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Abstract. Ocean acidity extreme events are short-term peri-

ods of relatively high [H+] concentrations. The uptake of an-

thropogenic CO2 emissions by the ocean is expected to lead

to more frequent and intense ocean acidity extreme events,

not only due to changes in the long-term mean but also due

to changes in short-term variability. Here, we use daily mean

output from a five-member ensemble simulation of a com-

prehensive Earth system model under low- and high-CO2-

emission scenarios to quantify historical and future changes

in ocean acidity extreme events. When defining extremes rel-

ative to a fixed preindustrial baseline, the projected increase

in mean [H+] causes the entire surface ocean to reach a near-

permanent acidity extreme state by 2030 under both the low-

and high-CO2-emission scenarios. When defining extremes

relative to a shifting baseline (i.e., neglecting the changes in

mean [H+]), ocean acidity extremes are also projected to in-

crease because of the simulated increase in [H+] variability;

e.g., the number of days with extremely high surface [H+]

conditions is projected to increase by a factor of 14 by the

end of the 21st century under the high-CO2-emission sce-

nario relative to preindustrial levels. Furthermore, the dura-

tion of individual extreme events is projected to triple, and

the maximal intensity and the volume extent in the upper

200 m are projected to quintuple. Similar changes are pro-

jected in the thermocline. Under the low-emission scenario,

the increases in ocean acidity extreme-event characteristics

are substantially reduced. At the surface, the increases in

[H+] variability are mainly driven by increases in [H+] sea-

sonality, whereas changes in thermocline [H+] variability are

more influenced by interannual variability. Increases in [H+]

variability arise predominantly from increases in the sensi-

tivity of [H+] to variations in its drivers (i.e., carbon, alkalin-

ity, and temperature) due to the increase in oceanic anthro-

pogenic carbon. The projected increase in [H+] variability

and extremes may enhance the risk of detrimental impacts

on marine organisms, especially for those that are adapted to

a more stable environment.

1 Introduction

Since the beginning of the industrial revolution, the ocean

has absorbed about a quarter of the carbon dioxide (CO2) re-

leased by human activities through burning fossil fuel and

altering land use (Friedlingstein et al., 2019). Oceanic up-

take of anthropogenic CO2 slows global warming by re-

ducing atmospheric CO2 but also leads to major changes

in the chemical composition of seawater through acidifica-

tion (Gattuso and Buddemeier, 2000; Caldeira and Wick-

ett, 2003; Orr et al., 2005; Doney et al., 2009). When CO2

dissolves in seawater, it forms carbonic acid that dissoci-

ates into bicarbonate ([HCO−
3 ]), releasing hydrogen ions

([H+]) and thereby reducing pH (pH = −log([H+])). The

rise in [H+] is partially buffered by the conversion of car-

bonate ions ([CO2−
3 ]) to [HCO−

3 ]. The associated decline in

[CO2−
3 ] reduces the calcium carbonate saturation state � =

[Ca2+] [CO2−
3 ]/

(

[Ca2+] [CO2−
3 ]

)

sat
, i.e., the product of cal-

cium and carbonate ion concentrations relative to the product

at saturation. Undersaturated waters with � < 1 are corro-

sive for calcium carbonate minerals. Each type of calcium

carbonate mineral has its individual saturation state � due

to different solubilities, e.g, �C for calcite and �A for arag-
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onite. Over the last four decades the surface ocean pH has

declined by about 0.02 pH units per decade (Bindoff et al.,

2020). Continued CO2 uptake by the ocean will further ex-

acerbate ocean acidification in the near future (Caldeira and

Wickett, 2003; Orr et al., 2005; Bindoff et al., 2020; Terhaar

et al., 2020), with potentially major consequences for marine

life (Doney et al., 2009) and ocean biogeochemical cycling

(Gehlen et al., 2012).

Superimposed onto the long-term decadal- to centennial-

scale ocean acidification trend are short-term extreme events

on daily to monthly timescales during which ocean pH and

� are much lower than usual (Hofmann et al., 2011; Joint

et al., 2011; Hauri et al., 2013). These events can be driven

by different processes, such as ocean mixing, biological pro-

duction and remineralization, mineral dissolution, temper-

ature and air–sea gas exchange variations, or a combina-

tion thereof (Lauvset et al., 2020). In eastern boundary up-

welling systems, for example, short-term upwelling events

and mesoscale processes can lead to low-surface-pH events

and to short-term shoaling of the saturation horizon (i.e., the

depth between the supersaturated upper ocean and the un-

dersaturated deep ocean; Feely et al., 2008; Leinweber and

Gruber, 2013). Ocean pH can also rapidly change as a con-

sequence of microbial activity (Joint et al., 2011). Phyto-

plankton blooms and accompanying respiration drastically

increase the partial pressure of CO2 (pCO2) and reduce pH

in the thermocline (Sarmiento and Gruber, 2006). Such ex-

treme events may have pH levels that are much lower than the

mean pH conditions projected for the near future (Hofmann

et al., 2011).

Most of the scientific literature on ocean acidification has

focused on gradual changes in the mean state in ocean chem-

istry (Orr et al., 2005; Bopp et al., 2013; Frölicher et al.,

2016; Terhaar et al., 2019b). However, to understand the

full consequences of ocean acidification on marine organ-

isms and ecosystem services, it is also necessary to under-

stand how variability and extremes in ocean acidity change

under increasing atmospheric CO2 (Kroeker et al., 2020).

The ability of marine organisms and ecosystems to adapt

to ocean acidification may depend on whether the species

have evolved in a chemically stable or a highly variable

environment (Rivest et al., 2017; Cornwall et al., 2020).

Furthermore, if the frequency and intensity of short-term

extreme events strongly increase, in addition to the long-

term acidification, some organisms may have difficulties in

adapting, especially if key CO2 system variables cross some

critical thresholds, e.g., from calcium carbonate supersat-

uration to undersaturation. Key plankton species such as

coccolithophores (Riebesell et al., 2000), foraminifera, and

pteropods (Bednaršek et al., 2012) were found to be ad-

versely affected by low carbonate ion concentrations. After

only several days of being exposed to waters which are un-

dersaturated with respect to aragonite, some species such as

pteropods already show reduced calcification, growth, and

survival rates (Kroeker et al., 2013; Bednaršek et al., 2014).

Carbonate system variability also plays a role in shaping

the diversity and biomass of benthic communities (Hall-

Spencer et al., 2008; Kroeker et al., 2011). In laboratory ex-

periments in which deep-water corals are exposed to low-

pH waters for a week, some corals exhibit reduced calci-

fication, while recovery may be possible when the low-pH

condition persists for several months, stressing the impor-

tance of high-frequency variability and short-term acidifica-

tion events (Form and Riebesell, 2012). There is also growing

evidence that the organism response to variability in ocean

acidity could change with ocean acidification (Britton et al.,

2016). Therefore, understanding the temporal variability of

ocean carbonate chemistry and how that will change is im-

portant for understanding the impacts of ocean acidification

on marine organisms and ecosystems (Hofmann et al., 2011).

Changes in extremes can arise from changes in the mean,

variability, or shape of the probability distribution (Coles,

2001). There exists no general accepted definition of an ex-

treme event beyond the common understanding that an ex-

treme is rare (Weyer, 2019). As a result, many different ap-

proaches exist to define extreme events (Smith, 2011). If a

relative threshold (e.g., quantile) is used to define an ex-

treme event, it is important to distinguish between extreme

events that are defined with respect to a fixed reference pe-

riod or baseline, or if the reference period or baseline moves

with time. If the baseline is fixed, the changes in the mean

state as well as changes in variability and higher moments

of the distribution contribute to changes in extreme events

(e.g., Fischer and Knutti, 2015; Frölicher et al., 2018; Oliver

et al., 2018). However, if a shifting baseline is used, changes

in the mean state do not contribute to changes in extreme

events (e.g., Stephenson, 2008; Seneviratne et al., 2012;

Zscheischler and Seneviratne, 2017; Cheung and Frölicher,

2020; Vogel et al., 2020). In this case, changes in extremes

arise solely due to changes in variability and higher moments

of the distribution (Oliver et al., 2019). This latter defini-

tion ensures that values are not considered extreme solely

because the baseline changes under climate change (Jacox,

2019; Oliver et al., 2019). Whether extreme events should be

defined with respect to a fixed baseline or with respect to a

shifting baseline depends on the scientific question. For ex-

ample, the shifting-baseline approach may be more appropri-

ate when the ecosystems under consideration are likely able

to adapt to the mean changes but not to changes in variabil-

ity (Seneviratne et al., 2012; Oliver et al., 2019). Here, we

use both approaches, with a special focus on the analysis of

ocean acidity extremes with respect to shifting baselines.

Under continued long-term ocean acidification (i.e.,

changes in the mean), one can expect that extreme events in

[H+] and �, when defined with respect to a fixed reference

period or baseline, will become more frequent and intense

(Hauri et al., 2013). In addition to the changes in the mean,

recent studies suggest that the seasonal cycles in [H+] and

� are also strongly modulated under elevated atmospheric

CO2. Higher background concentrations of dissolved inor-
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ganic carbon and warmer temperatures produce stronger de-

partures from mean state values for a given change in perti-

nent physical or chemical drivers for [H+] and weaker depar-

tures for � (Kwiatkowski and Orr, 2018; Fassbender et al.,

2018). Other studies have also addressed the changes in the

seasonal cycle of pCO2 (Landschützer et al., 2018; Gallego

et al., 2018; McNeil and Sasse, 2016; Rodgers et al., 2008;

Hauck and Völker, 2015). Over the 21st century and under a

high-greenhouse-gas-emission scenario, Earth system model

simulations project that the seasonal amplitude in surface

[H+] will increase by 81 %, whereas the seasonal amplitude

for aragonite saturation state (�A) is projected to decrease

by 9 % globally on average (Kwiatkowski and Orr, 2018).

Recent observation-based estimates as well as theoretical ar-

guments support these projected increases in seasonality for

[H+] and pCO2 (Landschützer et al., 2018; Fassbender et al.,

2018). Thus, when extremes are defined with respect to a

shifting baseline (i.e., mean state changes are neglected), the

frequency and intensity of extreme [H+] events will likely

increase due to increases in variability.

Unlike for marine heatwaves (Frölicher et al., 2018;

Collins et al., 2020) and extreme sea level events (Oppen-

heimer et al., 2020), little is known about the characteris-

tics and changes of extreme ocean acidity events and, if so,

only on seasonal timescales (Kwiatkowski and Orr, 2018). A

global view of how extreme events in ocean chemistry will

unfold in time and space and a mechanistic understanding

of the relevant processes is missing. This knowledge gap is

of particular concern as it is expected that extreme events in

ocean acidity, defined with respect to both a fixed and a shift-

ing baseline, are likely to become more frequent and intense

under increasing atmospheric CO2. Given the potential for

profound impacts on marine ecosystems, quantifying trends

and patterns of extreme events in ocean acidity is a pressing

issue.

In this study, we use daily mean output of a five-member

ensemble simulation under low- and high-CO2-emission sce-

narios of a comprehensive Earth system model to investi-

gate how the occurrence, intensity, duration, and volume of

[H+] and � extreme events change under rising atmospheric

CO2 levels. Extreme events defined with respect to both a

fixed preindustrial and a shifting baseline are assessed, but

the main focus is on extremes with respect to a shifting base-

line and how these are affected by variability changes.

2 Methods

2.1 Model and experimental design

The simulations used in this study were made with the

fully coupled carbon–climate Earth system model devel-

oped at the NOAA Geophysical Fluid Dynamics Laboratory

(GFDL ESM2M) (Dunne et al., 2012, 2013). The GFDL

ESM2M model consists of ocean, atmosphere, sea-ice, and

land modules and includes land and ocean biogeochemistry.

The ocean component is the Modular Ocean Model version

4p1 (MOM4p1), with a nominal 1◦ horizontal resolution in-

creasing to 1/3◦ meridionally at the Equator, with a tripo-

lar grid north of 65◦ N, and with 50 vertical depth levels.

The MOM4p1 model has a free surface, with the surface

level centered around about 5 m depth, and the spacing be-

tween consecutive levels is about 10 m down to a depth of

about 230 m (Griffies, 2009) with increasing spacing below.

The dynamical sea-ice model uses the same tripolar grid as

MOM4p1 (Winton, 2000). The atmospheric model version 2

(AM2) has a horizontal resolution of 2◦ ×2.5◦ with 24 verti-

cal levels (Anderson et al., 2004). The land model version 3

(LM3) simulates the cycling of water, energy, and carbon dy-

namically and uses the same horizontal grid as AM2 (Shevli-

akova et al., 2009).

The ocean biogeochemical and ecological component is

version two of the Tracers of Ocean Phytoplankton with

Allometric Zooplankton (TOPAZv2) module that parame-

terizes the cycling of carbon, nitrogen, phosphorus, sili-

con, iron, oxygen, alkalinity, lithogenic material, and sur-

face sediment calcite (see Supplement in Dunne et al., 2013).

TOPAZv2 includes three explicit phytoplankton groups –

small, large, and diazotrophs – and one implicit zooplank-

ton group. The ocean carbonate chemistry is based on the

OCMIP2 parameterizations (Najjar and Orr, 1998). The dis-

sociation constants for carbonic acid and bicarbonate ions

are from Dickson and Millero (1987), which are based on

Mehrbach et al. (1973), and the carbon dioxide solubility

is calculated according to Weiss (1974). Total alkalinity in

TOPAZv2 includes contributions from phosphoric and silicic

acids and their conjugate bases. TOPAZv2 also simulates di-

urnal variability in ocean physics as well as in phytoplankton

growth. While diurnal variations in open-ocean pH are there-

fore simulated to some extent, we do not expect the model to

fully capture the high diurnal variability in seawater chem-

istry, especially in coastal regions with large biological ac-

tivity (Kwiatkowski et al., 2016; Hofmann et al., 2011), due

to its relatively coarse resolution and simple biogeochemical

model.

We ran a five-member ensemble simulation covering the

historical 1861–2005 period, followed by a high (RCP8.5;

RCP: Representative Concentration Pathway) and a low-

greenhouse-gas-emission scenario (RCP2.6) over the 2006–

2100 period with prescribed atmospheric CO2 concentra-

tions. RCP8.5 is a high-emission scenario without effective

climate policies, leading to continued and sustained growth

in greenhouse gas emissions (Riahi et al., 2011). In the

GFDL ESM2M model, global atmospheric surface temper-

ature in the RCP8.5 ensemble is projected to increase by

3.24 ◦C (ensemble minimum of 3.17 ◦C to ensemble maxi-

mum of 3.28 ◦C) between the preindustrial period and 2081–

2100. The RCP2.6 scenario represents a low-emission, high-

mitigation future (van Vuuren et al., 2011) with a simu-

lated warming in the GFDL ESM2M model of 1.21 (1.18–
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1.26) ◦C. The five ensemble members over the historical pe-

riod were initialized from a multicentury preindustrial con-

trol simulation that was extended with historical land use

over the 1700–1860 period (Sentman et al., 2011). The five

ensemble members were generated by adding different sea

surface temperature (SST) disturbances of the order 10−5 ◦C

to a surface grid cell in the Weddell Sea at 70.5◦ S, 51.5◦ W

on 1 January 1861 (Wittenberg et al., 2014; Palter et al.,

2018). Although the ocean biogeochemistry is not perturbed

directly, [H+] and � differences between the ensemble mem-

bers spread rapidly over the globe. On average, the ensem-

ble members can be regarded as independent climate real-

izations after about 3 years of simulation for surface waters

and after about 8 years at 200 m (Frölicher et al., 2020). Nei-

ther the choice of the perturbation location nor the choice

of the perturbed variable has a discernible effect on the re-

sults presented here (Wittenberg et al., 2014). In addition, an

accompanying 500-year preindustrial control simulation was

performed.

2.2 Analysis

2.2.1 Extreme-event definition and characterization

We analyze daily mean data of [H+] and aragonite saturation

state �A in the upper 200 m of the water column. [H+] is

on the total scale and hence the sum of the concentrations of

free protons and hydrogen sulfate ions. We define an event

as a [H+] extreme event when the daily mean [H+] exceeds

the 99th percentile, i.e., occurring once every 100 d. Simi-

larly, we define a �A extreme event when the daily mean �A

falls below the 1st percentile. The percentiles are calculated

for each grid cell from daily mean data of the 500-year prein-

dustrial control simulation. In contrast to absolute thresholds,

relative thresholds, such as those used here, take into account

regional differences in a variable’s mean state, variance, and

higher moments. Events that are defined based on relative

thresholds have the same probability of occurrence across the

globe in the period in which they are defined (e.g., preindus-

trial period; see also Frölicher et al., 2018).

We assess changes in [H+] and �A extreme events when

they are defined with respect to both a fixed preindustrial

baseline and a shifting baseline. Under the fixed baseline ap-

proach, the secular trends as well as changes in variability

and the higher moments of the distribution impose changes in

extreme events. Under the shifting-baseline approach, which

is the focus of this study, a value is considered extreme when

it is much higher or lower than the baseline that undergoes

changes due to secular trends in the variable. Thus, changes

in the different extreme-event characteristics are only caused

by changes in variability and the higher moments of the dis-

tributions. To define the extreme events with respect to the

shifting baselines, we subtract the secular trends in [H+] and

�A at each grid cell and in each individual ensemble member

prior to the calculation of the different extreme-event charac-

teristics based on the preindustrial percentiles (depicted for

one grid cell in Fig. 1). The secular trend is calculated as the

five-member ensemble mean, which has been additionally

smoothed with a 365 d running mean to keep the seasonal

signal in the data (further information in Appendix A). The

removal of the secular trend ensures that the mean state in

the processed data stays approximately constant while day-

to-day to interannual variability can change over the simula-

tion period (Fig. 1).

We calculate four extreme-event metrics: (a) the yearly ex-

treme days (in days; number of days per year above the 99th

percentile for [H+] and below the 1st percentile for �A),

(b) the annual mean duration (in days; the average number

of days above the 99th percentile for [H+] and below the 1st

percentile for �A of single events within a year), (c) the an-

nual mean maximal intensity (in nmol kg−1 or �A unit; max-

imum [H+] or �A anomalies with respect to the percentile

threshold over the duration of a single extreme event and then

averaged over all events within a year), and (d) the mean vol-

ume covered by individual extreme events in the upper 200 m

(in km3; mean volume of 3D clusters of connected grid cells

that are above the 99th percentile for [H+] or below the 1st

percentile for �A, calculated using the measure.label func-

tion from the scikit-image library for Python for each day;

these daily means are then averaged annually). The yearly

extreme days, duration, and maximal intensity are calculated

for individual grid cells at the surface and at 200 m. While

the truncation of extremes between years alters the results

for duration and maximal intensity, it allows for the calcu-

lation of annual extreme-event characteristics. We focus our

analysis not only on the surface, but also on 200 m to study

changes in extreme events within the seasonal thermocline.

Most organisms susceptible to ocean acidification are found

in the upper 200 m, such as reef-forming corals and calcify-

ing phytoplankton.

2.2.2 Decomposition of [H+] variability into different

variability components

We use three steps to decompose the total temporal variabil-

ity in [H+] into interannual, seasonal, and subannual vari-

ability (Fig. 2). In a first step, we calculate the climatological

seasonal cycle from the daily mean data by averaging each

calendar day over all years in the time period of interest. Sea-

sonal variability is then identified with the time-series vari-

ance of this 365 d long seasonal cycle. The secular trend in

the daily mean data has been removed with the five-member

ensemble mean before doing the analysis. In a second step,

we subtract the seasonal cycle from the data and estimate the

spectral density (Chatfield, 1996) of this residual time series

using the periodogram function from the scipy.signal Python

library. In a third step, we calculate the variance arising from

variations on interannual and subannual timescales from the

spectral density to obtain interannual and subannual variabil-

ity (further information is given in Appendix B). Following

Biogeosciences, 17, 4633–4662, 2020 https://doi.org/10.5194/bg-17-4633-2020



F. A. Burger et al.: Increase in ocean acidity variability and extremes 4637

this methodology, subannual variability comprises all varia-

tions in daily mean data with periodicities of less than a year

that are not part of the seasonal cycle.

2.2.3 Taylor expansion of [H+] and �A variability

changes

To understand the processes behind the simulated changes

in the variabilities of [H+] and �A, we decompose these

changes into contributions from changes in temperature (T ),

salinity (S), total alkalinity (AT), and total dissolved in-

organic carbon (CT). Assuming linearity, the difference of

[H+] from its mean at time step i can be decomposed into

contributions from the drivers by employing a first-order

Taylor expansion,

H+(i) − H
+

≃
∂H+

∂CT

∣

∣

∣

∣

CT,AT,T ,S

(

CT(i) − CT

)

+
∂H+

∂AT

∣

∣

∣

∣

CT,AT,T ,S

(

AT(i) − AT

)

+
∂H+

∂T

∣

∣

∣

∣

CT,AT,T ,S

(

T (i) − T
)

+
∂H+

∂S

∣

∣

∣

∣

CT,AT,T ,S

(

S(i) − S
)

, (1)

and analogously for �A. The partial derivatives are evalu-

ated at T , S, CT, and AT, i.e., the temporal mean values of

the drivers in the period of interest. While it is important to

take into account the climatological total phosphate and to-

tal silicate concentrations for calculating the partial deriva-

tives (Orr and Epitalon, 2015), one introduces only small er-

rors by neglecting variations in phosphate and silicate. The

partial derivatives in Eq. (1) are evaluated using mocsy 2.0

(Orr and Epitalon, 2015).

Using the Taylor decomposition (Eq. 1), one can for ex-

ample express the seasonal variation in [H+] as a func-

tion of the drivers’ seasonal variations (Kwiatkowski and

Orr, 2018). In this study, however, we analyze the time-

series variance of [H+] and �A that also includes variabil-

ity on other timescales (see Sect. 2.2.2) and the drivers of

its changes. From the Taylor approximation (Eq. 1) and the

definition of variance (e.g., Coles, 2001), it follows that the

variance of [H+] can be written as a function of the partial

derivatives with respect to the drivers (sensitivities), the stan-

dard deviations of the drivers, and their pairwise correlation

coefficients:

σ 2
H+ =

(

∂H+

∂CT

)2

σ 2
CT

+

(

∂H+

∂AT

)2

σ 2
AT

+

(

∂H+

∂T

)2

σ 2
T +

(

∂H+

∂S

)2

σ 2
S

+2
∂H+

∂CT

∂H+

∂AT
cov(CT,AT)

+2
∂H+

∂CT

∂H+

∂T
cov(CT,T )

+2
∂H+

∂CT

∂H+

∂S
cov(CT,S)

+2
∂H+

∂AT

∂H+

∂T
cov(AT,T )

+2
∂H+

∂AT

∂H+

∂S
cov(AT,S)

+2
∂H+

∂T

∂H+

∂S
cov(T ,S), (2)

where the pairwise covariances are functions of the stan-

dard deviations and correlation coefficients according to

cov(x,y) = σxσyρx,y , and the partial derivatives are again

evaluated at the temporal mean values T , S, CT, and AT. This

methodology has also been used to propagate uncertainties in

carbonate system calculations (Dickson and Riley, 1978; Orr

et al., 2018) and to identify drivers of potential predictability

in carbonate system variables (Frölicher et al., 2020). Based

on Eq. (2) and the analogous result for �A, a change in vari-

ance of [H+] and �A can be attributed to changes in the sen-

sitivities that arise from changes in the drivers’ mean states,

to changes in the drivers’ standard deviations, and to changes

in the pairwise correlations between the drivers. We do so by

calculating the Taylor series of Eq. (2) (further information

in Appendix C). We then identify the [H+] variance change

from mean changes in the drivers as the sum of all terms

in the expansion that describe the contributions of sensitivity

changes to the overall change in variance (1sσ
2
H+ ). Likewise,

we identify the contribution from standard deviation changes

in the drivers (1σ σ 2
H+ ). We further group terms in the expan-

sion that stem from simultaneous changes in the sensitivities

and standard deviations (1sσ σ 2
H+ ) and the remaining terms

that arise either from correlation changes alone or mixed

contributions from correlation changes and changes in sensi-

tivities and standard deviations (1ρ+σ 2
H+ ). Since these four

components contain all terms in the Taylor series, they ex-

actly reproduce a change in variance represented by Eq. (2),

1σ 2
H+ = 1sσ

2
H+ + 1σ σ 2

H+ + 1sσ σ 2
H+ + 1ρ+σ 2

H+ . (3)

We also assess the contributions to the four components

from CT alone; from CT and AT; and from CT, AT, and T .

The equivalent procedure is also used to decompose variance

change in �A. Further information on the decomposition is

given in Appendix C.
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Figure 1. Simulated daily mean surface [H+] (a) and �A (c) at 40◦N and 30◦W in the North Atlantic for one ensemble member over the

preindustrial period, the 1861–2005 historical period, and the 2006–2100 period under RCP8.5. The same data as in (a) and (c) but with

subtracted ensemble-mean changes with respect to the average of the 500-year preindustrial control simulation is shown in panels (b) and (d).

For [H+], the preindustrial 99th percentile threshold (horizontal blue line in panels a and b) is increasingly exceeded even when subtracting

the ensemble-mean change, because [H+] variability increases. In contrast, a reduction in �A variability leads to a reduced undershooting

of the preindustrial 1st percentile (d).

Figure 2. The three-step decomposition of [H+] variance into interannual, seasonal, and subannual variance, exemplified for a surface grid

cell at 40◦ N and 30◦ W in the North Atlantic in the preindustrial control simulation. In a first step, the climatological seasonal cycle is

determined (over the whole period, only 5 years are depicted here) and its variance is calculated. Note that the seasonal cycle in this grid cell

has two minima and maxima. In a second step, the spectral density of the anomalies with respect to the seasonal cycle is calculated. In a third

step, interannual and subannual variance is estimated from the spectral density.

2.3 Model evaluation

The focus of our analysis is on changes in variability in [H+]

and �A. As observation-based daily mean data of the in-

organic carbon chemistry at the global scale are not avail-

able, we limit the evaluation of the Earth system model sim-

ulation to the representation of the seasonal cycles of [H+]

and �A, and especially on its changes over the 1982–2015

period. We developed an observation-based dataset for sur-

face monthly [H+] and �A using monthly surface salinity,

temperature, pCO2, and AT fields. Salinity and tempera-

ture data are taken from the Hadley Centre EN.4.2.1 anal-

ysis product (Good et al., 2013). AT is then calculated using

the LIARv2 total alkalinity regression from salinity and tem-

perature (Carter et al., 2018). For pCO2, we use the neural-

network-interpolated monthly data from Landschützer et al.

(2016), which is based on SOCATv4 (Bakker et al., 2016).

Although not fully capturing pCO2 variability in regions

Biogeosciences, 17, 4633–4662, 2020 https://doi.org/10.5194/bg-17-4633-2020



F. A. Burger et al.: Increase in ocean acidity variability and extremes 4639

with only few observations (Landschützer et al., 2016), the

pCO2 dataset appears to be generally well suited for ana-

lyzing pCO2 seasonality and changes therein (Landschützer

et al., 2018). An exception is the Southern Ocean, where

data-based pCO2 products are uncertain due to sparse data in

winter (Gray et al., 2018). [H+] and �A are then calculated

from salinity, temperature, AT, and pCO2 using the CO2SYS

carbonate chemistry package (van Heuven et al., 2011). Un-

certainties in the derived seasonal cycles for [H+] and �A

that arise from uncertainties in the observation-based input

variables are not quantified in this study.

In most regions, the GFDL ESM2M model captures the

observation-based mean seasonal cycle in [H+] and �A quite

well, in particular for �A (the mean values of the seasonal

amplitudes in Fig. 3). However, potential biases in the mean

seasonal amplitudes do not directly have an effect on pro-

jected changes in extreme events, as we base the extreme-

event definition on relative thresholds.

We then compare the simulated ensemble-mean trends

in seasonal amplitude with the observation-based estimates

(Fig. 3; Appendix D). Similar to the mean seasonal cycle

results, the GFDL ESM2M model captures the observed

trends in the seasonal [H+] and �A amplitudes for differ-

ent latitudinal bands over the 1982–2015 period relatively

well. The ensemble-mean trends in the simulated seasonal

[H+] amplitudes are positive for all latitude bands (Fig. 3,

Table 1), consistent with the observation-based estimates.

While the estimates for the simulated trends are signifi-

cantly larger than zero for all latitude bands, this is not

the case for the observation-based trends in the equatorial

region (10◦ S–10◦ N) and the northern low latitudes (10–

40◦ N) (Table 1). The simulated [H+] seasonality trends are

significantly smaller (with 90 % confidence level) than es-

timated from observations in the northern high (40–80◦ N;

orange thick lines in Fig. 3a, b) and southern low latitudes

(40–10◦ S; blue thick lines in Fig. 3a, b), where the trends

from the model ensemble are 0.031 ± 0.012 nmol kg−1 per

decade and 0.035 ± 0.003 nmol kg−1 per decade, compared

to the observation-based trends of 0.106 ± 0.040 nmol kg−1

per decade and 0.055 ± 0.014 nmol kg−1 per decade, respec-

tively. The simulated ensemble-mean trends for the remain-

ing latitude bands are not significantly different from the

observation-based trend estimates.

For the seasonal amplitude of �A, we find a significant

negative trend in the observation-based data in the northern

low latitudes and significant negative trends in the simula-

tions in the northern and southern high latitudes (Table 1).

The negative trends in seasonal amplitude in the simula-

tions are significantly different from the observation-based

trends in the northern high latitudes (−0.015 ± 0.004 vs.

0.002 ± 0.009 �A units per decade) and in the southern high

latitudes (−0.012 ± 0.002 vs. 0.000 ± 0.005 �A units per

decade).

In summary, taking into account previous evaluations of

the mean states of [H+] and �A and the underlying drivers in

the GFDL-ESM2M model (Bopp et al., 2013; Kwiatkowski

and Orr, 2018), the model performs well against a number

of key seasonal performance metrics. However, the model

slightly underestimates past increases in seasonal amplitude

of [H+], especially in the northern and southern high lati-

tudes. In contrast to the observation-based data, the model

also projects negative trends in the �A seasonal ampli-

tude there. Nevertheless, the observation-based trends in the

northern and especially southern high latitudes are uncertain

because wintertime data are sparse there. Even though we

lack the daily mean observation-based data to undertake a

full assessment, it appears that the GFDL ESM2M model is

adequate to assess changes in open-ocean variability of [H+]

and �A and to assess changes in extreme events that arise

thereof.

3 Results

We first briefly discuss the simulated changes in [H+] and

�A extreme events when these events are defined with re-

spect to a fixed preindustrial baseline period (Sect. 3.1). In

Sect. 3.2 and 3.3, these results are contrasted with changes

in extremes that are defined with respect to a shifting base-

line, i.e., where the secular trends do not alter extreme events.

In Sect. 3.4, variability changes are decomposed into sub-

annual, seasonal, and interannual variability contributions.

The processes leading to variability changes are analyzed in

Sect. 3.5.

3.1 Global changes in extremes defined relative to a

fixed preindustrial baseline

When using the fixed preindustrial 99th and 1st percentiles

to define extreme events in [H+] and �A, respectively, large

increases in the number of days with [H+] and �A extremes

are projected over the 1861–2100 period in both low- and

high-CO2-emission scenarios (Figs. 4 and A1). Over the his-

torical period, the GFDL ESM2M model projects an increase

in yearly extreme days for surface [H+] from 3.65 d per year

during the preindustrial period to 299 d per year in 1986–

2005. By year 2030 and under both CO2 emission scenar-

ios, the surface ocean is projected to experience a “near-

permanent acidity extreme state”; i.e., [H+] is above the

preindustrial 99th percentile more than 360 d pear year. Like-

wise, the average duration of events saturates near 365 d,

and the intensity of events increases strongly, mainly reflect-

ing the large increase in mean [H+] (Fig. A1). A similar

but slightly delayed evolution in the number, maximal inten-

sity, and duration of [H+] extremes is simulated at 200 m

(Fig. A1).

Large increases in yearly extreme days are also projected

for �A when using a fixed preindustrial 1st percentile as a

baseline (Fig. 4b). Similar to [H+], the entire surface ocean

is projected to approach a permanent �A extreme state dur-
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Figure 3. Seasonal amplitude of [H+] (calculated as yearly maximum minus the yearly minimum after subtracting a cubic spline from the

data) over the period 1982–2015 averaged over five different latitude bands for the observation-based estimate (a) and the GFDL ESM2M

model historical (1982–2005) and RCP8.5 (2006–2015) ensemble simulations (b), along with the same for data-based �A (c) and simulated

�A (d). Linear trends in all panels are overlaid as thick lines. The linear trend of the simulated changes is calculated as the mean of the five

individual ensemble trends.

Table 1. Linear trends in seasonal amplitude of [H+] (in nmol kg−1 per decade) and �A (in 10−3 per decade) for five latitude bands over

the period 1982–2015. Results are shown for the observation-based data (Obs.) and the five-member ensemble mean of the ESM2M model

simulations (ESM2M) following the RCP8.5 scenario over 2006–2015. The range (±) denotes the 90 % confidence interval.

Latitude Obs. [H+] ESM2M [H+] Obs. �A ESM2M �A

40–80◦ N 0.106 ± 0.040 0.031 ± 0.012 1.9 ± 8.7 −15.1 ± 3.8

10–40◦ N 0.034 ± 0.034 0.047 ± 0.005 −6.7 ± 5.6 −1.8 ± 2.0

10◦ S–10◦ N 0.001 ± 0.016 0.006 ± 0.005 −2.8 ± 10.7 −0.5 ± 5.3

40–10◦ S 0.055 ± 0.014 0.035 ± 0.003 −2.4 ± 5.1 −1.2 ± 1.2

75–40◦ S 0.037 ± 0.028 0.009 ± 0.004 0.1 ± 4.8 −12.2 ± 1.7

ing the 21st century under the RCP8.5 scenario. A near-

permanent extreme state is projected by year 2062. In con-

trast to [H+], a permanent �A extreme state of the global

ocean is avoided under the RCP2.6 scenario.

3.2 Global changes in extremes defined relative to a

shifting baseline

Next, we investigate changes in [H+] and �A extremes when

the extreme events are defined with respect to a shifting

(time-moving) baseline; i.e., changes in extremes arise only

from changes in variability and higher moments of the distri-

butions. The GFDL ESM2M model projects large increases

in the number, intensity, duration, and volume of [H+] ex-

treme events over the 1861–2100 period (Fig. 5). Over the

historical period (from the preindustrial period to 1986–

2005), the model projects that the number of surface [H+]

extreme days increases from 3.65 d per year to 10.0 d per year

(Fig. 5a, ensemble ranges are given in Table 2). The maximal

intensity is projected to increase from 0.08 to 0.12 nmol kg−1

(Fig. 5c, Table 2) and the duration from 11 to 15 d (Fig. 5e).

Compared to preindustrial conditions, these changes corre-

spond to a 173 % increase in the number of days per year, a

44 % increase in the maximal intensity, and a 45 % increase

in the duration of [H+] extreme events. The volume of indi-

vidual events is projected to increase by 20 % over the histor-

ical period, from a typical volume of 2.7×103 km3, which is
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Figure 4. Simulated globally averaged yearly extreme days defined with respect to a fixed baseline for [H+] using the preindustrial 99th

percentile (a) and for �A using the preindustrial 1st percentile (b). Shown are changes at the surface over the 1881–2100 period following

historical (black lines) and future scenarios, RCP8.5 (red) and RCP2.6 (blue). The thick lines display the five-member ensemble means, and

the shaded areas represent the maximum and minimum ranges of the individual ensemble members.

about 0.004 % of the total ocean volume in the upper 200 m

(Fig. 5g), to 3.2 × 103 km3.

Over the 21st century, extreme events in ocean acidity,

defined with respect to a shifting baseline, are projected to

further increase in frequency, intensity, duration, and vol-

ume (Fig. 5). By 2081–2100 under the RCP8.5 scenario,

the number of [H+] extreme days per year at the surface

is projected to increase to 50 d (corresponding to a 1273 %

increase relative to the preindustrial period). The maximal

intensity is projected to increase to 0.38 nmol kg−1 (371 %

increase), the duration to 32 d (199 % increase), and the vol-

ume to 13.9 × 103 km3 (414 % increase).

At 200 m, the [H+] extreme events in preindustrial condi-

tions are in general more intense (0.17 nmol kg−1; Fig. 5d)

and longer lasting (38 d; Fig. 5f) than at the surface. The

stronger extreme events are caused by the overall larger

variability at 200 m than at the surface in the preindus-

trial period. The longer duration is connected to the more

pronounced contribution from interannual variability (see

Sect. 3.4). However, projected relative changes over the his-

torical period and the 21st century are smaller at 200 m than

at the surface and with larger year-to-year variations across

the ensembles. Under recent past conditions (1986–2005),

the number of extreme days per year at 200 m is 4.3 d per year

(corresponding to an 18 % increase since the preindustrial pe-

riod), the maximal intensity 0.20 nmol kg−1 (18 % increase),

and the duration 46 d (21 % increase). By the end of the 21st

century under the RCP8.5 scenario, the number of [H+] ex-

treme days per year is projected to increase to 32 d per year,

the maximal intensity to 0.34 nmol kg−1, and the duration to

99 d. Notably, extreme events in [H+] are projected to be-

come slightly less intense at 200 m than at the surface (0.34

vs. 0.38 nmol kg−1) by the end of the century under RCP8.5,

even though they were more intense in preindustrial times

at depth. In contrast, surface [H+] extreme events remain

shorter in duration at the end of the century than at 200 m.

Under the RCP2.6 scenario, the magnitude of changes in

the different [H+] extreme-event characteristics by the end of

the century is substantially smaller than in the RCP8.5 sce-

nario. This difference is especially pronounced at the surface

(blue lines in Fig. 5). There, the number of extreme days per

year, maximal intensity, and duration under the RCP2.6 are

projected to be 46 % (44–47), 43 % (43–44), and 75 % (73–

77) of that under the RCP8.5 scenario. At depth, the differ-

ences between the RCP2.6 and RCP8.5 scenario are less pro-

nounced and only emerge in the second half of the 21st cen-

tury. As opposed to the surface, the number of [H+] extreme

days per year and the maximal intensity at 200 m as well as

the volume of events are projected to increase significantly

even after the atmospheric CO2 concentration stabilizes in

RCP2.6 around year 2050. This delayed response in the sub-

surface is due to the relatively slow surface-to-subsurface

transport of carbon. However, this is not the case for the du-

ration, which slightly decreases in the second half of the 21st

century at depth (Fig. 5f). This decrease in duration mainly

occurs in the subtropics, where events generally last longer

(Fig. A3b). It is connected to an increase in the contribution

from high-frequency variability to total variability in those

regions over that period.

In contrast to [H+] extreme events, the number of yearly

extreme days in �A is projected to decrease over the histori-

cal period and during the 21st century under both the RCP8.5

and RCP2.6 scenarios (Fig. 6a–b, Appendix Table A1) when

the extreme events are defined with respect to a shifting base-

line. The number of surface �A extreme days per year by

the end of this century is projected to be 63 % smaller under

RCP8.5 and 39 % smaller under RCP2.6 compared to prein-

dustrial conditions (ensemble ranges are given in Table A1).

Projected changes at depth are less pronounced than at the

surface, again with larger decreases under RCP8.5 than under

RCP2.6. Despite this decline in extreme events when defined

with respect to a shifting baseline, the long-term decline in

the mean state of �A still leads to more frequent occurrence

of extreme low �A events when defined with respect to a

fixed baseline (see Sect. 3.1).
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Figure 5. Simulated changes in globally averaged [H+] extreme-event characteristics over the 1881–2100 period following historical (black

lines) and future RCP8.5 (red) and RCP2.6 (blue) scenarios. The extreme events are defined with respect to a shifting baseline. Yearly

extreme days, maximal intensity, and duration are shown for the surface (a, c, e) and for 200 m (b, d, f). Volume is shown in (g). The thick

lines display the five-member ensemble means, and the shaded areas represent the maximum and minimum ranges of the individual ensemble

members.

Table 2. Simulated global ensemble-mean [H+] extreme-event characteristics, when extremes are defined with respect to a shifting baseline.

Values in brackets denote ensemble minima and maxima.

PI 1986–2005 2081–2100 RCP2.6 2081–2100 RCP8.5

Yearly extreme days surface (days per year) 3.65 10.0 (9.5–10.4) 22.9 (21.9–23.5) 50.1 (50.0–50.3)

200 m (days per year) 3.65 4.3 (3.7–5.1) 19.9 (17.0–22.5) 32.1 (30.9–34.8)

Duration surface (days) 10.6 15.4 (15.0–15.7) 23.8 (23.4–24.1) 31.8 (31.2–32.1)

200 m (days) 38.0 46.0 (42.8–50.0) 62.9 (60.5–66.1) 98.7 (95.1–102.0)

Maximal intensity surface (nmol k−1) 0.08 0.12 (0.11–0.12) 0.17 (0.16–0.17) 0.38 (0.37–0.39)

200 m (nmol kg−1) 0.17 0.20 (0.19–0.21) 0.28 (0.25–0.30) 0.34 (0.33–0.34)

Volume (×103 km3) 2.7 3.2 (3.1–3.5) 7.7 (6.9–8.5) 13.9 (13.8–14.1)
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Figure 6. Simulated changes in the yearly number of �A extreme days. The extreme events are defined with respect to a shifting baseline.

Panels (a) and (b) show the globally averaged simulated yearly extreme days in �A from 1881 to 2100 following historical (black lines) and

future RCP2.6 (blue) and RCP8.5 (red) scenarios at the surface (a) and 200 m (b). The thick lines display the five-member ensemble means,

and the shaded areas represent the maximum and minimum range of the individual ensemble members. Panels (c) and (d) show the simulated

regional changes in yearly extreme days in �A from the preindustrial period to 2081–2100 under the RCP8.5 scenario at the surface (c) and

at 200 m (d). Shown are changes averaged over all five ensemble members. The black lines highlight the pattern structure and gray colors

represent regions where no ensemble member simulates extremes during 2081–2100.

3.3 Regional changes in extremes defined relative to a

shifting baseline

Surface [H+] extremes that are defined with respect to a shift-

ing baseline are projected to become more frequent in 87 %

of the surface ocean area by the end of the 21st century un-

der the RCP8.5 scenario. However, the projected changes in

these ocean acidity extremes are not uniform over the globe

(Fig. 7; Appendix Fig. A3). The largest increases in the num-

ber of [H+] extreme days per year are projected in the Arc-

tic Ocean (up to +120 d per year), in the subtropical gyres

(up to +60 d per year), and in parts of the Southern Ocean

and near Antarctica. There are also some regions includ-

ing the eastern equatorial Pacific and parts of the Southern

Ocean where the number of yearly extreme days in surface

[H+] is projected to decrease. These are in general also the

regions where the seasonality in [H+] is projected to de-

crease (see Sect. 3.4 below). The largest absolute changes

in intensity of surface [H+] extremes (Fig. 7c) are projected

for the subtropics, especially in the Northern Hemisphere.

For example, events become up to 1 nmol kg−1 more intense

in the subtropical North Pacific and Atlantic, corresponding

roughly to a 10-fold increase in intensity with respect to the

preindustrial period. The largest relative increases in inten-

sity are projected for the Arctic Ocean, the North Atlantic,

and around Antarctica, where more-than-10-fold increases

with respect to the preindustrial period are projected. Re-

gions with large increases in the number of yearly extreme

days tend to also show large increases in the duration of ex-

treme events (Fig. 7e). The Arctic Ocean is an exception. Al-

though the number of yearly extreme days increases strongly,

the increase in duration is not as pronounced. This discrep-

ancy is because extremes are already long lasting but rare at

preindustrial times (Fig. A3). So even though extreme events

are projected to occur each year by the end of the century

under RCP8.5, the increase in duration is relatively small.

At 200 m, the projected pattern of changes in yearly ex-

treme days generally resembles that at the surface (Fig. 7b).

The largest increases in yearly extreme days are projected for

parts of the subtropics, the Southern Ocean, and the Arctic

Ocean. In contrast to the surface, [H+] extremes at 200 m are

projected to become less frequent in the equatorial Atlantic,

the northern Indian Ocean, the North Pacific, and in large

parts of the Southern Ocean. The regions indicating a decline

in [H+] extremes at depth include also some of the eastern

boundary current systems, such as the Humboldt, California,

and Benguela Current systems. In most of these regions, ex-

treme events are projected to disappear in the RCP8.5 sce-

nario by the end of this century (gray regions in Fig. 7b). The

largest increases in subsurface event intensity are projected

in the subtropics (Fig. 7d), whereas the duration of [H+] ex-

tremes is projected to increase strongly in many regions of

the mid-to-high latitudes of both hemispheres (Fig. 7f). The
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projected increases in duration at 200 m are much larger than

at the surface.

The increase in the number of extreme days per year, the

maximal intensity, and the duration is smaller under RCP2.6

compared to RCP8.5 for most of the ocean (Fig. A2). The

largest increases in occurrence of extremes under RCP2.6 are

simulated for the Arctic Ocean, similar to under RCP8.5, and

for parts of the Southern Ocean. The regions in the Southern

Ocean where the occurrence of extreme events in [H+] is

projected to decrease largely overlap with those for RCP8.5,

at the surface and at depth. On the other hand, unlike un-

der RCP8.5, a decrease in extreme-event occurrence is only

projected for a small fraction of the tropical oceans under

RCP2.6.

While the decline in mean �A generally leads to lower

values in �A and thus extreme events are becoming more

frequent when defined with respect to a fixed preindustrial

baseline (Sect. 3.1), extreme events in �A are projected to

become less frequent throughout most of the ocean when

defined with respect to a shifting baseline (89 % of surface

area under RCP8.5 at the end of the 21st century; Fig. 6c). In

many regions, extreme events in �A are projected to disap-

pear by 2081–2100 under the RCP8.5 scenario (gray regions

in Fig. 6c) when defined with respect to a shifting baseline.

However, the number of yearly extreme days in �A is pro-

jected to increase by 10 or more in the subtropical gyres,

especially in the western parts of the subtropical gyres. At

200 m, no extreme events are projected for most of the ocean

during 2081–2100 under RCP8.5 (Fig. 6d).

3.4 Decomposition of temporal variability in [H+]

The changes in [H+] extreme events defined with respect to

a shifting baseline mainly result from changes in [H+] vari-

ability. These variability changes may arise from changes

in interannual variability, seasonal variability, and subannual

variability. Thus, we decomposed the total variability into

these three components (see Sect. 2.2.2). For the preindus-

trial period, the model simulates generally larger [H+] vari-

ance at depth than at the surface (0.42 vs. 0.15 nmol2 kg−2,

not shown). Seasonality has the largest contribution at the

surface (81 % of total variance). At 200 m, interannual vari-

ability has the largest contribution (63 %), and also subannual

variability is more important compared to the surface (15 %

vs. 8 %).

Over the 1861–2100 period under the historical-RCP8.5

forcing, changes in seasonality clearly dominate the overall

change in variability at the surface with 87 % contribution

to the overall variance change in the global mean (Fig. 8b,

d). Changes in interannual variability (3 % contribution to

overall variance change; Fig. 8a, d) and subannual variability

(10 %; Fig. 8c, d) play a minor role. The largest increases in

variability for all three variability types are projected for the

northern high latitudes. Around Antarctica and the southern

end of South America, large increases in seasonal variabil-

ity are projected (Fig. 8b). In the tropical Pacific and parts

of the Southern Ocean, decreases in interannual and seasonal

variability are projected (Fig. 8a, b).

In contrast to the surface, changes in interannual and to

a lesser extent subannual variability at 200 m are also im-

portant for explaining the overall changes in [H+] variability

(Fig. 8e, g, h). Changes in interannual variability contribute

most to overall variance change at the global scale (with

42 % contribution). Seasonal variability changes are almost

equally important (37 %), and changes in subannual variabil-

ity also contribute substantially to changes in total variabil-

ity (20 %). The patterns of variability changes are very sim-

ilar across the three temporal components of variability. The

largest increases in [H+] variability are simulated north and

south of the Equator. These regions tend to be already more

variable during the preindustrial period (see Fig. A3a). How-

ever, the model also projects an increase in variability for

regions that are less variable during the preindustrial period,

such as northern high latitudes. All three temporal compo-

nents of variability are projected to decrease in the tropics

and parts of the Southern Ocean. The variability decrease in

those regions is most pronounced for interannual variability

(Fig. 8e).

3.5 Drivers of [H+] and �A variability changes

In this section, we investigate the changes in the drivers that

cause the variability changes in [H+] and �A. Drivers are

carbon (CT), alkalinity (AT), temperature, and salinity. To

do so, we attribute changes in [H+] and �A variability to

four factors (see Sect. 2.2.3 for further details): (i) changes

in the mean states of the drivers that control the sensitivi-

ties (1sσ
2
H+ ), (ii) changes in the variabilities of the drivers

(1σ σ 2
H+ ), (iii) simultaneous changes in the mean states and

variabilities of the drivers (1sσ σ 2
H+ ; this contribution arises

because both mean states and variabilities change and can-

not be attributed to either (i) or (ii) alone), and (iv) changes

in the correlations between the drivers, also including mixed

contributions from correlation changes together with mean

state and variability changes (1ρ+σ 2
H+ ). In other words, (iv)

describes the change in variability that arises because the cor-

relations between the drivers also change, and not only their

mean states and variabilities.

The drivers’ mean changes between the preindustrial

period and 2081–2100 under RCP8.5 cause a strong in-

crease in surface [H+] variability, which is most pronounced

in the high latitudes (1sσ
2
H+ ; red line in Fig. 9a, black

dashed line in Fig. 9b). On a global average, these variance

changes due to the mean changes in the drivers (1sσ
2
H+ =

1.3 nmol2 kg−2) are much larger than the total simulated

variance change in [H+] (1σ 2
H+ = 0.5 nmol2 kg−2, dashed

gray or solid black line in Fig. 9a). In general, an increase in

mean CT, temperature, and salinity would lead to an increase

in 1sσ
2
H+ , whereas an increase in mean AT would lead to a
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Figure 7. Simulated regional changes in [H+] extreme-event characteristics from the preindustrial period to the 2081–2100 period under the

RCP8.5 scenario at the surface and at depth for the yearly extreme days (a, b), the maximal intensity of events (c, d), and the duration of

events (e, f). The extreme events are defined with respect to a shifting baseline. Shown are changes averaged over all five ensemble members.

Gray colors represent areas where no extremes occur during 2081–2100, and the black lines highlight pattern structures.

Figure 8. Contribution to projected changes in [H+] variance from interannual variability (a, e), seasonal variability (b, f), and subannual

variability (c, g) between the preindustrial period and the 2081–2100 period under the RCP8.5 forcing at the surface (a–d) and at 200 m (e–h).

Shown are the ensemble-mean changes. The black lines highlight the pattern structure. Zonal mean contributions are shown for the surface

(d) and for 200 m (h). The sum of the three components (black lines) accurately reproduces the simulated variance change (gray dashed

lines).

decrease. The GFDL ESM2M model projects an increase in

mean CT over the entire surface ocean (Fig. A5a) due to the

uptake of anthropogenic CO2 from the atmosphere and there-

fore an increase in 1sσ
2
H+ (light blue line in Fig. 9b). In the

high latitudes, a relatively small increase in mean CT leads to

a large increase in 1sσ
2
H+ , because [H+] is more sensitive to

changes in CT due to the low buffer capacity there. Decreases

in mean AT further contribute to the increase in 1sσ
2
H+ in the

high latitudes (green line in Fig. 9b). In the low-to-mid lat-

itudes and in particular in the Atlantic Ocean, mean surface
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Figure 9. Decomposition of surface [H+] variability changes into different drivers (CT, AT, temperature, and salinity). Shown are changes

from the preindustrial period to 2081–2100 following the RCP8.5 scenario. The simulated change in [H+] variance (1σ 2
H+ ) is decomposed

into the contribution from changes in the sensitivities that arise from changes in the drivers’ mean values (1sσ
2
H+ ), the contribution from

changes in the drivers’ standard deviations (1σ σ 2
H+ ), the contribution from simultaneous changes in the sensitivities and the drivers’ standard

deviations (1sσ σ 2
H+ ), and the contribution from correlation changes alone together with simultaneous changes in correlations and sensitiv-

ities and standard deviations (1ρ+σ 2
H+ ) (a). The small mismatch between the sum of the components (black line) and simulated variance

change (gray dashed line) arises because the decomposition is based on Eq. (2), which is an approximation to simulated [H+] variance. The

contributions to these components from changes in CT alone (light blue lines); from changes in CT and AT (green lines); and from CT, AT,

and temperature (gold lines) are shown in panels (b)–(e). The dashed black lines in panels (b)–(e) show the total components that contain

contributions from all four drivers.

AT is projected to increase (Fig. A5) and therefore dampens

the overall increase in 1sσ
2
H+ (green line in Fig. 9b). The

changes in AT are largely due to changes in freshwater cy-

cling that also manifest in salinity changes (Fig. A5, Carter

et al., 2016). Increases in temperature additionally increase

1sσ
2
H+ , mainly in the northern mid-to-high latitudes (gold

line in Fig. 9b), but the overall impact of mean changes in

temperature, and especially salinity, is small.

Why is the increase in 1σ 2
H+ (gray dashed or black

solid line in Fig. 9a) smaller than the increase from the

mean changes (i.e., 1sσ
2
H+ ; red line in Fig. 9a)? In the

high latitudes, the projected change in the variability of the

drivers (Fig. A6) contributes negatively to the [H+] variabil-

ity change and counteracts to some degree the increase in

1sσ
2
H+ . These variability changes alone have a small im-

print on 1σ σ 2
H+ (blue line in Fig. 9a; black dashed line in

Fig. 9c), but the variability changes dampen the increases

from the mean changes (1sσ σ 2
H+ , magenta line in Fig. 9a,

black dashed line in Fig. 9d). The latter contribution is large

in the high latitudes, where mean changes alone would lead

to a strong increase. In the high latitudes, decreases in CT

variability (Fig. A6a) together with increases in mean CT

(Fig. A5a) can explain much of the negative contribution

from 1sσ σ 2
H+ (light blue line in Fig. 9d). In the northern high

latitudes, mean and variability changes in AT are also impor-

tant for 1sσ σ 2
H+ (green line in Fig. 9d). The additional con-

tribution from changes in the correlations between the drivers

(1ρ+σ 2
H+ ; cyan line in Fig. 9a) also tends to contribute neg-

atively to [H+] variability changes, especially in the North

Atlantic, and changes in correlations with temperature play

an important role (gold line in Fig. 9e). In summary, the in-

crease in [H+] variability at the surface is mainly caused by

increases in mean CT attenuated by decreases in CT variabil-

ity in the high latitudes. Mean changes in AT reinforce the

increase in [H+] variability in the northern high latitudes but

dampen the increase in the low latitudes.

At 200 m, the projected increase in 1σ 2
H+ (gray dashed or

black solid line in Fig. 10a) is also a result of the large in-

crease due to the mean changes in the drivers (1sσ
2
H+ ; red

line in Fig. 10a; dashed black line in Fig. 10b) and the de-

crease due to the interplay between mean changes and de-

creases in the variability (1sσ σ 2
H+ ; magenta line in Fig. 10a,

black dashed line in Fig. 10d). Similar to the surface, the

changes in mean and variability of CT are the most impor-

tant drivers of changes (light blue lines in Fig. 10b, d). In-

creases in mean AT partially compensate for the increase

in [H+] variability due to the increase in mean CT (green

lines in Fig. 10b, d). Changes in [H+] variability due to

changes in temperature and salinity are small. In contrast

to the surface, the individual compensating contributions to
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[H+] variability change from mean changes and simultane-

ous mean and variability changes in the drivers, in particu-

lar those in CT, are much larger at 200 m. The global aver-

age variance change due to the mean changes in the drivers

(1sσ
2
H+ = 3.7 nmol2 kg−2) is much larger than the overall

simulated variance change (1σ 2
H+ = 0.1 nmol2 kg−2). The

contribution from changes in the correlations between the

drivers is overall small (cyan line in Fig. 10a) and stems

mainly from changes in the correlation between CT and AT

(Fig. 10e). Taken together, the increase in [H+] variability at

200 m mainly arises from the balance between increases in

mean CT and decreases in CT variability. Increases in mean

AT dampen these changes.

Unlike for [H+], both mean changes (1sσ
2
�; red lines in

Fig. 11) and variability changes in the drivers (1σ σ 2
�: blue

lines in Fig. 11) lead to a decrease in �A variability (1σ 2
�;

black dashed lines in Fig. 11). At 200 m, variability changes

are even the dominant driver for reductions in �A variability.

Simultaneous changes in means and variabilities (1sσ σ 2
�;

purple lines in Fig. 11) contribute positively and dampen

the reduction in �A variability from mean and variability

changes alone. Mean and variability changes in CT are the

main drivers for changes in �A variability as indicated by the

tight relation between the dashed and solid red, blue, and pur-

ple lines in Fig. 11, in particular at 200 m. An exception is the

northern high latitudes, where AT changes also play a sub-

stantial role at the surface (not shown). Correlation changes

in the drivers (1ρ+σ 2
�; cyan lines in Fig. 11) are of secondary

importance and have the largest imprint in the northern mid-

to-high latitudes at the surface.

4 Discussion and conclusions

We provide a first quantification of the historical and future

changes in extreme events in ocean acidity by analyzing daily

mean three-dimensional output from a five-member ensem-

ble simulation of a comprehensive Earth system model. In

our analysis, we focus on changes in high-[H+] and low-

�A extreme events that are defined with respect to a shift-

ing baseline, where changes in extremes arise from changes

in daily to interannual variability. Secular trends in the mean

state were removed from the model output before analyzing

extremes under this approach. We show that such extreme

events in [H+] are projected to become more frequent, longer

lasting, more intense, and spatially more extensive under in-

creasing atmospheric CO2 concentration, both at the surface

and also within the thermocline. Under RCP2.6, the increase

in these extreme-event characteristics is substantially smaller

than under RCP8.5. The increase in [H+] variability is a con-

sequence of increased sensitivity of [H+] to variations in its

drivers. It is mainly driven by the projected increase in mean

CT and additionally altered by changes in CT variability and

AT mean and variability as well as changes in the correla-

tions between the drivers. In contrast to [H+], variability of

�A is projected to decline in the future. Therefore, extreme

events in �A are projected to become less frequent in the

future when defined with respect to a shifting baseline. The

reason for the decline in variability is that �A, unlike [H+],

becomes less sensitive to variations in the drivers with the

mean increase in CT. Furthermore, the projected reductions

in the drivers’ variabilities, mainly in CT, further reduce �A

variability.

The analysis of extreme events defined with respect to

fixed preindustrial percentiles reveals that the secular trends

in [H+] and �A are so large that they lead to year-round or

almost-year-round extreme events in the upper 200 m over

the entire globe by the end of the 21st century, even under the

low-emission scenario RCP2.6. Extreme events are no longer

temporally and spatially bounded events that arise due to the

chaotic nature of the climate system but describe a perma-

nent new state. Under the fixed baseline approach, the rela-

tive contribution of changes in variability or higher moments

of the distribution to the changes in the number of extremes

is small. For example, the number of yearly extreme days for

surface [H+] over the 1986–2005 period under the shifting-

baseline approach is only 3.8 % of that when defining the

extreme events with respect to a fixed preindustrial baseline.

This fraction differs regionally, reaching more than 10 % in

the North Pacific, the North Atlantic, and the Arctic Ocean.

However, we recall here that the changes in the number of

[H+] extremes when defined with respect to a shifting base-

line are large. These changes in variability may need to be

taken into account when assessing the impacts of ocean acid-

ity changes on marine organisms, especially when organisms

are likely to adapt to the long-term mean changes but not to

changes in variability.

We use the 99th percentile of the distribution from a prein-

dustrial simulation for the definition of the extreme [H+]

events (i.e., a one-in-a-hundred-days event at preindustrial

levels), but the results may depend on the choice of this

threshold. We tested the sensitivity of our results under the

shifting-baseline approach by using also the 99.99th per-

centile threshold (i.e., a one-day-in-27.4-years event at prein-

dustrial levels). The relative increase in the numbers of ex-

treme [H+] days per year is larger for these rare extremes

(Fig. 12). For example, nearly every second day with [H+]

exceeding the 99th percentile (red solid lines in Fig. 12) is

also a day with [H+] exceeding the 99.99th percentile (red

dotted lines in Fig. 12) by the end of the 21st century under

RCP8.5, both at the surface and at depth. As a result of this

large relative increase in rare extremes, the model projects

as many days with [H+] exceeding the 99.99th percentile

by the end of the century under RCP8.5 (red dotted lines in

Fig. 12) as it projects days exceeding the 99th percentile un-

der RCP2.6 (blue solid lines in Fig. 12).

The projected increase in [H+] variability and decrease

in �A variability also alters the occurrence of extreme

events based on absolute thresholds. An often used thresh-

old is �A = 1, below which seawater is corrosive with re-
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Figure 10. Decomposition of [H+] variability changes at 200 m into different drivers (CT, AT, temperature, and salinity). Shown are changes

from the preindustrial period to 2081–2100 following the RCP8.5 scenario. The simulated change in [H+] variance (1σ 2
H+ ) is decomposed

into the contribution from changes in the sensitivities that arise from changes in the drivers’ mean values (1sσ
2
H+ ), the contribution from

changes in the drivers’ standard deviations (1σ σ 2
H+ ), the contribution from simultaneous changes in the sensitivities and the drivers’ standard

deviations (1sσ σ 2
H+ ), and the contribution from correlation changes alone together with simultaneous changes in correlations and sensitivi-

ties and standard deviations (1ρ+σ 2
H+ ) (a). The contributions to these components from changes in CT alone (light blue lines); from changes

in CT and AT (green lines); and from CT, AT, and temperature (gold lines) are shown in panels (b)–(e). The dashed black lines in panels

(b)–(e) show the total components that contain contributions from all four drivers.

Figure 11. Decomposition of �A variability changes into different drivers. The simulated zonal mean contribution to variance changes in �A

(black dashed lines, 1σ 2
�) from the preindustrial period to 2081–2100 (RCP8.5) at the surface (a) and at 200 m (b). Shown is the contribution

from sensitivity changes (due to mean changes in the drivers) (red lines, 1sσ
2
�), standard deviation changes in the drivers (blue lines, 1σ σ 2

�),

simultaneous changes in sensitivities and standard deviations (purple lines, 1sσ σ 2
�), and all contributions that involve changes in the drivers’

correlations (cyan lines, 1ρ+σ 2
�). Furthermore, contributions from mean changes, standard deviation changes, and simultaneous mean and

standard deviation changes in CT alone are shown (dashed red, blue, and purple lines, respectively).

spect to the calcium carbonate mineral aragonite (Morse and

Mackenzie, 1990). We assess the influence of the general de-

cline in �A variability at the time where a grid cell falls be-

low �A = 1 for the first time. To do so, we compare these

times within the historical and RCP8.5 ensemble to those

for the hypothetical case where �A variability stays at the

preindustrial level but mean �A undergoes the ensemble-

mean evolution. We find that the decline in �A variability,

which is observed in the historical and RCP8.5 ensemble,

leads to an average delay of the first occurrence of undersat-

uration by about 11 years at the surface and about 16 years at

200 m. At the surface, these delays of undersaturation occur

throughout the high latitudes (Fig. 13a). At depth, the delays

are most pronounced in the tropics (Fig. 13b), but delays also

occur in the high latitudes. Assuming unchanged seasonality,

McNeil and Matear (2008) found that seasonal aragonite un-

dersaturation of surface waters in the Southern Ocean may

occur 30 years earlier than annual mean aragonite undersat-
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Figure 12. Globally averaged number of yearly extreme days for [H+] over the historical (black lines), RCP2.6 (blue), and RCP8.5 (red)

simulations for the preindustrial 99th (solid lines) and 99.99th percentile (dotted lines) at the surface (a) and 200 m (b). The extreme events

are defined with respect to shifting baselines.

uration. However, our simulation shows that the reduction in

�A variability delays the onset of undersaturation by about

10 to 15 years in the Southern Ocean relative to a hypotheti-

cal simulation where variability does not change. Therefore,

changes in variability need to be taken into account when

projecting the onset of seasonal undersaturation, especially

in the high latitudes and in the thermocline of the tropics.

Previous studies have shown that the seasonal cycle of sur-

face ocean pCO2 will be strongly amplified under increasing

atmospheric CO2 (Gallego et al., 2018; Landschützer et al.,

2018; McNeil and Sasse, 2016) and that a similar amplifi-

cation is expected for surface [H+] (Kwiatkowski and Orr,

2018). Here we show that the changes in the seasonal cy-

cle of [H+] translate into large increases in short-term ex-

treme acidity events at the surface as well as at 200 m, when

these events are defined with respect to a shifting baseline.

In addition to earlier studies, we also show that changes in

subannual variability, which are only partially resolved by

monthly mean data, contribute to changes in extreme events

in [H+] under increasing atmospheric CO2. Furthermore, we

show that the average duration of extreme events at the sur-

face and in recent past conditions (1986–2005) is about 15 d.

To resolve such events that last for days to weeks, it is nec-

essary to use daily mean output. Currently, ocean carbon-

ate system variables from models that participate in the sixth

phase of the Coupled Model Intercomparison Project are rou-

tinely stored with a monthly frequency on the Earth system

grid (Jones et al., 2016). We therefore recommend storing

and using high-frequency output to study extreme events in

the ocean carbonate systems.

Even though we consider our results as robust, a num-

ber of potential caveats remain. First, the horizontal reso-

lution of the ocean model in the GFDL ESM2M model is

rather coarse and cannot represent critical scales of small-

scale circulation structures (e.g., Turi et al., 2018). In ad-

dition, the biogeochemical processes included in the GFDL

ESM2M model are designed for the open ocean but do not

capture the highly variable coastal processes (Hofmann et al.,

2011). High-resolution ocean models with improved pro-

cess representations are therefore needed to explore variabil-

ity in ocean carbonate chemistry, especially in coastal re-

gions and smaller ocean basins, such as the Arctic (Terhaar

et al., 2019a, b). Observation-based carbonate system data

with daily mean resolution would also be necessary to thor-

oughly evaluate the models’ capability to represent day-to-

day variations in carbonate chemistry. Secondly, our results,

in particular at the local scale, might depend on the model

formulation. As the mean increases in CT mainly drive the in-

creases in [H+] variability (see Fig. 9b), we expect that mod-

els with larger oceanic uptake of anthropogenic carbon show

larger increases in [H+] variability than models with lower

anthropogenic carbon uptake. The GFDL ESM2M model

matches observation-based estimates of historical global an-

thropogenic CO2 uptake relatively well but still has difficul-

ties in representing the regional patterns in storage (Frölicher

et al., 2015). Therefore, the exact regional patterns of CT

changes may differ from model to model. Further studies fo-

cusing on the physical processes that lead to the regional CT

changes may help to better constrain the regional patterns

in variability changes. In addition, it is currently rather un-

certain how [H+] and �A variability changes as a result of

changes in the drivers’ variabilities. We have demonstrated

that this factor is particularly important for �A and for [H+]

at depth. It is well known that current Earth system mod-

els have imperfect or uncertain representations of ocean vari-

ability over a range of timescales (Keller et al., 2014; Resp-

landy et al., 2015; Frölicher et al., 2016). A possible way for-

ward would be to assess variability changes and changes in

ocean acidity extreme events within a multimodel ensemble,

which would likely provide upper and lower bounds. Finally,

it is assumed that physical and biogeochemical changes in

the ocean will also increase diurnal variability. In particu-

lar in coastal areas, such diurnal variations can have ampli-

tudes that are much larger than the projected changes over

the 21st century (Hofmann et al., 2011). However, the GFDL

ESM2M model does not fully resolve the diurnal variability.

Future studies with Earth system models that resolve diur-

nal processes are needed to quantify changes in diurnal vari-
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Figure 13. The difference in years between the first occurrence of aragonite undersaturation in the historical and RCP8.5 ensemble and a

hypothetical simulation where variability does not change over the 1861–2100 period, but only the mean changes. Positive values (yellow

and red) indicate a delayed onset of undersaturation resulting from declines in �A variability.

ability and the impacts of these changes on extreme acidity

events.

Our results may also have important consequences for our

understanding of the impacts of ocean acidification on ma-

rine organisms and ecosystems. The projected increase in the

frequency and the duration of ocean acidity extremes implies

that marine organisms will have less time to recover from

high-[H+] events in the future. Organisms that cannot adapt

to the large long-term changes in mean [H+] will likely be

the most impacted. However, even if organisms may be able

to adapt to the long-term increase in [H+], the large pro-

jected increase in [H+] extreme events due to changes in

variability may push organisms and ecosystems to the limits

of their resilience, especially those organisms that are com-

monly accustomed to a more steady environment. The risks

for substantial ecosystem impacts are aggravated by the fact

that the frequency and intensity of marine heatwaves are also

projected to substantially increase (Frölicher et al., 2018),

which also negatively impact marine ecosystems (Wernberg

et al., 2016; Smale et al., 2019). The interactions of inten-

sified multiple stressors have the potential to influence ma-

rine ecosystems and the ocean’s biogeochemical cycles in

an unprecedented manner (Gruber, 2011). However, further

research is needed to understand the combined impacts of

short-term ocean acidity extremes and marine heatwaves on

marine ecosystems.

In conclusion, our analysis shows that [H+] and �A in the

upper 200 m are projected to be almost permanently under

extreme conditions by the end of the 21st century when ex-

tremes are defined relative to preindustrial baselines. Even

when accounting for the changes in the long-term mean,

short-term extreme events in [H+] are projected to become

more frequent, to last longer, to be more intense, and to cover

larger volumes of seawater due to increases in [H+] variabil-

ity, potentially adding to the stress on organisms and ecosys-

tems from the long-term increase in ocean acidity.
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Appendix A: Identifying and removing the secular

trend in the model data

In Sect. 3.2 and 3.3, we analyze the changes in extreme

events in [H+] and �A that arise from day-to-day to inter-

annual variability changes in these variables. We therefore

need to remove the secular trends from the data prior to anal-

ysis. We estimate the secular trend in a simulation from the

five-member ensemble mean, assuming that subannual and

interannual to decadal variations in the individual ensemble

members are phased randomly and do not imprint on the

ensemble mean because they average out. A larger ensem-

ble size would be necessary for this assumption to perfectly

hold. However, this potential source of error does not quali-

tatively alter our results. We remove the seasonal cycle, here

defined as the 365 d long mean evolution over the course of

a year, from the ensemble mean by smoothing the ensemble

mean with a 365 d running mean filter, i.e., by calculating the

convolution of the time series with a rectangular window of

length 365 and height 1/365. This filter also removes vari-

ability on subannual and interannual timescales and thereby

also reduces the error we make due to the small ensemble

size that is discussed above. We then subtract the running-

mean-filtered ensemble mean from the five ensemble mem-

bers to remove the secular trend in the individual ensemble

members.

Table A1. Simulated global ensemble-mean �A extreme-event characteristics, when extremes are defined with respect to a shifting baseline.

Values in brackets denote ensemble minima and maxima.

PI 1986–2005 2081–2100 RCP2.6 2081–2100 RCP8.5

Yearly extreme days surface (days per year) 3.65 1.8 (1.5–2.2) 2.2 (1.9–2.9) 1.4 (1.1–1.7)

200 m (days per year) 3.65 2.0 (1.5–2.8) 3.0 (2.3–3.7) 1.7 (1.4–2.0)

Duration surface (days) 19.7 17.8 (16.8–18.9) 19.4 (18.1–21.1) 29.3 (27.4–32.6)

200 m (days) 38.6 66.1 (59.7–84.4) 98.7 (89.0–109.0) 111.6 (106.6–122.7)

Maximal intensity surface (×10−3) 2.9 3.4 (3.3–3.6) 3.2 (3.1–3.5) 1.5 (1.4–1.6)

200 m (×10−3) 3.3 5.0 (3.9–6.7) 7.9 (6.1–11.1) 6.0 (2.9–9.1)

Volume (×103 km3) 3.6 3.2 (2.9–3.5) 3.7 (3.0–4.2) 3.4 (3.1–3.7)
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Figure A1. Simulated globally averaged changes in [H+] extreme events defined with respect to the fixed preindustrial baseline. Shown

are changes over the 1861–2100 period following historical (black lines) and future RCP8.5 (red) and RCP2.6 (blue) scenarios for maximal

intensity at the surface (a) and at 200 m (b), duration at the surface (c) and at 200 m (d), yearly extreme days at 200 m (e), and volume in

the upper 200 m (f). The thick lines display the five-member ensemble means, and the shaded areas represent the maximum and minimum

ranges of the individual ensemble members.

Figure A2. Simulated regional changes in [H+] extreme-event characteristics between the preindustrial period and 2081–2100 following the

RCP2.6 scenario. The extreme events are defined with respect to shifting baselines. Shown are the changes in yearly extreme days (a, b),

maximal intensity (c, d), and duration (e, f). Left panels show changes for the surface, whereas right panels show changes for 200 m. Shown

are changes averaged over all five ensemble members. The black contours highlight the pattern structures. Gray areas represent areas with

no extremes during 2081–2100.
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Figure A3. Simulated characteristics of surface [H+] extreme events for the preindustrial period (a, b), 1986–2005 ensemble mean (c–e),

RCP8.5 2081–2100 ensemble mean (f–h), and RCP2.6 2081–2100 ensemble mean (i–k). The extreme events are defined with respect to

shifting baselines. Gray colors represent regions where no ensemble member simulates extremes. The black contours highlight the pattern

structures.

Figure A4. Simulated characteristics of [H+] extreme events at 200 m for the preindustrial period (a, b), 1986–2005 ensemble mean (c–e),

RCP8.5 2081–2100 ensemble mean (f–h), and RCP2.6 2081–2100 ensemble mean (i–k). The extreme events are defined with respect to

shifting baselines. Gray colors represent regions where no ensemble member simulates extremes. The black contours highlight the pattern

structures.
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Figure A5. Simulated ensemble-mean changes in mean CT (a, e), AT (b, f), T (c, g), and S (d, h) from the preindustrial period to 2081–

2100 following the RCP8.5 scenario. Shown are changes for (a–d) the surface and (e–h) at 200 m. The black contours highlight the pattern

structures.

Figure A6. Simulated ensemble-mean changes in the variances of CT (a, e), AT (b, f) T (c, g), and S (d, h) from the preindustrial period to

2081–2100 under the RCP8.5 scenario. Shown are changes for (a–d) the surface and (e–h) at 200 m. The black contours highlight the pattern

structures.
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Appendix B: Identifying interannual and subannual

variability

The spectral density describes how the variance in a time se-

ries is distributed over different frequencies νj . It is propor-

tional to the absolute value squared of the discrete Fourier

transformation (DFT) of the time series. Defining the spec-

tral density only for positive frequencies, it is given by

f (νj ) = 2
1t2

T

∣

∣

∣

∣

∣

N
∑

k=1

xk · exp
(

−i2πνj · 1t k
)

∣

∣

∣

∣

∣

2

, (B1)

with N the number of time steps, xk the values of the time

series at each time step, 1t the time interval between two

time steps, T = N · 1t , and the frequencies νj = j/T . The

autocovariance is the inverse Fourier transform of the spec-

tral density (Wiener–Khintchine theorem, Chatfield, 1996).

In the continuous case, the theorem states

γ (τ) =

∞
∫

−∞

f̃ (ν)exp(i2πντ)dν, (B2)

with the autocovariance function γ (τ) and the spectral den-

sity f̃ defined for positive and negative frequencies. Since

the two-sided spectral density, f̃ , is a real and even function,

one can also use

γ (τ) =

∞
∫

0

f (ν)cos(2πντ)dν (B3)

with the one-sided spectral density f = 2 · f̃ that is used in

this text. As a consequence, the variance within the time se-

ries, given by the autocovariance at lag zero, is obtained by

integrating the spectral density over all positive frequencies,

σ 2 =
∫ ∞

0 f (ν)dν. For a discrete time series, where the max-

imal resolved frequency is given by νmax = 1/21t , the iden-

tity reads

σ 2 =

N/2
∑

j=0

f (νj )
1

N1t
. (B4)

Based on this equation, one can separate the contributions to

variance from low-frequency and high-frequency variations.

In this study, we determine interannual variability and suban-

nual variability. Interannual variability is calculated by sum-

ming over the contributions to variance from all frequencies

up to a cycle of once per year, i.e., by evaluating the sum up

to icut for which νcut = 1/365 d−1. Accordingly, subannual

variability is obtained by evaluating the sum from icut + 1 to

N/2. Prior to this separation, the seasonal variability is re-

moved from the data by subtracting the 365 d climatology.

Appendix C: Decomposition of [H+] variance change

Following Eq. (2) in the main text, the variance in [H+] (or

�A) can be approximated as a function of the four sensitivi-

ties

s =

(

∂H+

∂AT
,
∂H+

∂CT
,
∂H+

∂S
,
∂H+

∂T

)⊺

(C1)

that in turn depend on the mean values of the drivers, the four

standard deviations of the drivers

σ =
(

σAT ,σCT ,σS,σT

)

⊺
, (C2)

and the six pairwise correlation coefficients, in matrix nota-

tion given by

ρ =









1 ρAC ρAS ρAT

ρAC 1 ρCS ρCT

ρAS ρCS 1 ρST

ρAT ρCT ρST 1









. (C3)

Based on this notation, we can rewrite Eq. (2) of the main

text as

σ 2
H+ =

4
∑

i=1

4
∑

j=1

sisjσiσjρij . (C4)

We use Eq. (C4) and decompose the variability change be-

tween the preindustrial period and 2081–2100 into the contri-

butions from changes in s, σ , and ρ based on a Taylor expan-

sion. Since [H+] variance represented by Eq. (C4) is a poly-

nomial of fifth order in these variables, its Taylor series has

five nonvanishing orders. We use the drivers’ standard devi-

ations instead of their variances for the decomposition. With

the latter, the Taylor expansion would have infinite terms and

could not be decomposed exactly as it is done in the follow-

ing. However, it would asymptotically lead to the same de-

composition of [H+] variance change into 1sσ
2
H+ , 1σ σ 2

H+ ,

1sσ σ 2
H+ , and 1ρ+σ 2

H+ that is presented below. Furthermore,

it should be noted that the resulting decomposition of [H+]

variance change only approximates the simulated variance

change because it is based on Eq. (C4), which itself is based

on a first-order Taylor expansion of [H+] with respect to the

drivers.

In the following, all terms of the Taylor series are given.

We denote the sum of first-order terms that contain changes

in the four sensitivities 1s1,...4 by 1
(1)
s σ 2

H+ , the sum of

second-order terms that contain changes in the sensitivities

and standard deviations by 1
(2)
sσ σ 2

H+ , and so on.
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The first order is given by 1(1)σ 2
H+ = 1

(1)
s σ 2

H+ +

1
(1)
σ σ 2

H+ + 1
(1)
ρ σ 2

H+ with

1(1)
s σ 2

H+ =2

4
∑

k=1

4
∑

j=1

sjσkσjρkj1sk,

1(1)
σ σ 2

H+ =2

4
∑

k=1

4
∑

j=1

sksjσjρkj1σk,

1(1)
ρ σ 2

H+ =

4
∑

k=1

4
∑

l=1

skslσkσl1ρkl . (C5)

The second order contains

1(2)
ss σ 2

H+ =

4
∑

k=1

4
∑

l=1

σkσlρkl1sk1sl,

1(2)
σσ σ 2

H+ =

4
∑

k=1

4
∑

l=1

skslρkl1σk1σl,

1(2)
sσ σ 2

H+ =2

4
∑

k=1

4
∑

l=1

(slσlρkl1sk1σk + slσkρkl1sk1σl) ,

1(2)
sρ σ 2

H+ =2

4
∑

k=1

4
∑

l=1

slσkσl1sk1ρkl,

1(2)
σρσ 2

H+ =2

4
∑

k=1

4
∑

l=1

skslσl1σk1ρkl . (C6)

The third-order terms read

1(3)
ssσ σ 2

H+ =2

4
∑

k=1

4
∑

l=1

σlρkl1sk1sl1σk,

1(3)
sσσ σ 2

H+ =2

4
∑

k=1

4
∑

l=1

slρkl1sk1σk1σl,

1(3)
ssρσ 2

H+ =

4
∑

k=1

4
∑

l=1

σkσl1sk1sl1ρkl,

1(3)
σσρσ 2

H+ =

4
∑

k=1

4
∑

l=1

sksl1σk1σl1ρkl,

1(3)
sσρσ 2

H+ =2

4
∑

k=1

4
∑

l=1

(slσk1sk1σl1ρkl + slσl1sk1σk1ρkl) . (C7)

The fourth order reads

1(4)
ssσσ σ 2

H+ =

4
∑

k=1

4
∑

l=1

ρkl1sk1sl1σk1σl,

1(4)
ssσρσ 2

H+ =2

4
∑

k=1

4
∑

l=1

σl1sk1sl1σk1ρkl,

1(4)
sσσρσ 2

H+ =2

4
∑

k=1

4
∑

l=1

sl1sk1σk1σl1ρkl . (C8)

And the fifth order is given by

1(5)
ssσσρσ 2

H+ =

4
∑

k=1

4
∑

l=1

1sk1sl1σk1σl1ρkl . (C9)

We identify the variance change from changes in the sensi-

tivities as

1sσ
2
H+ = 1(1)

s σ 2
H+ + 1(2)

ss σ 2
H+ , (C10)

the change from standard deviation changes as

1σ σ 2
H+ = 1(1)

σ σ 2
H+ + 1(2)

σσ σ 2
H+ , (C11)

the change from simultaneous changes in sensitivities and

standard deviations as

1sσ σ 2
H+ =1(2)

sσ σ 2
H+ + 1(3)

ssσ σ 2
H+

+1(3)
sσσ σ 2

H+ + 1(4)
ssσσ σ 2

H+ , (C12)

and that from correlation changes and mixed contributions

that include correlation changes as

1ρ+σ 2
H+ =1(1)

ρ σ 2
H+ + 1(2)

sρ σ 2
H+ + 1(2)

σρσ 2
H+

+1(3)
ssρσ 2

H+ + 1(3)
σσρσ 2

H+ + 1(3)
sσρσ 2

H+

+1(4)
ssσρσ 2

H+ + 1(4)
sσσρσ 2

H+ + 1(5)
ssσσρσ 2

H+ . (C13)

Finally, we calculate the analogs of Eqs. (C10)–(C13) that

only take into account changes in CT; changes in CT and AT;

and changes in CT, AT, and T . This is done by calculating

1s1,...4 only based on mean changes in the considered vari-

ables and by setting the standard deviation changes in vari-

ables and correlation changes in pairs of variables that are

not considered to zero.
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Appendix D: Comparison of simulated ensemble-mean

trends in seasonal amplitude to observation-based trends

We construct confidence intervals for the observation-based

slope estimates following Hartmann et al. (2013). For the

simulations, we use the arithmetic average of the five

ensemble-member slope estimates, b̂k , as the estimator,

b̂ =
1

5

5
∑

k=1

b̂k, (D1)

with estimated variance

σ̂ 2

b
=

1

52

5
∑

k=1

σ̂ 2
bk

. (D2)

We then construct the confidence interval for b̂ as

(b̂ − q · σ̂b, b̂ + q · σ̂b), (D3)

with q the (1 + p)/2 quantile (we use p = 0.9) of the t dis-

tribution with 5 · (N − 2) degrees of freedom. We correct the

sample size N (34, the number of years we use for the fits)

to a reduced sample size Nr when we find positive lag-one

autocorrelation in the residuals of the fits (data – linear re-

gression model). Lag-one autocorrelation is estimated as the

average of the five ensemble-member lag-one autocorrelation

estimates,

ρ̂ =
1

5

5
∑

k=1

ρ̂k, (D4)

and we obtain Nr = N · (ρ̂ − 1)/(ρ̂ + 1). Positive ρ̂ is only

found in the northern high latitudes. This is in contrast to

the observation-based case, where we find large positive ρ̂o

(up to 0.7) in the residuals of all latitude bands besides the

tropical region.

For testing the significance of a difference between the

simulation slope estimate b̂ and the observation-based esti-

mate b̂o, we use Welch’s test, which assumes different vari-

ances for the two estimates (Andrade and Estévez-Pérez,

2014). The variance of the simulation slope estimate is cal-

culated by dividing the ensemble-averaged slope variance by

the ensemble size (Eq. D2) and is hence smaller than the

observation-based slope variance. If the absolute value of the

test statistic

b̂ − b̂o
√

σ̂ 2

b
+ σ̂o

(D5)

is larger than the (1 + p)/2 quantile of the t distribution

with (Andrade and Estévez-Pérez, 2014)

(

σ̂ 2

b
+ σ̂ 2

bo

)2

σ̂ 4

b
/(5 · (Nr − 2)) + σ̂ 4

bo
/(Nr,o − 2)

(D6)

degrees of freedom, we consider the observation-based and

simulation slope to be different from each other with a confi-

dence level of p = 0.9.

https://doi.org/10.5194/bg-17-4633-2020 Biogeosciences, 17, 4633–4662, 2020



4658 F. A. Burger et al.: Increase in ocean acidity variability and extremes
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