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Abstract

A key aspect of social interaction is the ability to exhibit and
recognize variations in behavior due to different agective states
and personalities. To enhance their believability and realism,
socially intelligent agent architectures must be capable of
modeling and generating behavior variations due to distinct
affective states and personality traits on the one hand, and to
recognize and adapt to such variations in the human user /
collaborator on the other. In this paper we describe an adaptive
user interface capable of recognizing and adapting to the user’s
affective and belief state (e.g., heightened level of anxiety). The
Affect and Belief Adaptive Interface System (ABMS) 
designed to compensate for performance biases caused by users’
affective states and active beliefs. The performance bias
prediction is based on empirical findings from emotion research,
and knowledge of specific task requirements. The ABMS
architecture implements an adaptive methodology consisting of
four steps: sensing/inferring user affective state and
performance-relevant beliefs; identifying their potential impact
on performance; selecting a compensator)’ strategy; and
implementing this strategy in terms of specific GUI adaptations.
ABAIS provides a generic adaptive framework for exploring a
variety of user affect assessment methods (e.g., knowledge-
based, self-reports, diagnostic tasks, physiological sensing), and
GUI adaptation strategies (e.g., content- and format-based). 
ABAIS prototype was implemented and demonstrated in the
context of an Air Force combat task, using a knowledge-based
approach to assess and adapt to the pilot’s arLxiety level.

Introduction

A key aspect of human-human social interaction is the
ability to exhibit and recognize variations in behavior due
to different affective states and personalities. These
subtle, often non-verbal, behavioral variations
communicate critical information necessary for effective
social interaction and collaboration. To enhance their
believability and realism, socially intelligent agent
architectures must be capable of modeling and generating
behavior variations due to distinct affective states and
personality traits on the one hand, and to recognize and
adapt to such variations in the human user / collaborator
on the other

We have been pursuing these goals along two lines of
research: 1) developing a cognitive architecture capable
of modeling a variety of individual differences (e.g.,
affective states, personality traits, etc.) (Hudlicka, 1998;
Hudlicka & Billingsley, 1999b; Hudlicka & Billingsley,
1999c), and 2) developing an adaptive user interface

capable of recognizing and adapting to the user’s affective
and belief state (e.g., heightened level of anxiety, belief in
imminent threat, etc.) (I-Iudlicka & Billingsley, 1999a).

In this paper we focus on the area of affective
adaptation and describe an Affect and Belief Adaptive
Interface System (ABAIS) designed to compensate for
performance biases caused by users’ affecfive states and
active beliefs. The performance bias prediction is based
on empirical findings from emotion research, and
knowledge of specific task requirements. The ABMS
architecture implements an adaptive methodology
consisting of four steps: sensing/inferring user affective
state and performance-relevant beliefs; identifying their
potential impact on performance; selecting a
compensatory strategy; and implementing this strategy in
terms of specific GUI adaptations. ABMS provides a
generic adaptive framework for exploring a variety of
user assessment methods (e.g., knowledge-based, self-
reports, diagnostic tasks, physiological sensing), and GUI
adaptation strategies (e.g., content- and format-based).
We outline key research questions, the motivating
psychological theory and empirical data, and present
preliminary results from an initial prototype
implementation in the context of an Air Force combat
task. We conclude with a summary and outline of future
research and potential applications for the synergistic
application of the affect-adaptive and affect and
personality modeling methodologies within SIA
architectures.

Key Research Questions and Issues

A number of research and design questions arise in
modeling of, and adaptation to, affect and personality
factors in. These include the following:

What are the most critical affective and personality
factors affecting behavior? What are the effects of
these factors on internal information processing
and how are these effect manifested externally?
How can the influences of these factors be best
represented within agent cognitive architectures?
Which components, and which internal structures
and processes, are necessary to model the key
affective and personality factors? At what level of
resolution must cognitive apparatus be represented
to afford the modeling of these factors?
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¯ How can we predict the effects of these factors on
behavior for a particular individual within a particular
social and task context?

¯ What are the best strategies for adapting to
(compensating for or enhancing) a particular
affective state or personality trait?

Selecting Affeetive States and Personality
Traits

The first step for both the modeling and the adaptation
research goals was to review existing empirical
psychological literature to identify key affective and
personality factors influencing behavior. The affective
states studied most extensively include anxiety, positive
and negative mood, and anger. The effects of these states
on behavior range from influences on distinct information
processes within the cognitive architecture (e.g., attention
and working memory capacity, accuracy, and speed;
memory recall biases), through autonomic nervous system
manifestations (e.g., heart rate, GSR), to visible behavior
(e.g., facial expressions, approach vs. avoidance
tendencies, aggressive behavior, etc.) (LeDoux, 1898;
Williams et al., 1997; Mineka and Sutton, 1992; MacLeod
and Hagan, 1992). A wide variety of personality traits
have been studied, ranging from general, abstract
behavioral tendencies (e.g., "Big 5" (Extraversion,
Emotional Stability, Agreeableness, Openness,
Conscientiousness), and "Giant 3" (Approach behaviors,
Inhibition behaviors, Aggressiveness) personality factors),
through psychodynamic / clinical personality
formulations (e.g., narcissistic, passive-aggressive,
avoidant, etc.), to characteristics relevant for particular
type of interaction (e.g., style of leadership, preferred
style of social interaction, decision making, etc.) (Revelle,
1995). Our initial primary focus in both the modeling and
the adaptation research areas was on anxiety,
aggressiveness, and obsessiveness.

Recognizing and Adapting to Human
Affect and Personality

Methodology

We have developed a methodology designed to
compensate for performance biases caused by users’
affective states and active beliefs: the Affect and Belief
Adaptive Interface System (ABAIS) (Hudlicka 
Billingsley, 1999a). The ABAIS methodology consists of
four steps: 1) sensing/inferring the individual’s affective
state and performance-relevant beliefs (e.g., high level of
anxiety; aircraft is under attack); 2) identifying their
potential impact on performance (e.g., focus on
threatening stimuli, biasing perception towards
identification of ambiguous stimuli as threats); 3)
selecting a compensatory strategy (e.g., redirecting focus
to other salient cues, presentation of additional

information to reduce ambiguity); and 4) implementing
this strategy in terms of specific UI adaptations (e.g.,
highlighting relevant cues or displays); that is, presenting
additional information, or presenting existing information
in a format that facilitates recognition and assimilation,
thereby enhancing situation awareness.

ABAIS Architecture

The ABAIS architecture consists of four modules, each
implementing the corresponding step of the adaptive
methodology described above (see figure 1): User State
Assessment, Impact Prediction, Strategy Selection, and
GUI Adaptation. These four modules are briefly described
below.

Figure 1: ABAIS Architecture Implementing the
Affect-Adaptive Methodology

User State Assessment Module This module receives a
variety of data about the user and the task context, and
from these data identifies the user’s predominant affective
state (e.g., high level of anxiety) and situation-relevant
beliefs (e.g., interpretation of ambiguous radar return as
threat), and their potential influence on task performance
(e.g., firing a missile at ambiguous return). Since 
single reliable method currently exists for affective
assessment, the User Assessment module provides
facilities for the flexible combination of multiple methods
or data from such methods. These include: physiological
assessment (e.g., heart rate); diagnostic tasks; self-reports;
and use of knowledge-based methods to derive likely
affective state based on factors from current task context
(e.g., type, complexity, time of day, length of task),
personality (negative emotionality, aggressiveness,
obsessiveness, etc.), and individual history (past failures
and successes, affective state associated with current task,
etc.)

The user assessment module uses knowledge from each
of these categories of factors to derive the user’s affective
state. The assessment process implements a fuzzy rule-
based approach consisting of four stages. First, a user
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profile is specified in terms of static and dynamic data,
representing task-relevant factors about the user.
Examples of static data are personality traits, individual
history, and training and proficiency. Examples of
dynamic data are physiological data and dynamic task
factors. Second, the data in this profile are matched
against the rules in the user assessment rule-base. Third,
each relevant factor, represented by an instantiated rule,
contributes a numerical weight component to the overall
score of the corresponding affect. Individual factors or
categories of factors may be weighted differently, to
reflect their differential influence on the overall affective
state (e.g., static task factors will typically have a lower
weight than dynamic factors and real-time physiological
signals). Finally, after all relevant rules are instantiated,
the overall anxiety level is computed and the resulting
value is mapped onto a three-valued qualitative variable
indicating a low, medium, or high anxiety level.

For the preliminary ABAIS prototype, we focused on a
knowledge-based assessment approach, applied to
assessment of anxiety levels, to demonstrate the
feasibility of the overall adaptive methodology. The
knowledge-based assessment approach assumes the
existence of multiple types of data (e.g., individual
history, personality, task context, physiological signals),
and from these data derives the likely anxiety level.
Anxiety was selected both because it is the most prevalent
affect during crisis situations, and because its influence on
cognition has been extensively studied and empirical data
exist to support specific impact prediction and adaptation
strategies.

[F (unknown air-to-air radar lock) .,,
AND (repeated no response IFF)
THEN (target is hostile)
AND (aircraft is under attack)

IF (uknown targets closing)
AND (anxiety level high)
THEN (targets = hostile)

IF (target= unknown)
AND (anxiety level = high)
THEN (target= hostile)

IF (unknown type from NCTR)
AND (anxiety level = high)
THEN (target= hostile)

~IIF (air-to-air radar lock on aircraft) 

Figure 2: Examples of Belief Assessment
Rules from ABAIS Rule Base

The pilot’s affective state plays a critical role in his/her
belief and situation assessment. By taking into account
the current affective state, the ABAIS User Assessment
module in effect implicitly models the potential biasing

influences of the different affective states and provides a
structure which allows the explicit representation of the
positive feedback between cognition and affect that is
often seen in crisis situations. In other words, increased
anxiety contributes to a particular situation assessment
(e.g., aircraft is being attacked by hostile aircraft), which
then limits the processing of data that could give rise to
alternative interpretations and further increases the
anxiety level. Examples of rules for belief assessment are
shown in figure 2. These rules map the combinations of
cues representing external events, individual history, and
affective state onto the set of possible situations.

Impact Prediction Module This module receives as
input the identified affective states and associated task-
relevant beliefs, and determines their most likely
influence on task performance. The goal of the impact
prediction module is to predict the influence of a
particular affective state (e.g., high anxiety) or belief state
(e.g., "aircraft under attack", "hostile aircraft
approaching", etc.) on task performance. Impact
prediction process uses rule-based reasoning ~R) and
takes place in two stages. First, the generic effects of the
identified affective state are identified, using a
knowledge-base that encodes empirical evidence about
the influence of specific affective states on cognition and
performance. Next, these generic effects are instantiated
in the context of the current task to identify task-specific
effects, in terms of relevant domain entities and
procedures (e.g., task prioritization, threat assessment).
The knowledge encoded in these rules is derived from a
detailed cognitive affective personality task analysis
(CAPTA), which predicts the effects of different affective
states and personality traits on performance in the current
task context. The CAPTA process is described in detail
in Hudlicka (2000). The separation of the generic and
specific knowledge enhances modularity and simplifies
knowledge-based adjustments.

Strategy Selection Module This module receives as
input the predicted specific effects of the affective and
belief states, and selects a compensatory strategy to
counteract resulting performance biases. Strategy
selection is accomplished by rule-based reasoning, where
the rules map specific performance biases identified by
the Impact Prediction Module (e.g., task neglect, threat-
estimation bias, failure-estimation bias, etc.) onto the
associated compensatory strategies (e.g., present
reminders of neglected tasks, present broader evidence to
counteract threat-estimation bias, present contrary
evidence to counteract failure-driven confirmation bias,
etc.). As was the case with impact prediction, the strategy
selection module relies on a detailed analysis of the task
context via the CAPTA process, which identifies specific
strategies available to counteract the possible biases. This
analysis then allows the construction of the strategy
selection knowledge bases. Table 1 shows examples of
task-specific rules for compensatory strategy selection.
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’Anxiety effects
IF (recent change in radar target status) THEN

(emphasize change in status of return)

IF (attention focus = HUD) AND (incoming radar data)
THEN (redirect focus to radar)

IF (attention focus = radar) AND (Incoming radio call)
THEN (redirect focus to radio)

IF (attention focus = non-radar instruments) AND
(incoming radar data) THEN (redirect focus to radar)

IF (likelihood of task neglect for <instrument> = high) 
(has-critical-info? <instrument>) THEN (emphasize
<instrument> visibility)

IF (target = unknown) AND (target belief = hostile) 
(emphasize unknown status) AND (collect more data)

Aggressiveness effects
IF (likelihood of premature attack = high) THEN

(display all available info about enemy a/c) AND
(enhance display of enemy alc info)

Obsessivness effects
IF (likelihood of delayed attack = high) THEN

(display all available info about enemy a/c) AND
(display likelihood of attack by enemy a/c) AND
(display envelope of vulnerability around own aircraft)

AND (display reminders for attack tasks)

Table 1: Examples of Task-Specific Rules for
Compensatory Strategy Selection

GUI Adaptation Module This module performs the final
step of the adaptive methodology, by implementing the
selected compensatory strategy in terms of specific GUI
modifications. A rule-based approach is used to encode
the knowledge required to map the specific compensatory
strategies onto the necessary GUI / DSS adaptations. The
specific GUI modifications take into consideration
information about the individual pilot preferences for
information presentation, encoded in customized user
preference profiles; for example, highlighting preferences
might include blinking vs, color change vs. size change of
the relevant display or icon.

In general, two broad categories of adaptation are
possible: content-based, which provide additional
itformation, and format-based, which modify the format
of existing information. Content-based adaptation
involves the collection and display of additional data or
knowledge to compensate for a particular performance
bias. For example, providing additional data about an
ambiguous radar signal helps prevent an anxiety-induced
bias to identify ambiguous signals as threatening. Format-
based adaptation involves the presentation of existing
data in an alternative format, to enhance visibility and / or
to draw attention to neglected displays, and, in general, to
facilitate fast detection, recognition, and assimilation of

data, thereby improving situation awareness. Figure 3
illustrates examples of ABAIS GUI adaptation in terms of
specific cockpit display modifications.

HUD display:
directing attention

to radar display
HUD display:

Enhanced
target icon

Radar display:
Enhanced contact

Status info

Figure 3: Examples of Generic Classes of GUI
Adaptations

Results

The ABAIS prototype was implemented and
demonstrated in the context of an Air Force combat
mission, used a knowledge-based approach to assess the
pilot’s anxiety level, and modified selected cockpit
instrument displays in response to detected increases in
anxiety levels.

Several representative pilot profiles were defined,
varying in personality, physiological responsiveness,
training, individual history, and adaptation preferences,
making it more or less likely that the pilot would reach a
specific level of anxiety during the mission.

Once an increased level of anxiety was observed,
ABAIS predicted that the heightened level of anxiety
would cause narrowing of attention, an increased focus on
potentially threatening stimuli, an a perceptual bias to
interpret ambiguous radar signals as threats, thus risking
fratricide. ABAIS therefore suggested a compensatory
strategy aimed at: 1) directing the pilot’s attention to 
cockpit display showing the recent status change; and 2)
enhancing the relevant signals on the radar to improve
detection. Figure 4 illustrates these adaptations.
Specifically, the blinking, enlarged, blue contact icon on
the HUD display indicates a change in status. The
blinking blue "RADAR" string displayed on the HUD,
the pilot’s current focus, directs the pilot to look at the
radar display, which shows an enhanced contact icon
indicating a change in status, with details provided in the
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text box in lower left corner of the display.

Frame 9:<<30 nm
AWACS: Cleared to fire
Wingman: Friendly ID obtained
Lead: °Centering the dot" on contact

Anxiety-level

high

Belief

hostile contacts; under attack

NO ADAPTATION
HUO display: I
Redlrectlrlg
Attention to
r~lat dlspiay I

Enhanced .
Conlaet icons

Radar d~p~ay:
Enhanced cont~t

Status Info

ADAPTATION

Figure 4: Example of Specific Scenario
Adaptation Sequence

Conclusions

We described a research area aimed at producing more
realistic behavior in socially intelligent agents, namely the
recognition of attd adaptation to a human’s affective
state. We developed an adaptive methodology and
demonstrated its effectiveness by implementing a
prototype Affect and Belief Adaptive Interface System
(ABAIS). ABAIS was demonstrated in the context of 
simulated pilot task.

ABAIS assessed the user state using a knowledge-
based approach and information from a variety of sources
(e.g., static task context, dynamic external events
occurring during the scenario, pilot’s individual history,
personality, training and proficiency, and simulated
physiological data), predicted the effects of this state
within the constrained context of the demonstration task,
and suggested and implemented specific GUI adaptation
strategies based on the pilot’s individual information
presentation preferences (e.g., modified an icon or display
to capture attention and enhance visibility). The
preliminary results indicate the general feasibility of the
approach, raise a number of further research questions,
and provide information about the specific requirements
for a successful, operational affective adaptive interface.
Although the initial prototype was developed within a military
domain, we believe that the results are applicable to a broad
variety of non-military application areas, as outlined below.

Requirements for Adaptation A number of
requirements were identified as necessary for affective
adaptive interface system implementation. These are
listed below:
¯ Limiting the number, type, and resolution of affective

states (e.g., distinguishing between high vs. low

anxiety); using multiple, complementary methods
and multiple data sources for affective state
assessment;

¯ Providing individualized user data, including details
of past performance, individual history, personality
traits, and physiological data;

¯ Constraining the overall situation in terms of situation
assessment and behavioral possibilities;

¯ Providing a wide variety of task-specific data in an
electronic format;

¯ Fine-tuning the rule-bases and inferencing to
"personalize" the system to the individual user-task
context; and

¯ Implementing ’benign’ adaptations, that is, GUI /
DSS modifications that at best enhance and at worst
maintain current level of performance (e.g.,
adaptations should never limit access to existing
information).

Key Issues to Address A number of issues must be
addressed to further validate this approach and to provide
robust affect adaptive systems. These include the
following:
¯ Empirical study demonstrating improved human-

machine performance with adaptation
¯ Demonstration of effectiveness of the ABAIS

methodology across multiple task contexts
¯ Implementation, integration, and evaluation of

multiple affect- and belief-assessment methods
¯ Effectiveness of physiological affect assessment.
¯ Implementation of non-intrusive physiological

assessment methods.
¯ Effectiveness of knowledge-elicitation and task

analysis via the Cognitive Affective Personality
Tasks Analysis process as basis for belief assessment
across multiple task contexts.

Feasibility of predicting effects of user state on
performance across multiple task contexts.

Future Work

Possible future work in the broad area of user affect and
modeling is limitless at this point, as the endeavor is in its
infancy. Key questions include issues such as:
¯ What emotions should and can be recognized,

modeled, and adapted to in human-machine
interfaces.

¯ At what level of abstraction should affect and belief
be modeled for different applications.

¯ When should an agent attempt to enhance the user’s
affective state, when should it adapt to the user’s
affective state, and when should it attempt to
counteract it.

Canamero offers an excellent summary of some of the
affect-related issues that must be addressed by the SIA
architecture research community (Canamero, 1998).

Individually, both modeling and recognition of affective
states and personality traits provide a powerful
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enhancement to agent architectures, by enabling socially
intelligent, adaptive behavior. The coordinated
integration of these two enhancements within a single
agent architecture promises even further benefits, by
enhancing the realism and effectiveness of human-
machine interaction across a variety of application areas.
Below we briefly outline applications in three existing
and emerging areas: 1) Edncation, training, and
infotainment and edutalnment industry; 2) Virtual reality
treatment environments for a variety of affective,
cognitive, and personality disabilities and disorders; and
3) Decision-aids in real-time, crisis-prone, high-risk
decision-making environments.

Infotainment and Edutainment Industry Education
and training systems have traditionally focused on
cognitive factors. This is in spite of increasing evidence
and individual styles, personalities, and affective state
during learning greatly influences the training outcome.
This area thus provides multiple opportunities for agents
capable of modeling and adaptation to the trainee’s
current affective state, by changing the training protocol,
altering the mode of information presentation, etc.

Clinical Treatment Settings A key area of applicability
for the technologies described in this paper are clinical
settings for the treatment of a variety of affect- and
personality-induced behavioral problems (e.g., anxiety
disorders, social phobias, specialized group therapies,
depressive disorders, etc.). Some of these disabilities
require lengthy therapeutic interventions where
compliance is often difficult due to the intensity of the
involvement required by professional personnel and the
extensive time required to correct the disorder. Virtual
reality training environments incorporating the agent
architectures described above have the potential to greatly
enhance existing face-to-face treatment modalities.

Decision-Support Systems DSS are increasingly
required in a variety of real-t#ne contexts subject to
’crisis’ situations (e.g., air traffic control, emergency
medical operations, disaster management operations,
firefighting, etc.). The ability of the system to recognize
the user’s increased level of anxiety or specific
personality traits, and adapt the decision aiding and user
interface accordingly, would greatly enhance the
effectiveness of these systems. In addition, virtual reality
training environments designed to identify specific
behaviors or situations subject to negative affective state
and personality influences, would provide training to
develop appropriate compensatory strategies, and
screening environments to identify potential affect-
induced performance biases across a variety of decision-
making contexts. Usability and design evaluation testbed
could be constructed to identify performance variations in
specific situations, and the effectiveness of existing
systems in accommodating these variations.
Collaborative, distributed decision making environments

where multiple individuals must effectively interact,
would benefit from training environments capable of
simulating particular personality types, and their effect on
the team process and outcome.
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