
ARTICLES
https://doi.org/10.1038/s41560-020-00699-0

1Department of Earth System Science, Institute for Global Change Studies, Tsinghua University, Beijing, People’s Republic of China. 2School of Earth 
and Ocean Sciences, Cardiff University, Cardiff, UK. 3School of Public Policy, University of Maryland, College Park, MD, USA. 4Nicholas School of the 
Environment, Duke University, Durham, NC, USA. 5Department of Forecasting, Resource Planning and Development, Salt River Project, Tempe, AZ, USA. 
6These authors contributed equally: Pan He, Jing Liang, Yueming (Lucy) Qiu. ✉e-mail: hepannju@gmail.com; Yqiu16@umd.edu

A
ir pollution has resulted in many types of negative externali-
ties, a situation that calls for policy intervention to address 
the associated damages. Policymakers and research are 

widely concerned with increases in mortality risk, which are direct 
damages induced by pollution, as well as co-damages in terms 
of other welfare losses. These damages are generated via differ-
ent channels including the physical and mental health impact on 
human beings, decreases in labour productivity1,2, the decline in 
subjective well-being3, the harm of cognitive competence4,5, distur-
bances in ecosystem health6, a diminished value of local environ-
mental amenities and properties7, increases in household medical 
expenditure and so on. Accurate assessment of such externalities is 
crucial to estimating the social cost of pollution for the design and 
evaluation of policies such as a Pigouvian tax imposed on polluters 
for such external costs or for pollution control, or a cap-and-trade 
programme that establishes a market issuing allowances to internal-
ize such cost8. While direct pollution damages are often measured 
in existing studies, there are not many discussions in the literature 
about the magnitude of the co-damages. A key challenge to quantify 
these co-damages, however, is to understand the interactions among 
pollution, human behaviours9 and technologies. People can mitigate 
exposure to environmental risks by taking various avoidance behav-
iours, such as adjusting outdoor activities10,11 and purchasing face 
masks and air purification systems in the short term9,12, and migrat-
ing to new living locations in the longer term13. Avoidance behav-
iours alleviate the negative health impact of pollution14 but come at 
a cost, for example, spending less time doing outdoor activities10,15, 
and may lead to further impacts such as increased energy consump-
tion due to a shift from natural to mechanical ventilation16, and 
increased need for heating or air-conditioning or for other activities 
such as watching television17,18 in residential buildings. Commercial 
buildings may also be affected via further complexities if individuals 
choose to work remotely due to air pollution to avoid exposure dur-
ing commuting19. However, commercial buildings might have better 
indoor air quality due to better ventilation20 so that people can stay 

in commercial buildings for longer period of time. These two effects 
can cancel out, and thus we hypothesize that air pollution does not 
have a statistically significant impact on commercial buildings as 
a whole. Such effects and the consequential extra environmental 
damage are, however, hardly addressed explicitly and quantitatively 
in current studies, which leads to biases in damage evaluation. Our 
paper fills in this gap in the literature.

While electricity demand is driven up by pollution-averting 
behaviours, air pollution can also reduce electricity supply. High 
concentrations of particulate matter reduce solar electricity genera-
tion due to the changed solar irradiance. The emission of aerosols 
can attenuate solar radiation by scattering and absorbing sunlight 
before it reaches the solar panel21, and thus reduces photovoltaic 
(PV) performance22,23. Large particles in particulate matter can also 
generate dust on top of solar panels. In areas with severe air pollu-
tion such as China, the potential of solar PV generation decreased 
on average by 11–15% between 1960 and 2015 (ref. 22); the decrease 
of point-of-array irradiance can even reach 35% in the most polluted 
areas23. Such interaction adds another dimension to the complexity 
of assessing pollution externalities. Existing studies take a predomi-
nantly engineering perspective that relies on computer simulations 
to calculate the change in solar irradiance due to air pollution or on 
field experiments to measure the changes in electricity generation of 
a few solar panels in response to air pollution. While providing criti-
cal estimation on the relationship between particulate pollution and 
solar electricity generation in certain refined meteorological and 
geographical conditions, these studies fall short in evaluating how 
much actual solar generation is affected at a large scale. Our paper 
contributes on empirical grounds and serves as a crucial reference 
for policy-making.

As pollution co-damages are closely related to both demand-side 
human behaviours and supply-side solar power generation, the 
distribution of these co-damages raises environmental justice con-
cerns. Lower-income households or minority ethnic groups can be 
more vulnerable to the impact of air pollution. Individuals from 
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these groups usually reside in locations with higher air pollution  
levels24. Moreover, they may live in affordable housing and 
buildings that are old, not well insulated and equipped with 
fewer energy-efficient appliances, all of which leads to higher 
energy-related expenditures25,26. Increased electricity bills due 
to more indoor hours, therefore, translates into a larger propor-
tion of the household income for these groups, compared to their 
higher-income or non-minority counterparts. This constrains 
other essential expenditures such as on medical services by these 
lower-income and minority households, thus leading to further 
adverse health impacts27. Our analyses incorporate the equity 
aspects of pollution co-damages to provide necessary implications 
for policy design towards environmental justice.

This article demonstrates how the interactions among air pollu-
tion, human defensive behaviour and the energy supply system can 
influence the estimates of negative externalities caused by air pol-
lution. Using consumer-level daily and hourly electricity consump-
tion data and solar panel generation records in the city of Phoenix, 
Arizona, during the period 2013–2018, we show how particulate 

air pollution, indicated by concentrations of both PM10 and PM2.5 
(that is, particulate matter 10 micrometres or less in diameter, and 
2.5 micrometres or less, respectively), triggers consumer avoidance 
behaviours as well as lowers the generation of solar energy. Our 
sample covers 4,313 residential buildings and 17,422 commercial 
buildings. A variety of demographic and socio-economic charac-
teristics are associated with the consumer dataset, based on which 
we further explore the heterogeneity of the co-damages associated 
with income and ethnicity. Estimates can be biased by endogene-
ity issues due to reverse causality (that is, air pollution induces 
changes in energy consumption as well as solar electricity genera-
tion, which in turn also affects the air quality) and missing variables 
(for example, unobservable characteristics of the local economy 
and physical environment can affect the air quality and energy con-
sumption simultaneously). To address the endogenous biases, we 
use wind direction as an instrumental variable (IV) for pollution 
concentration. This IV has a direct impact on concentrations of 
pollutants but not on energy consumption, which creates variation 
in air quality that is exogenous to consumption, thus leading to an  

Table 1 | Effect of air pollution on electricity consumption in residential buildings

PM10 PM2.5

(1) (2) (3) (4)

IV, first stage IV, second stage IV, first stage IV, second stage

Wind direction (cosine) 13.740*** 1.852***

(0.016) (0.008)

PM10 concentration 0.020***

(0.004)

PM2.5 concentration 0.145***

(0.032)

Ozone concentration −8.223*** 58.849*** −2.587*** 58.606***

(0.766) (1.643) (0.204) (1.618)

Heating degree days −0.383*** 0.779*** 0.134*** 0.751***

(0.001) (0.012) (0.001) (0.012)

Cooling degree days 0.145*** 1.103*** 0.002*** 1.106***

(0.001) (0.009) (0.000) (0.009)

Precipitation accumulation −3.503*** −0.142** −1.771*** 0.048

(0.067) (0.068) (0.038) (0.086)

Wind speed 1.094*** −0.119*** −1.264*** 0.087**

(0.007) (0.014) (0.003) (0.044)

Relative humidity −0.430*** 0.044*** −0.020*** 0.038***

(0.001) (0.002) (0.000) (0.001)

Daily electricity price (log) −0.507*** −8.003*** 0.631*** −8.078***

(0.119) (0.819) (0.027) (0.820)

Fixed effects

 Consumer Y Y Y Y

 Weekend Y Y Y Y

 Holiday Y Y Y Y

 Month-of-year Y Y Y Y

 Year Y Y Y Y

N 5,287,985 5,287,985 5,274,599 5,274,599

R2 0.507 0.507

F statistics 7.7 × 105 49,475.29

Notes: Standard errors in parentheses are clustered to building unit level. *P < 0.1, **P < 0.05, ***P < 0.01. N denotes the sample size and R2 denotes the goodness-of-fit of the regressions.
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unbiased estimation of the pollutant coefficient. Our main results 
are based on daily average data. We also analyse hourly data to 
examine the intra-day heterogeneity in the impact on electricity 
usage. The study area of our analysis is the fifth-most populated city 
in the United States28 and ranks among the top five most-polluted 
cities in the country29. This suggests that, even though they are based 
on a region of a developed country, our results can provide valu-
able insights and benchmark statistics when compared with stud-
ies in developing countries, with dense populations and low-ranked  
air quality.

Effect of air pollution on the demand sectors
Through an IV fixed-effects panel regression, we regress the indi-
vidual household’s daily electricity consumption on air pollution 
level, while controlling for other confounding variables. Detailed 
modelling can be found in the Methods section. The validity of the 
IV estimation is also supported by the first-stage regression, which 
shows a significant positive correlation between the daily aver-
age cosine of the prevailing hourly wind direction angle and the 
concentration of air pollution, meaning that wind in the upwind 
direction of pollution sources would bring higher particulate con-
centration (columns 1 and 3 in Table 1). The considerable F statis-
tics of far more than ten for testing the statistical significance of 
the excluded instrument indicate a strong IV in both the regres-
sions for PM10 and PM2.5. We find that a higher concentration 
of particulate pollutant results in a statistically significant increase 
in residential electricity consumption. An increase of 1 µg m–3 in 
PM10 concentration raises the daily residential electricity con-
sumption by 0.020 kW h (column 2 in Table 1). Residents are 
more sensitive to a change in PM2.5 concentration, as a 1 µg m–3 
rise in PM2.5 concentration causes an 0.145 kW h (column 4 in 
Table 1) increase in daily electricity consumption. In this way, 
one more standard deviation of PM10 and PM2.5 would increase 
the daily residential electricity consumption by 0.85% and 1.74%, 

respectively, from the mean, based on the descriptive statistics in 
Supplementary Table 1. Such effects are also seasonally heteroge-
neous (Supplementary Table 12) as the increased electricity con-
sumption has a larger magnitude in the peak of summer (July 
and August), while the significance diminishes during the winter 
(November to April).

To validate our hypothesis that the increased electricity consump-
tion is caused by averting behaviours that shift outdoor activities 
indoors, we next examine the pollution–kilowatt-hour relationship 
on an hourly basis. Results using hourly data confirm that air pollu-
tion increases residential electricity consumption and imply a pos-
sible reallocation of time due to air pollution. As shown in Fig. 1, 
residential electricity consumption increases considerably during 
the daytime but decreases slightly during evenings when affected 
by air pollution. While both are statistically significant, the summed 
change (the area above the horizontal line of zero minus the area 
below) still shows an overall increase of daily electricity consump-
tion aligning with the findings based on Table 1. This possibly indi-
cates a change of activities during the day: as air quality deteriorates, 
residents tend to participate in indoor energy-dependent activities 
such as watching television and turning on the heating or cooling 
system. They may also move activities usually conducted in the 
evenings, for example, doing the laundry, ahead to the daytime, so 
electricity consumption during the night-time drops. The drop in 
consumption during the evening might also be due to the effect of 
pre-cooling or pre-heating, from turning on the heating or cooling 
system during the daytime.

To further support our findings, we test whether individuals 
tend to reduce outdoor trips, using a daily county-level dataset of 
mobility nationwide in the United States (details are included in 
the Methods). As shown in Supplementary Table 13, the number 
of trips per person decreases as the concentration of air pollution 
increases, implying that people are staying home for more hours 
due to air pollution.
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Fig. 1 | Change in residential hourly electricity consumption due to one-unit increase in air pollution concentration. The coloured dots show the changes 

in hourly electricity consumption, obtained from panel regression at the hourly level. The coloured vertical lines show the 95% confidence intervals. As the 

information on hourly electricity price is available only for a small part of the residential and commercial samples, we conduct the analysis both with and 

without the regressor of price as a control variable.
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We next discern the effects of air pollution among residen-
tial consumers with different socio-economic characteristics. The 
potential heterogeneous effects can be caused by different aspects 
of environmental injustice. On the one hand, as consumers of dis-
advantaged socio-economic status can be exposed to higher levels 
of pollution8 and can live in houses that are less energy efficient25,26, 
their pollution-induced increase in electricity demand can be larger 
than that of their advantaged counterparts. On the other hand, their 
ability to self-protect against air pollution is likely to be restricted by 
their limited disposable income, or they may be simply less attentive 
to air pollution. If the effect of these constraints dominates their 
behavioural responses to pollution, then we may observe a smaller 
change in electricity demand for disadvantaged households. As a 
result, whether and how the effect of air pollution on electricity con-
sumption differs across socio-economic status becomes an empiri-
cal question. Our summary statistics show that lower-income and 
non-white consumers are associated with higher particulate mat-
ter (PM) concentrations and lower baseline electricity consump-
tion (Supplementary Table 2), implying a possible heterogeneous 
effect. Thus, we test such heterogeneity for different income and 
ethnic groups. Using the available data on household characteris-
tics, the sample is divided into three levels of per capita income: 
low, medium and high (see Methods for details). The sample is also 
divided into four ethnic groups (White, Asian, Hispanic and other) 
to conduct the regression analysis separately.

The results show that lower-income and Hispanic consumers 
have a larger increase in electricity consumption in response to a 
unit increase in PM pollution. The IV estimates in Fig. 2 illustrate 
that the marginal effect of pollution on electricity demand is the 
highest for the low-income group. For ethnic groups, Hispanic con-
sumers increase their electricity consumption more than white con-
sumers. The empirical estimates for heterogeneous groups imply 
that the effect of low energy efficiency and high exposure possibly 
overrides the constraint of disposable income. By contrast, a previ-
ous study found that higher-income consumers need to use more 

energy in response to changing weather conditions in China30. 
Existing studies have found that lower-income consumers tend to 
live in homes that are not energy efficient25,26, which can lead to 
a higher increase in electricity consumption due to air pollution. 
Two studies31,32 find that Hispanic households have higher energy 
use intensity due to residing in less energy-efficient homes. These 
findings of Hispanic households help justify our results because 
when air pollution increases and people need to spend more time 
indoors, inefficient homes (such as Hispanic homes) will increase 
their electricity consumption more compared to an efficient home. 
The medium-income group shows less of an electricity increase 
compared to both the low-income and high-income groups, which 
might result from low-income households having inefficient 
homes25,26 and high-income households needing more energy in 
response to changing weather conditions30. The socio-economic 
heterogeneity embedded in air pollution issues requires more subtle 
investigations and tests given the multiple mechanisms that can bal-
ance the effects of each other. We also reran the model separately 
for each residential building to get the unique estimated impact for 
the individual consumer. The results show similar heterogeneity. As 
shown in Supplementary Fig. 1, air pollution demonstrates a differ-
ent marginal effect for each building, and the summary statistics in 
Supplementary Table 5 show a similar pattern as that observed in 
Fig. 2.

Our results show that contrary to findings in the residential sec-
tor, electricity usage in commercial buildings as a whole sample is 
not significantly affected by air pollution in general, although the 
usage in individual industries shows statistically significant changes. 
The results in Table 2 show that although the IV is still valid and 
strong (the coefficients of Wind cosine are positively significant in 
the first-stage results in columns 1 and 3, and the F statistics are con-
siderable), IV estimates indicate no statistically significant effects 
(columns 2 and 4 in Table 2). In this way, the hypothesis that par-
ticulate pollution has no effect on energy use in commercial build-
ings as a whole cannot be rejected. We then examine if the hourly 
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Fig. 2 | Change in daily residential electricity consumption due to one-unit increase in air pollution concentration. Results are based on IV methods. 

The solid dots represent the values of the coefficients that measure the change in daily electricity consumption in response to a 1 µg m–3 increase in PM 

concentration. The vertical lines represent 95% confidence intervals.
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estimates could imply any indoor–outdoor activity shifts. There is 
not sufficient evidence to show that air pollution affects electricity 
usage in commercial buildings (Fig. 3). Although the results show a 
similar pattern of electricity consumption in commercial buildings 
as in residential buildings, the coefficients of hourly pollution con-
centrations are barely statistically significant.

Such an insignificant effect on commercial buildings overall 
is likely a result of mixed effects by air pollution that cancel each 
other out. On one hand, when estimating the micro-environment 
exposure, incorporating work activities will induce higher expo-
sure to air pollution compared to home-only activities, partially due 
to higher pollution exposure during transit or commuting19. This 
implies that workers have the incentive to stay at home or to work 
from home to avoid a higher average pollution exposure, which low-
ers the energy consumption of the commercial buildings. We fur-
ther test this hypothesis by our analysis of the effect of air pollution  

on personal trips. With a daily county-level dataset of mobility 
nationwide in the United States, we test whether individuals tend 
to reduce outdoor trips (details are included in the Methods). As 
shown in Supplementary Table 13, the number of trips per person 
decreases as the concentration of air pollution increases. The same 
conclusion holds for both work trips (Supplementary Table 14) 
and non-work trips (Supplementary Table 15). On the other hand, 
commercial buildings on average might have a different building 
envelope or better building management system20 that can lead to a 
better indoor environment33 compared to residential buildings, so 
that when ambient air pollution increases, some people might want 
to stay inside commercial buildings for a longer period time, poten-
tially increasing electricity in these buildings. Building occupants 
may also use less natural ventilation in polluted weather, and thus 
can increase the energy consumption of buildings due to increased 
mechanical ventilation16. These effects may cancel out so that we 

Table 2 | Effect of air pollution on electricity consumption in commercial buildings

PM10 PM2.5

(1) (2) (3) (4)

IV, first stage IV, second stage IV, first stage IV, second stage

Wind direction (cosine) 13.749*** 2.149***

(0.008) (0.004)

PM10 concentration −0.007

(0.011)

PM2.5 concentration −0.045

(0.074)

Ozone concentration −9.828*** 9.241** −5.344*** 8.917**

(0.490) (3.598) (0.124) (3.558)

Heating degree days −0.554*** 0.093*** 0.080*** 0.100***

(0.001) (0.018) (0.000) (0.026)

Cooling degree days 0.213*** 0.649*** 0.006*** 0.648***

(0.001) (0.023) (0.000) (0.022)

Precipitation accumulation −3.833*** −0.899*** −1.685*** −0.948***

(0.025) (0.107) (0.013) (0.143)

Wind speed 1.011*** 0.647*** −1.315*** 0.581***

(0.004) (0.038) (0.001) (0.089)

Relative humidity −0.455*** 0.033*** −0.027*** 0.035***

(0.000) (0.003) (0.000) (0.003)

Demand charge (log) 0.470*** 68.257*** 0.095*** 68.404***

(0.117) (22.572) (0.027) (22.614)

Energy charge (log) 0.277*** 15.871*** 0.112*** 15.896***

(0.043) (3.603) (0.007) (3.611)

Fixed effects

 Building Y Y Y Y

 Weekend Y Y Y Y

 Holiday Y Y Y Y

 Month-of-year Y Y Y Y

 Year Y Y Y Y

N 23,561,924 23,561,924 23,527,526 23,527,526

R2 0.011 0.011

F statistics 3.0 × 106 2.3 × 105

Notes: Standard errors in parentheses are clustered to building unit level. *P < 0.1, **P < 0.05, ***P < 0.01. N denotes the sample size and R2 denotes the goodness-of-fit of the regressions. The demand 

charge and energy price are calculated by taking the average of the marginal prices of a price plan in a given month. Thus, the coefficients for the prices measure the differences in electricity consumption of 

consumers across different price plans across different months. Some large electricity-using consumers were on price plans that have lower prices.

NATURE ENERGY | VOL 5 | DECEMBER 2020 | 985–995 | www.nature.com/natureenergy 989

http://www.nature.com/natureenergy


ARTICLES NATURE ENERGY

are not observing a statistically significant effect of air pollution on 
average for all commercial buildings in our sample.

The insignificant effect of air pollution on commercial buildings 
as a whole actually validates our residential electricity consump-
tion result. There could be a concern that our regression model still 
fails to capture some physical relationship between electricity con-
sumption and other unmeasured meteorological variables, which 
correlates with air pollution. Or there could be a concern about 
an incorrectly specified functional form (an incorrect description 
of the relationship between our independent and dependent vari-
ables). As a result, the positive impact of air pollution on residen-
tial electricity consumption could be purely due to these physical 
relationships, and not due to consumer behavioural change. The 
insignificant result in the commercial sector actually implies that 
our regression model can capture those physical relationships well, 
so that our estimated increase in residential electricity consumption 
is indeed due to consumers’ behavioural changes.

Such statistically insignificant results of commercial buildings 
can, however, conceal the sectoral heterogeneity as air pollution can 
substantially affect the commercial sectors that are closely related to 
indoor activities. Due to the nature of different industries, each com-
mercial building serves a specific purpose, with some sectors more 
likely to be affected by air pollution. Sectors such as retail trade, 
recreation and service can have increased electricity consumption 
where more of their customers spend more time inside the build-
ings to avoid being exposed to outdoor pollution. Thus, we separate 
the effect by sector as shown in Fig. 4. With a similar averaged pol-
lution concentration across all sectors (Supplementary Table 4), the 
retail sector responds most intensely to an increase in air pollution 
concentration (0.086 kW h increase in electricity consumption per 
µg m–3 increase of PM10 concentration, and 0.560 kW h increase 
per µg m–3 increase of PM2.5 concentration), followed by the rec-
reation and service sector (0.026 kW h per µg m–3 and 0.167 kW h 
per µg m–3, respectively). By contrast, the other sectors reduce their 
electricity consumption, also as expected (0.028 kW h per µg m–3 
and 0.178 kW h per µg m–3 for PM10 and PM2.5, respectively; both  

significant at a 90% confidence level). As a result, one standard 
deviation increase of PM10 and PM2.5 would lead to a 1.82% and 
3.34% increase, respectively, in the retail trading sector; 1.13% and 
2.00% increase, respectively, in the recreation and service sector; 
and 0.79% and 1.39% reduction, respectively, of electricity con-
sumption in the other sectors. These effects with opposite directions 
in different sectors balance each other out when summed, and thus 
lead to an insignificant change in energy consumption for the whole 
sample. Taken together with our analysis above, these results show 
that individuals are more likely to reduce outdoor trips in general 
and particularly those related to work. However, the final destina-
tions for the remaining trips may shift at least partially from open 
spaces to sheltered areas, and thus lead to more energy consump-
tion in malls, recreation centres and so on. This distributional result 
stresses the importance of looking into sectoral nuance based on 
understandings of how consumer behaviours differ by industry as a 
response to varying air quality.

Effect of air pollution on the supply sector
We then used a similar panel IV regression to regress individual 
consumers’ daily solar electricity generation on air pollution level, 
while controlling for confounding variables (Methods). The IV of 
wind direction again proves powerful in explaining the variation of 
PM10 and PM2.5 with its positive significance in columns 1 and 
3 in both Tables 3 and 4, while the F statistics continue to verify it 
as strong. We find that particulate pollution also reduces the elec-
tricity generation of distributed-solar panels in both residential and 
commercial buildings. IV estimation shows that a 1 µg m–3 increase 
in PM10 concentration significantly reduces the electricity gener-
ated by solar panels by 0.435 kW h in residential buildings (column 
2 in Table 3) and by 0.022 kW h in commercial buildings (column 
2 in Table 4). PM2.5 has an even larger effect—a 1.888 kW h reduc-
tion per µg m–3 increase for residential buildings (column 4 in Table 
3) and 0.093 kW h reduction per µg m–3 increase for commercial 
buildings (column 4 in Table 4). In terms of percentage change, one 
standard deviation increase of PM10 and PM2.5 would result in a 
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Fig. 3 | Change in commercial hourly electricity consumption due to one-unit increase in air pollution. The coloured dots show the changes in hourly 

electricity consumption, obtained from panel regression at the hourly level. The coloured vertical lines show the 95% confidence intervals.

NATURE ENERGY | VOL 5 | DECEMBER 2020 | 985–995 | www.nature.com/natureenergy990

http://www.nature.com/natureenergy


ARTICLESNATURE ENERGY

25.01% and 30.64% reduction, respectively, of solar electricity gen-
eration for residential buildings with solar panels from the mean 
solar electricity generation, and 0.13% and 0.15% reduction, respec-
tively, for commercial buildings. The comparison also indicates that 
commercial buildings are much less affected if considering that the 
power of solar panels is on average larger in commercial buildings, 
referring to the descriptive statistics in Supplementary Tables 1 and 
3. A possible reason is that the solar panels in commercial build-
ings are better maintained, with dust cleaned off them in a timely 
manner.

Discussion
This study explores the co-damage of air quality degradation via 
human defensive behaviour on the demand side and the perfor-
mance of clean energy techniques on the supply side, respectively. 
Our results show that particulate pollution, while exposing individ-
uals to health risks with direct emissions, can further add to their 
loss with regenerative feedback, which boosts energy consumption 
due to longer times spent indoors and the downgraded perfor-
mance of solar panels. While previous studies predominantly focus 
on the positive consequences of the defensive behaviours in alleviat-
ing health impacts10,12, this research shows the possible pathways in 
which air pollution generates extra damage by interacting with such 
defensive behaviours9. Our analysis also shows that residents from 
low-income or Hispanic groups are more heavily affected, high-
lighting the vulnerability of those of specific socio-economic status 
in responding to environmental change and the potential environ-
mental justice issues that should be addressed by policy design24,27.

Several limitations should be noted. First, our analysis addresses 
the situation in the city of Phoenix, Arizona. In spite of its top rank 
for air pollution levels in US cities, the concentration of PM is still 
far less than that in many developing countries such as Mexico 
or China34,35. Meanwhile, response levels can also differ due to 
cultural differences. Therefore, our results should be extrapo-
lated with caution. In addition, our dataset lacks information on  

specific household end-use activities (for example, heating and 
cooling, or air purification). Thus, we are not able to pinpoint 
exactly what appliance or appliances are more intensively used 
against higher particulate concentrations, for further details on the 
mechanisms that we discuss. We leave these for future research that 
draws on high-resolution data in various geographical areas.

Several critical policy implications stem from the findings of 
this research. First, when calculating the marginal damage factors 
from air pollution, policymakers need to explicitly consider the 
co-damages generated from the feedback of consumer behaviours 
and clean technology performance, which is insufficiently discussed 
in the current literature, as well as policy analysis and evaluation. 
Lack of consideration of these pollution co-damages will lead to 
an under-estimation of the welfare gains from pollution control 
policies. Our results also stress the necessity to investigate com-
prehensively the consequences of air quality alerting systems, for 
example, alleviated health risks36, changed automobile traffic flows 
as individuals endeavour to escape from pollution as a response37, 
decreased outdoor recreation10,38 and so on. Second, the fact that air 
pollution disproportionally affects those of low socio-economic sta-
tus threatens energy and environmental justice, and again stresses 
that air pollution control can not only result in health benefits as 
a whole, but also contribute to an equitable distribution of such 
benefit. The disproportional impact also highlights the importance 
of energy policies that can improve the home energy efficiency of 
lower-income and ethnic minority groups to accelerate the achieve-
ment of fairness and equity. Third, our findings provide one more 
justification for the need to clean the electricity grid and improve 
the efficiency of renewable energy generation techniques. In addi-
tion, the expansion of solar power should consider the effect of air 
pollution when setting reasonable development targets. The results 
comparing the impacts on commercial PV units and residential PV 
units suggest that there should be clear messages or incentives to 
communicate the importance of the cleaning and maintenance of 
PV units to residential consumers.
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Methods
Data. �e data were provided by Salt River Project, one of the two largest utility 
companies in Arizona. Hourly electricity consumption in kilowatt-hours was 
available for 4,313 residential units (spanning from May 2013 to April 2017) 
and 17,422 commercial units (spanning from May 2013 to April 2018). For the 
residential units in the sample, a Residential Equipment and Technology Survey 
was also conducted in 2014, which asked about detailed sociodemographic 
information, building characteristics, appliance and other energy technology 
attributes, and energy consumption behaviours. For the commercial units, a 
six-digit code in the North American Industry Classi�cation System is available to 
identify the sector type of the building. We aggregate the electricity consumption 
to the daily level for analysis. �e daily electricity price is constructed by taking the 
average of the hourly prices. For commercial consumers, both the electricity charge 
and demand charge are included as price variables. �e zip code zone of each 
building is also available in the dataset, which enables a spatial match with the air 
quality and meteorological variables.

Salt River Project also has distributed-solar consumers in its service 
territory. These solar panels can be installed on the rooftop of buildings or 
can be ground-mounted. For each distributed-solar consumer, our dataset has 
information on the hourly electricity generated by the consumer’s solar panels, 
along with the installation dates of the solar panels. There are 260 residential 
distributed-solar consumers (6.03% of the residential sample) and 330 commercial 
distributed-solar consumers (1.89% of the commercial sample) in our dataset.

We combine meteorological observations from multiple sources. Records 
of air quality, including daily average concentrations of PM2.5 and PM10, are 
retrieved from pre-generated data files of the United States Environmental 
Protection Agency39. Climate factors including the daily average temperature, total 

precipitation and average wind speed are obtained from Global Surface Summary 
of the Day40. The hourly wind direction data come from the Environmental 
Protection Agency’s pre-generated data files. We obtain the solar irradiance data 
from the National Renewable Energy Laboratory’s National Solar Radiation 
Database41. For missing solar irradiance data for a given location in a given time 
period, we use the simulated solar irradiance by the National Renewable Energy 
Laboratory for a given day in that location in a typical meteorological year.

We adopt an inverse distance weighting interpolation that has commonly been 
used in previous literature42,43 to match the air quality and meteorological records 
with the zip code zone of each building. First, the distance between each air quality 
monitoring station and the geometric centre of the zip code zone is calculated. 
Next, the daily records of all the stations less than 50 km away from the geometric 
centre are averaged together and weighted by their inversed distance to the centre. 
This weighted average is used as the matched air quality record for all the buildings 
within the zip code zone. The climate records are matched in a similar way. The 
inverse distance weighting is conducted in Stata 14.0 using the wtmean command 
with 34 meteorological stations and 67 air pollution monitoring stations. To test 
whether our analysis is sensitive to the radius of the inverse distance weighting 
procedure, we change the caliper to 10 km and 20 km and rerun the analysis, as 
shown in Supplementary Tables 16–19 (for 10 km) and Supplementary Tables 20–
23 (for 20 km). The coefficients change only slightly in magnitude but their signs 
and statistical significance remain, indicating the robustness of our results.

Since datasets addressing individual travelling behaviour are rarely publicly 
available at the localized level for the study area, we resort to the COVID-19 
Impact Analysis Platform by the University of Maryland44,45 for a national-level 
exploration. Established for studies on COVID-19’s impact, this dataset 
includes the daily number of trips per person at the county level starting from 1 

Table 3 | Effect of air pollution on solar energy generation in residential buildings

PM10 PM2.5

(1) (2) (3) (4)

IV, first stage IV, second stage IV, first stage IV, second stage

Wind direction (cosine) 7.622*** 1.751***

(0.129) (0.046)

PM10 concentration −0.435***

(0.027)

PM2.5 concentration −1.888***

(0.125)

Heating degree days −0.608*** −0.142*** 0.048*** 0.214***

(0.010) (0.015) (0.003) (0.016)

Cooling degree days 0.619*** 0.382*** 0.021*** 0.154***

(0.015) (0.024) (0.002) (0.011)

Precipitation accumulation −9.181*** −5.659*** −1.346*** −4.197***

(0.941) (0.668) (0.155) (0.557)

Wind speed 0.551*** −0.450*** −1.243*** −3.038***

(0.053) (0.045) (0.015) (0.175)

Daily electricity price (log) 1.617*** 0.104 1.413*** 2.024**

(0.536) (0.794) (0.117) (0.858)

Surface albedo 777.950*** 447.377*** 60.592*** 223.112***

(13.426) (28.414) (2.118) (18.319)

Fixed effects

 Building Y Y Y Y

 Weekend Y Y Y Y

 Holiday Y Y Y Y

 Month-of-year Y Y Y Y

 Year Y Y Y Y

N 199,613 199,613 198,579 198,579

R2 0.032 0.135

F statistics 3,488.99 1,435.08

Notes: Standard errors in parentheses are clustered to building unit level. *P < 0.1, **P < 0.05, ***P < 0.01. N denotes the sample size and R2 denotes the goodness-of-fit of the regressions.
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January 2020, which is further broken down into work and non-work trips. The 
information on trips comes from mobile device location data. Since the massive 
outbreak of COVID-19 in the United States took place no earlier than March, we 
adopt the records in January and February and match them with the air pollution 
and climate data from the above sources using a similar method.

Empirical strategies. We first estimate a generalized linear squared model on the 
panel dataset of residential and commercial units separately with the equation

Elec Conit ¼ β1Pollutionit þ Xit þ αi þ τy þ δm þWeekendt þHolidayt þ εit

ð1Þ

where i indexes an individual residential or commercial consumer and t indexes 
the day of the sample. Elec_Conit refers to the daily electricity consumption of 
consumer i on day t. Pollutionit is the daily average concentration of either PM10 
or PM2.5. Xit is a vector of control variables, including cooling degree days and 
heating degree days (estimated using daily average temperature), daily total 
precipitation, wind speed and electricity price (average daily electricity price 
for the residential consumers, and demand charge and energy charge for the 
commercial units). We also control for the concentration of ozone as another major 
pollutant that affects air quality and thus the outdoor activities of consumers. 
The variable αi is customer fixed effect, and it controls for the time-invariant 
attributes of the consumer such as square footage and the number of stories as well 
as environmental awareness of building occupants. The time fixed effects τy and 

δm include the year fixed effect and the month-of-year fixed effect. The time fixed 
effects capture the time-varying factors across years and seasons, such as economic 
development and change in local energy policies. Weekend and Holiday are 
dummy variables for holidays and weekends, respectively. The Holiday dummy is 
equal to one if the day belongs to the following US federal holidays: New Year’s Day, 
Martin Luther King Jr Day, Presidents’ Day, Memorial Day, Independence Day, 
Labor Day, Columbus Day, Veterans Day, Thanksgiving and Christmas. The εi,t is 
the error term. Standard errors are clustered at the building level. We are interested 
in β1, which indicates the electricity use increase per µg m–3 increase of particulate 
concentration, ceteris paribus.

We analyse how the impact of air pollution differs by different income groups. 
Using the available data on household characteristics, the sample is divided into 
three levels of per capita income: low, medium and high. The division, provided 
by the Pew Research Center, is based on the minimum household income level of 
different household sizes varying from one to five (US$24,042/34,000/41,641/48,
083/53,759 for middle income, and US$72,126/102,001/124,925/144,251/161,277 
for upper income in 2014 (ref. 46)). Since the household size is recorded as 1.5, 3.5 
and 5 persons, we take an average of the two adjacent minimum household income 
levels for the 1.5- and 3.5-person households.

We test whether and by how much the particulate pollution affects solar energy 
generation with,

Elec Solarit ¼ β1Pollutionit þ Xit þ αi þ τy þ δm þWeekendt þHolidayt þ εit

ð2Þ

Table 4 | Effect of air pollution on solar energy generation in commercial buildings

PM10 PM2.5

(1) (2) (3) (4)

IV, first stage IV, second stage IV, first stage IV, second stage

Wind direction (cosine) 6.390*** 1.551***

(0.014) (0.006)

PM10 concentration −0.022***

(0.005)

PM2.5 concentration −0.093***

(0.020)

Heating degree days −0.422*** −0.028*** 0.287*** 0.008

(0.001) (0.005) (0.001) (0.006)

Cooling degree days 0.149*** 0.021*** −0.022*** 0.015***

(0.001) (0.003) (0.000) (0.003)

Precipitation accumulation −20.052*** −0.737*** −3.273*** −0.590***

(0.115) (0.133) (0.021) (0.104)

Wind speed 0.037*** 0.084*** −1.417*** −0.048**

(0.005) (0.013) (0.001) (0.025)

Demand charge (log) −10.492*** 0.792 −0.414*** 0.991

(0.075) (0.593) (0.009) (0.613)

Energy charge (log) −8.105*** −0.986*** −1.143*** −0.911***

(0.113) (0.260) (0.017) (0.249)

Surface albedo 213.255*** 41.617*** −8.850*** 35.990***

(0.655) (5.044) (0.121) (4.580)

Fixed effects

 Building Y Y Y Y

 Weekend Y Y Y Y

 Holiday Y Y Y Y

 Month-of-year Y Y Y Y

 Year Y Y Y Y

N 22,259,565 22,259,565 22,226,277 22,226,277

R2 0.001 0.001

F statistics 2.1 × 105 73,964.88

Notes: Standard errors in parentheses are clustered to building unit level. *P < 0.1, **P < 0.05, ***P < 0.01. N denotes the sample size and R2 denotes the goodness-of-fit of the regressions.
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where Elec_Solarit refers to the daily electricity generated by solar for consumer i 
on day t, and the other terms are the same as in equation (1). The Xit is modified 
to adapt to factors that can affect the power generation of solar panels, including 
climate factors that can affect the performance of solar power (temperature, 
precipitation, wind speed and surface albedo) and electricity prices, which 
can affect the motivation of consumers to actively maintain solar panels in 
good condition (consumers are encouraged to do so if the price is higher). The 
distributed-solar consumers in our sample were on a net-metering plan under 
which they could sell excessive solar electricity at retail electricity prices.

The naïve general least squares (GLS) estimation (results shown in 
Supplementary Tables 6–9) suffers from endogeneity issues due to reverse 
causality and missing variables47,48. As air pollution changes the behaviour 
patterns and increases the energy consumption of consumers, the latter can 
result in more electricity generation and thus pollution emissions. Meanwhile, 
if consumers spend more time indoors, the demand for vehicle travel may also 
decrease and lead to reduced emissions from transportation48. Omitting such 
pathways would lead to a biased estimation of the effect of air pollution. Besides, 
air quality and individual socio-economic activities can be jointly affected by the 
same factors, such as the local economy and physical environment47. Since all 
such factors cannot be observed in our datasets, these missing variables could bias 
the estimation.

To address these issues, we resort to using wind direction for an IV estimation. 
Its validity has been verified by multiple existing air pollution studies47,49,50. The 
idea is that wind direction affects regional air quality as it transports pollutants 
in specific directions. As the wind direction fluctuates on a daily or even hourly 
basis, it can convert the study area upwind or downwind of the pollution. Other 
than this pathway, wind direction (while controlling for wind speed) can hardly 
affect electricity consumption or solar electricity generation, and thus can meet the 
exclusive restriction for a valid IV.

We use the daily average cosine of the angle between the prevailing wind 
direction and the hourly wind direction as our IV following the previous studies47,51 
with modifications to adapt to our daily-level data. We first plot the distribution of 
the hourly wind direction of all the climate stations to obtain the prevailing wind 
direction, which turns out to be 180°. We then calculate the cosine of the angle 
between each hourly wind direction observation and this prevailing direction, 
and finally obtain the daily average for each climate station, which matches with 
different zip code zones. In this way, we can conduct the first-stage regression 
before running equation (1) or (2) as

Pollutionit ¼ γ1Wind dirit þ Xit þ αi þ τy þ δm þWeekendt þHolidayt þ eit

ð3Þ

where Wind_dirit indicates the daily wind direction variable, eit is the error term 
and other terms are the same as in equations (1) and (2). The coefficient γ1, after 
we run the first-stage model, is statistically significant with an F value larger than 
ten, implying that the IV is relevant and strong. We then use the predicted values of 
pollution from equation (3) in the second-stage model when we run equation (1) 
or (2).

It should be noted that the maximum value of the electricity consumption of 
the commercial buildings in our sample is extraordinarily large (Supplementary 
Table 3). However, there is no way for us to rule out the possibility that this value 
is reasonable given the decent variation of daily electricity consumption in the 
commercial buildings that this value belongs to. Therefore, we keep these potential 
outliers for the main analysis but also rerun the regressions, dropping commercial 
buildings with a maximum daily electricity consumption over 500 kW h and 
1,000 kW h. The results provided in Supplementary Tables 10 and 11 show that our 
key results remain robust after the change. Also, about 10% of the buildings have a 
constant daily electricity consumption of zero in the raw data. We regard them as 
shut-down buildings and remove them from our sample.

We further test how air pollution affects residential and commercial electricity 
consumption at the hourly level. The identification is similar to equation (1) 
but using the matched hourly data of electricity use and air quality (lagged for 
one hour). The electricity consumption and solar electricity generation of one 
particular hour will not influence the air quality of the previous hour, and thus 
there is no reverse causality issue. In addition, such an immediate hourly reaction 
of building energy use will not lead to an immediate change (within the same hour) 
in local PM pollution levels for the following reason. The hourly change in building 
electricity consumption leads to an hourly change in electricity generated at power 
plants. The coal-fired power plants surrounding the Phoenix metropolitan area 
are all located at least 100 miles away. This implies that the transmission of the PM 
pollution from these power plants to Phoenix will take time (considering that the 
average wind speed in Arizona cities is less than 23 miles per hour and the average 
wind speed in our sample is 2.66 m s–1 or 6 miles per hour), and thus will not 
influence the local PM pollution within an hour. The notable hourly variation in 
local PM pollution (such as in morning hours and late afternoon hours) in Arizona 
mostly comes from other sources such as motor vehicles and road dust, instead of 
from power plants, based on the study by Clements et al. (ref. 52). As a result, the 
hourly change in building energy consumption will not alter local PM pollution in 
the Phoenix metropolitan area immediately.

To examine whether individuals stay at home instead of commuting to work on 
polluted days, we conduct a regression analysis on personal trips with,

Tripjt ¼ β1Pollutionjt þ Xjt þ πj þ δm þ dowt þ εjt ð4Þ

where Tripjt indicates the trips per person in county j on day t; πj and dowt denote 
the county and day-of-week fixed effects; and the other terms are similar to those 
in equations (1) and (2) but at the county level. On the basis of regressions using 
the total trips, we further test the effect of pollution concentration on the work and 
non-work trips. Due to a similar source of endogeneity, we are instrumenting the 
pollution using the wind direction with,

Pollutionjt ¼ γ1Wind dirjt þ Xjt þ πj þ δm þ dowt þ ejt ð5Þ

where Wind_dirjt indicates the daily wind direction variable for county j on day t, 
and the other terms are the same as in equation (4). We calculate the daily average 
cosine of the angle between the prevailing wind direction and the hourly wind 
direction as our IV in a similar way to that described above. The prevailing wind 
direction is retrieved from the median of the wind angle of each county during the 
study period.

Data availability
Records of air quality and hourly wind direction were retrieved from pre-generated 
data files of the United States Environmental Protection Agency at https://aqs.
epa.gov/aqsweb/airdata/download_files.html. Climate factors were obtained 
from Global Surface Summary of the Day at ftp://ftp.ncdc.noaa.gov/pub/data/
gsod/. The solar irradiance data from the National Renewable Energy Laboratory’s 
National Solar Radiation Database is at https://maps.nrel.gov/nsrdb-viewer. 
The high-frequency electricity data are from the Salt River Project. As they are 
restricted by a non-disclosure agreement, they are available from the authors upon 
reasonable request and with permission from the SRP. The county-level trip data 
are available upon request from the COVID-19 Impact Analysis Platform of the 
University of Maryland at https://data.covid.umd.edu/about/index.html. Source 
data are provided with this paper.

Code availability
All data and models are processed in Stata 14.0. The figures 
are produced in R studio (based on R 3.6.1). All custom 
code is available on GitHub at https://github.com/hepannju/
Increase-in-domestic-electricity-consumption-from-particulate-air-pollution.
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