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We develop a theoretical approach to quantify the effect of long-
term trends on the expected number of extremes in generic time
series, using analytical solutions and Monte Carlo simulations. We
apply our method to study the effect of warming trends on heat
records. We find that the number of record-breaking events in-
creases approximately in proportion to the ratio of warming trend
to short-term standard deviation. Short-term variability thus de-
creases the number of heat extremes, whereas a climatic warming
increases it. For extremes exceeding a predefined threshold, the
dependence on the warming trend is highly nonlinear. We further
find that the sum of warm plus cold extremes increases with any
climate change, whether warming or cooling. We estimate that
climatic warming has increased the number of new global-mean
temperature records expected in the last decade from 0.1 to 2.8.
For July temperature in Moscow, we estimate that the local warm-
ing trend has increased the number of records expected in the past
decade fivefold, which implies an approximate 80% probability
that the 2010 July heat record would not have occurred without
climate warming.

global warming ∣ heat wave

In summer 2010, Moscow suffered a heat wave with an average
July temperature unprecedented at least since measurements

began in the 19th Century (1). Many other unprecedented me-
teorological extremes have occurred over the past decade (2).
At the same time, global-mean temperature in 2010 reached re-
cord values (3) and the past decade overall was the warmest dec-
ade since measurements began in the 19th century (4). The large
number of weather extremes in this exceptionally warm decade
raises the question: How is the number of extremes linked to
climatic warming?

Early theoretical studies on the statistics of record events
focused on independent, identically distributed (IID) and thus
stationary variables (5, 6). One of the key findings of record
theory for IID variables is that the probability of a record is in-
dependent of the underlying distribution: It is given by 1∕n, where
n is the number of previous data points in the series.

Recent observational studies have shown that, for heat re-
cords, the stationarity assumption does not hold. For example,
the observed number of heat records of mean monthly tempera-
tures at stations around the world is significantly higher than that
expected in a stationary climate (7). Also, the ratio of daily record
highs to record lows is currently twice as large as what would be
expected in a stationary climate in both the United States (8) and
Australia (9).

In climate data, nonstationarity can have two principal causes:
a shifting mean value or a changing shape of the probability dis-
tribution with time (5, 10). For the former, Ballerini and Resnick
(11) showed that, for time series with a linear trend, the record
rate becomes constant in the asymptotic limit. For Gaussian dis-
tributions, the overshoot of a new record over the previous one
should become smaller over time (12), both for stationary time
series and for time series with a linear trend (12). Further, Krug
(5) derived record statistics for time series with a systematic
broadening of the probability distribution. In this case, the num-
ber of records only increases from the stationary 1∕n to lnðnÞ∕n in
the asymptotic limit (5, 13).

Recently, record statistics of time series with a linear trend
have been applied to observed daily temperature maxima (12,
13). For a single weather station (Philadelphia), Redner and Pe-
terson (12) conclude that the current warming rate is insufficient
to measurably influence the frequency of daily record tempera-
tures. Using many weather stations in both Europe and the Uni-
ted States, Wergen and Krug (13) find a moderate but significant
increase in the number of daily temperature records, in agree-
ment with previous observations (8). They show that this increase
can be explained by a systematic change in the mean temperature.

Following on from these studies, we derive distribution func-
tions for the number of extremes expected in nonstationary
climates, both for extremes exceeding a fixed threshold and
for record-breaking events (or “records,” i.e., a value higher—
or lower for cold records—than any previous value in the data-
set). To analyze the effect of nonlinear climatic trends, we employ
Monte Carlo simulations. As two prominent applications, we
analyze the global-mean annual-mean temperature series (as
the prime metric for global warming) as well as the monthly mean
July temperature for Moscow (as an example for a recent record
event with major societal impact).

Statistical Model.
As a first step, we performed Monte Carlo simulations to gener-
ate synthetic temperature time series of 100 values each (repre-
senting 100 y) as random uncorrelated “noise” with various
trends added. Fig. 1A shows one realization of such a series with-
out trend, whereas Fig. 1B shows another realization with an
added linear trend of 0.078∕y. Temperatures are nondimensiona-
lized by using the standard deviation of their interannual varia-
bility as unit (see Methods), so this trend implies that the mean
temperature (averaged over many realizations) increases by 7.8
standard deviations over the 100 y simulated.

In a stationary climate (Fig. 1A), the number of records of a
given type (e.g., heat extremes) declines as 1∕n, so the expected
number in the whole time series is∑100

n¼1 1∕n ¼ 5.2, most of which
are found near the beginning of the time series (2.9 in the first
decade, 4.5 in the first half). The expected number of records in
the last decade is 0.105 because the probability that the highest
value occurs is 1∕10 and that the second-highest value also occurs
is 1∕100. The latter gives a second record in 1 out of 200 realiza-
tions, namely, only when the second-highest value precedes the
highest value.

The case with warming trend (Fig. 1B) has more unprece-
dented heat extremes overall, in particular in the last decades of
the series. The analytical solution for the expected number of
heat records (Prec) in a Gaussian time series with linear long-term
trend μ1 (derived in Methods) is
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Here tn is the time of record n (in years), μ0 is the long-term mean
value, σ the short-term variability, and x denotes the value of
the extreme. We find that, over a wide range of trend values,
the number of unprecedented heat extremes increases approxi-
mately linearly from its stationary value of 0.105 (Fig. 2A). The
number of cold records drops off quickly to near zero.

Alternatively, one can consider extremes that surpass a prede-
fined, fixed threshold value (e.g., three or four standard devia-
tions from the mean). In this case, we find a much more non-
linear increase of the number of extremes with the trend (Fig. 2B).
The analytical formula for the number of extremes surpassing a
value x within the period t1 < t < t2 (derived in Methods) is
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where t1 and t2 are, respectively, the lower and upper limits of the
integral for which Eq. 2 is the solution. The equations for records
and threshold-exceeding extremes are generic and applicable to

any data series consisting of a slowly varying component plus
near-Gaussian noise.

For both cases, we find a fundamental asymmetry between
the increase in heat extremes and decrease in cold extremes.
To understand this asymmetry, consider a Gaussian distribution,
where in a stationary climate 4.6% of values would be “extreme”
in the sense of being outside �2 standard deviations. If these
thresholds are kept fixed but the distribution is shifted by one
standard deviation toward warmer temperatures, then there will
be 16% hot extremes (now only one standard deviation above the
new mean) and 0.3% cold extremes (now three standard devia-
tions below the new mean). The total number of extreme events
(hot and cold) will thus have increased more than threefold, be-
cause the decline in the number of cold extremes is very small
compared to the increase in the number of hot extremes. Hence,
fewer cold extremes do not balance out the greater number of hot
extremes in a warming world.

Application to Global Mean Temperature.
We now apply our theoretical results to two prominent examples
of observed temperature data. We use global annual-mean tem-
perature data (Fig. 1D) and Moscow monthly mean station data
(Fig. 1E) for the past 100 y. Histograms of the interannual varia-
bility are shown in Fig. 3 (seeMethods). From the analytical solu-
tion (Fig. 2), we estimate the expected number of heat extremes
in the National Aeronautics and Space Administration Goddard
Institute for Space Studies (NASAGISS) annual global tempera-
ture data, which has a standard deviation due to interannual
variability of 0.09 °C and a linear warming trend of 0.70 °C over
the past 100 y, giving a ratio of 0.078∕y (as in the synthetic time
series illustrated in Fig. 1B). We obtain an expected 1.4 unprece-
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Fig. 1. Examples of 100-y time series of nondimensional temperature, with
unprecedented hot and cold extremes marked in red and blue. (A) Uncorre-
lated Gaussian noise of unit standard deviation. (B) Gaussian noise with
added linear trend of 0.078∕y (shown in gray). (C) Gaussian noise with non-
linear trend line added (smooth of global GISS data shown in gray). (D) The
actual GISS annual global temperature data for 1911–2010, with its nonlinear
trend line. (E) July temperature at Moscow station for 1911–2010, with its
nonlinear trend line. Note that in all panels temperatures are normalized
with the standard deviation of their short-term variability (see Methods),
hence the climatic warming at Moscow appears to be relatively small,
although the linear warming is 1.8 °C in Moscow and 0.7 °C in the global GISS
data over the last 100 y.
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Fig. 2. Analytical solutions for the expected number of cold (blue) andwarm
(red) extremes in the last 10 y of 100-y time series shown as a function of the
ratio of linear trend to standard deviation of the series. (A) Unprecedented
extremes. (B) Extremes exceeding fixed threshold temperatures—in this case,
3 and 4 standard deviations from the mean. The analytical solutions shown
are identical to the results of the Monte Carlo simulations.
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dented heat extremes in the past decade (one is observed in
2005, see Fig. 1D—NASA data initially gave 2010 as another re-
cord, but this was later revised to an exact draw with 2005). Monte
Carlo simulations show that 19% of realizations have no new heat
extreme in the last decade (as in Fig. 1B), 39% have one, 28%
have two, and 13% have more.

The estimates can be improved by moving from a linear trend
to a nonlinear trend line based on the actual data, effectively
decomposing the data into a trend process and a noise process
(14). As trend, we use a low-pass filtered version of the data
(see Methods). We construct synthetic data from this smooth
nonlinear trend plus Gaussian noise with the observed standard
deviation. In this case, the Monte Carlo simulations yield an ex-
pected number of 2.8 heat extremes (two or three extremes are
almost equally likely at 28% and 30%). The higher expected num-
ber is because the observed trend over the past 30 y is about twice
the 100-y trend and, given this steep trend, data before 30 y ago
hardly matter in defining the yardstick for a new extreme (in the
last 30 y, global-mean temperature has warmed by 4.8 standard
deviations). Indeed, if we only use the data of the past 30 y, these
show an almost linear trend of 0.017 °C∕y, yielding an expected
2.5 new record hot temperatures in the last decade.

If we use satellite-derived lower-troposphere temperatures for
the last 30 y (15), the expected number of heat extremes in the
last decade is reduced to 1.8 (with a 10% chance of no extreme),
mostly due to their larger standard deviation of 0.14 °C. In these
data, the high 1998 peak (three standard deviations above the
trend) has prevented a new record until now, illustrating how
interannual variability does not cause records but rather acts to
decrease their number, because this number depends on trend

divided by standard deviation. This decrease is intuitively clear:
In the extreme case of zero variance but positive warming trend,
every single year would set another heat record. The larger the
variability, the fewer new records can be expected. When the
variability becomes very large as compared to the trend, we are
approaching the case of zero trend—i.e., a record count of 1∕n,
which declines to zero for growing n.

Application to Moscow July Temperature.
Next we apply the analysis to the mean July temperatures at Mos-
cow weather station (Fig. 1E), for which the linear trend over the
past 100 y is 1.8 °C and the interannual variability is 1.7 °C. Their
ratio of 0.011∕y yields an expected 0.29 heat records in the last
decade, compared to 0.105 in a stationary climate, giving a 64%
probability [ð0.29 − 0.105Þ∕0.29] that a heat record is because of
the warming trend. If instead we use the more realistic nonlinear
warming trend as shown in Fig. 1E, the expected record number is
0.85, which implies an 88% probability [ð0.85 − 0.105Þ∕0.85] that
a heat record in the last decade is due to the observed warm-
ing trend.

Because July 2010 is by far the hottest on record, including it in
the trend and variance calculation could arguably introduce an
element of confirmation bias. We therefore repeated the calcula-
tion excluding this data point, using the 1910–2009 data instead,
to see whether the temperature data prior to 2010 provide a rea-
son to anticipate a new heat record. With a thus revised nonlinear
trend, the expected number of heat records in the last decade
reduces to 0.47, which implies a 78% probability [ð0.47 − 0.105Þ∕
0.47] that a newMoscow record is due to the warming trend. This
number increases to over 80% if we repeat the analysis for the
full data period in the GISS database (i.e., 1880–2009), rather
than just the last 100 y, because the expected number for station-
ary climate then reduces from 0.105 to 0.079 according to the
1∕n law.

The Monte Carlo simulations further imply that, prior to the
2010 heat wave, the probability of hitting a new July record had
risen to almost 50% (namely to 0.47) for the last decade. That
may be surprising, given that the previous record occurred over
70 y ago, in 1938. But even with the steeper trend including the
2010 value, the expected number of July heat records in Moscow
for the past 50 y is only 1.6—the most likely value being 1, occur-
ring in 33% of all Monte Carlo realizations and indeed in the
observed data. As shown in Fig. 4, because temperatures stag-
nated until the 1980s, the expectation for new records was low
from the 1940s through to the 1990s. The simple stochastic model

Fig. 3. Histogram of the deviations of temperatures of the past 100 y
from the nonlinear climate trend lines shown in Fig. 1 D and E, together with
Gaussian distributions with the same variance and integral. (Upper) Global
annual mean temperatures from NASA GISS, with a standard deviation of
0.088 ºC. (Lower) July mean temperature at Moscow station, with a standard
deviation of 1.71 ºC.
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Fig. 4. Expected number of unprecedented July heat extremes in Moscow
for the past 10 decades. Red is the expectation based on Monte Carlo simula-
tions using the observed climate trend shown in Fig. 1E. Blue is the number
expected in a stationary climate (1∕n law). Warming in the 1920s and 1930s
and again in the past two decades increases the expectation of extremes
during those decades.
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thus explains why records occurred only in the 1930s and in the
last decade. Fig. 4 clearly shows that the warming trend after 1980
has multiplied the likelihood of a new heat record in Moscow
and would have provided a strong reason to expect it before it
occurred. Our results thus explicitly contradict those of Dole
et al. (16), who did not find any basis for anticipating the Russian
heat record of July 2010.

An interesting point to make in the context of Fig. 4 is that, for
zero trend, the number of new records declines as 1∕n and even-
tually approaches zero, whereas for a constant warming trend,
the number of records approaches a nonzero steady-state level
(11) on a timescale roughly equal to the ratio of variability to
trend (17). In the example of Fig. 1B, this steady state is reached
on a timescale of approximately 15 y. In this steady state, the
expected absolute number of records is constant, whereas the
fraction attributable to the trend gradually approaches 100%,
because the fraction that would have occurred also in a steady
climate declines to zero. The strong recent increase in the ex-
pected absolute number of records in Moscow shown in Fig. 4
is due to the fact that the temperature evolution there is not prop-
erly described by a linear 100-y trend but is characterized by a
recent warming since the 1980s.

Our analysis of how the expected number of extremes is linked
to climate trends does not say anything about the physical causes
of the trend. However, the post-1980 warming in Moscow coin-
cides with the bulk of the global-mean warming of the past 100 y,
of which approximately 0.5 °C occurred over the past three dec-
ades (Fig. 1D), most of which the Intergovernmental Panel on
Climate Change has attributed to anthropogenic greenhouse gas
emissions (4). However, the July warming trend in Moscow over
the past three decades was much larger at approximately 2 °C
(even excluding the extreme 2010 value). A greatly above-average
warming trend in the interior of continents is a general feature
of both observed warming and of the response to greenhouse
gas forcing found in climate models (4). On the other hand,
weather stations located in large cities like Moscow are known
to be affected by the urban heat island effect (18). We therefore
analyzed the warming trend in the surrounding region in micro-
wave sounding unit satellite data (15). These satellite data (run-
ning since 1979) show that western Russia has seen a strong July
warming of about 1.4 °C over this 30 y period (Fig. 5), suggesting
that only about one third of the relevant Moscow warming is
related to a local urban effect. The fact that observed warming in
western Russia is over twice the global-mean warming is consis-
tent with observations from other continental interior areas as
well as with model predictions for western Russia under green-
house gas scenarios (4). Hence, we conclude that the warming
trend that has multiplied the likelihood of a new heat record in
Moscow is probably largely anthropogenic: a smaller part due to

the Moscow urban heat island, a larger part due to greenhouse
warming. That the urban heat island played a smaller role is con-
sistent with the recent finding that the 2010 summer heat wave set
a new record not just for Moscow but for Europe (19).

Discussion
The stochastic model discussed above assumes that the statistical
distribution of temperature anomalies does not change but is
merely shifted toward warmer temperatures, which holds for the
two datasets we analyzed here (see Methods). In addition, the
distribution can also change itself—possibly it could widen in a
warming climate, leading to even more extremes (5, 20). Specific
physical processes can alter the distribution of extremes. For ex-
ample, for the European heat wave of 2003, a feedback with soil
moisture has been invoked: Once the soil has dried out, surface
temperatures go up disproportionately as less heat is converted to
latent heat near the ground; in other words, evaporative cooling
becomes ineffective (20).

Although such mechanisms may play an important role and
possibly aggravate extremes, it is nevertheless instructive to con-
sider the first-order baseline discussed in this paper, namely, the
effect of a simple shift of a random distribution toward warmer
temperatures, “all else remaining equal.” Even this simple case
demonstrates that large changes in the number of records are
expected to arise due to climatic warming. A central result is that
the increase in extremes depends on the ratio of climate trend to
short-term variability in the data. For the case of records, this de-
pendence is near-linear, whereas for threshold-exceeding extremes
it is highly nonlinear. In either case that means that in data with
large variability compared to the trend, such as daily station data,
the climate-related increase will be relatively small. This theoreti-
cal result explains the previous finding that daily data from a single
weather station may not yet show a major change in temperature
extremes due to global warming (12). In data where the standard
deviation has a similar magnitude as the trend, such as monthly
mean station data, the expected number of extremes is now several
times larger than that in a stationary climate, so the majority of
monthly records like the Moscow heat wave must be considered
due to the warming trend. In highly aggregated data with small
variability compared to the trend, like the global-mean tempera-
ture, almost all recent records are due to climate warming. Our
statistical method does not consider the causes of climatic trends,
but given the strong evidence that most of the warming of the past
fifty years is anthropogenic (4), most of the recent extremes in
monthly or annual temperature data would probably not have
occurred without human influence on climate.

Methods
Data Analysis. Global-average annual data and Moscow station data were
obtained from the NASA GISS website (21). Mean July data for Moscow
are continuous except for one missing year (1993) which was filled using a
neighboring station (Vologda) and its comparison to Moscow in the previous
and next year; results are not sensitive to this single year.

A smooth nonlinear climate trend was calculated for these data by using a
low-pass filter (22) with half-width of 15 y; we use this to separate the series
into a “trend process” and a “noise process” (14). The residual after subtract-
ing this trend is what is defined as “interannual variability” (or noise) for the
purpose of this work. This noise is not exactly Gaussian but reasonably close
to it (Fig. 3). We have tested that this noise is stationary—i.e., we found
no significant changes in its variance over time. If we subdivide the data
into four equal intervals, all of these have very similar standard deviations
which vary randomly between 1.62 and 1.82 K for the Moscow July data
and between 0.079 and 0.099 K for the global annual data. We also tested
the interannual variability for serial dependence by computing lagged auto-
correlations. For both datasets, there is no statistically significant autocorre-
lation even for lag 1; the lag-1 autocorrelation coefficients are r ¼ −0.04
for the Moscow data and r ¼ 0.17 for the global data, which both do not
differ from the null hypothesis of uncorrelated data at the 95% level. Overall,
we conclude that any deviations from stationary, Gaussian white noise in
the variability of the datasets we analyze are minor and would not affect
our analysis.
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Fig. 5. Comparison of temperature anomalies from remote sensing systems
surface data (red; ref. 15) over the Moscow region (35ºE–40ºE, 54ºN–58ºN)
versus Moscow station data (blue; ref. 21). The solid lines show the average
July value for each year, whereas the dashed lines show the linear trend of
these data for 1979–2009 (i.e., excluding the record 2010 value). The satellite
data have a trend of 0.45 ºC per decade for 1979–2009, as compared to
0.72 ºC per decade for the Moscow station data.
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Monte Carlo Simulations. Random 100-point time series were generated with
the Matlab Gaussian random number generator. The standard deviation of
these series was used to nondimensionalize all temperature values—i.e., it
defines the temperature unit. Each experiment consisted of 100,000 realiza-
tions to obtain robust statistics. In each realization, the number of two types
of extreme was flagged and counted in the last 10 of the 100 y: “unprece-
dented” extremes (i.e., record-breaking events) and those exceeding a fixed
threshold value (again measured in standard deviations).

Analytical Solutions. The Gaussian probability density function p with a time-
dependent mean μ ¼ μo þ μ1 t is given by

pðT;tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e−
ðT−μ0−μ1 tÞ2

2σ2 ;

where T is temperature (or any other climatic variable), t is time, and σ the
standard deviation due to natural variability. The cumulative distribution
function (f ) of x (i.e., the probability of an extreme with a value larger than
x) can be written as
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with erfðxÞ the ordinary error function. By integrating over t, we can find the
probability that an extreme value larger than x (scaled by the time period)
occurs within time period t1 < t < t2, where t1 and t2 are the integration
boundaries:
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In a linearly changing climate, the cumulative mean μt (i.e., the mean-value
averaged from the start of the record up until time t) is given by

μt ¼
1

t

Z
t

0

ðμ0 þ μ1t0Þ∂t0 ¼ μ0 þ
1

2
μ1t:

In the case that we define x as a number (X) of standard deviations from the
mean, it thus also becomes a function of t:

x ¼ μt þ Xσ ¼ μ0 þ
1

2
μ1tþ Xσ:

For given X and integration boundaries t1 and t2, Pðx;t1;t2Þ can now be
solved.

For any heat record with a value x to occur at time tn (with n the number
of previous data points), two requirements need to be fulfilled. First of all, no
value equal to or larger than x can have occurred in the complete past record.
The probability of this first condition is given by

Q
n−1
i¼1 ð1 − fðx;tiÞÞ. Second of

all, the event needs to actually occur at timestep tn, the probability of which
is given by fðx;tnÞ. The total probability of a new unprecedented heat
extreme (Prec) (i.e., a new record, at timestep tn) is thus given by the total
integral of the product of these two probabilities:

PrecðtnÞ ¼
Z

∞

−∞
f ðx;tnÞ

Yn−1
i¼1

ð1 − f ðx;tiÞÞ∂x:

This integral can most easily be evaluated numerically. The results of the
analytical solutions shown in Fig. 2 are indistinguishable from those of the
Monte Carlo simulations. Analogously, equations for cold extremes can be
found by integrating the probability density function from −∞ to x in order
to find fðx;tÞ.
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Corrections

BIOCHEMISTRY
Correction for “Differential regulation of the activity of deleted in
liver cancer 1 (DLC1) by tensins controls cell migration and trans-
formation,” by Xuan Cao, Courtney Voss, Bing Zhao, Tomonori
Kaneko, and Shawn Shun-Cheng Li, which appeared in issue 5,
January 31, 2012 of Proc Natl Acad Sci USA (109:1455–1460; first
published January 17, 2012; 10.1073/pnas.1114368109).
The authors note that, due to a printer’s error, on page 1455,

left column, line 4 of the abstract, “rhodopsin-GTPase-activating
(Rho-GAP) activity” should instead appear as “Ras-homology-
GTPase-activating protein (Rho-GAP) activity.”
Also, on page 1455, left column, first full paragraph, lines 3–4,

“The rhodopsin (Rho) family small GTPases” should instead
appear as “The Ras-homology (Rho) family small GTPases.”

www.pnas.org/cgi/doi/10.1073/pnas.1201491109

NEUROSCIENCE
Correction for “3β-Methoxy-pregnenolone (MAP4343) as an
innovative therapeutic approach for depressive disorders,” by
Massimiliano Bianchi and Etienne-Emile Baulieu, which ap-
peared in issue 5, January 31, 2012, of Proc Natl Acad Sci USA
(109:1713–1718; first published January 19, 2012; 10.1073/pnas.
1121485109).
The authors note that their conflict of interest statement was

omitted during publication. The authors declare that E.-E.B. is
president and one of the founders of MAPREG and M.B. is an
employee of MAPREG. MAPREG holds a patent on MAP4343
and is currently investigating its use for the treatment of spinal
cord injury.

www.pnas.org/cgi/doi/10.1073/pnas.1202752109

NEUROSCIENCE
Correction for “A complex between contactin-1 and the protein
tyrosine phosphatase PTPRZ controls the development of oli-
godendrocyte precursor cells,” by Smaragda Lamprianou, Elli
Chatzopoulou, Jean-Léon Thomas, Samuel Bouyain, and Sheila
Harroch, which appeared in issue 42, October 18, 2011, of Proc
Natl Acad Sci USA (108:17498–17503; first published October 3,
2011; 10.1073/pnas.1108774108).
The authors note that the following statement should be

added to the Acknowledgments: “We thank Dr. Barbara Maison
for her help with cell immunostaining.”

www.pnas.org/cgi/doi/10.1073/pnas.1202480109

GEOPHYSICS
Correction for “Increase of extreme events in a warming world,”
by Stefan Rahmstorf and Dim Coumou, which appeared in
issue 44, November 1, 2011, of Proc Natl Acad Sci USA (108:
17905–17909; first published October 24, 2011; 10.1073/pnas.
1101766108).
The authors note that on page 17906, left column, the

equation

PrecðtnÞ ¼
ð∞
−∞

�
1
2
−
1
2
erf

�
x− μ0 − μ1tn

σ
ffiffiffi
2

p
��

∏
n−1

i¼1

�
1
2
þ 1
2
erf

�
x− μ0 − μ1ti

σ
ffiffiffi
2

p
��

∂x

should instead appear as

PrecðtnÞ ¼
ð∞

−∞

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e−
ðx− μ0 − μ1 tÞ2

2σ2

∏
n−1

i¼1

�
1
2
þ 1
2
erf

�
x− μ0 − μ1ti

σ
ffiffiffi
2

p
��

∂x:

On page 17909, right column, first full paragraph, lines 4–6:
“Second of all, the event needs to actually occur at timestep tn,
the probability of which is given by f(x,tn),” should instead appear
as: “Second of all, the event needs to actually occur at timestep
tn, the probability of which is given by p(x,tn).” Additionally, on
page 17909, right column, the equation
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These errors do not affect the conclusions of the article.
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