t��1

0

(E (�; y)� E (�; ~y)) d�

����+
����
Z t��1��2

0

(E (�; y)� E (�; ~y)) d�

����
� KR

Z t

0

e (�; y; ~y) d� :
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Thus by Gronwall’s inequality we have that

0 � jy (t)� ~y (t)j+ kyt � ~ytk+ jy (t� �1)� ~y (t� �1)j
+ jy (t� �1 � �2)� ~y (t� �1 � �2)j � 0

for t 2 I;

and thusy (t) = ~y (t) for t 2 I and also fort 2 [�r; 0] since they satisfy the same initial condition.

We have therefore now proven that there exists a unique solution (for[�r; tf ]) to (4.7) and thus to

(4.5), which is in fact absolutely continuous on[0; tf ].
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