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Summary

Dense marker genotypes allow the construction of the realized relationship matrix between
individuals, with elements the realized proportion of the genome that is identical by descent (IBD)
between pairs of individuals. In this paper, we demonstrate that by replacing the average
relationship matrix derived from pedigree with the realized relationship matrix in best linear
unbiased prediction (BLUP) of breeding values, the accuracy of the breeding values can be
substantially increased, especially for individuals with no phenotype of their own. We further
demonstrate that this method of predicting breeding values is exactly equivalent to the genomic
selection methodology where the effects of quantitative trait loci (QTLs) contributing to variation in
the trait are assumed to be normally distributed. The accuracy of breeding values predicted using the
realized relationship matrix in the BLUP equations can be deterministically predicted for known
family relationships, for example half sibs. The deterministic method uses the effective number of
independently segregating loci controlling the phenotype that depends on the type of family
relationship and the length of the genome. The accuracy of predicted breeding values depends on
this number of effective loci, the family relationship and the number of phenotypic records. The
deterministic prediction demonstrates that the accuracy of breeding values can approach unity if
enough relatives are genotyped and phenotyped. For example, when 1000 full sibs per family were
genotyped and phenotyped, and the heritability of the trait was 0.5, the reliability of predicted
genomic breeding values (GEBVs) for individuals in the same full sib family without phenotypes was
0.82. These results were verified by simulation. A deterministic prediction was also derived for
random mating populations, where the effective population size is the key parameter determining the
effective number of independently segregating loci. If the effective population size is large, a very
large number of individuals must be genotyped and phenotyped in order to accurately predict
breeding values for unphenotyped individuals from the same population. If the heritability of the
trait is 0.3, and Ne=1000, approximately 5750 individuals with genotypes and phenotypes are
required in order to predict GEBVs of un-phenotyped individuals in the same population with an
accuracy of 0.7.

1. Introduction

In best linear unbiased prediction (BLUP) of breeding
values, information from performance of relatives is
incorporated through the use of a relationship matrix.
Elements of this matrix are derived as the predicted

proportion of the genome that is identical by descent
(IBD) among two individuals given their pedigree
relationship. However, Mendelian sampling during
gamete formation results in variation in the realized
proportion of the genome, which is IBD between
pairs of individuals with the same predicted relation-
ship coefficients (Franklin, 1977; Hill, 1993; Guo,
1996). For example, between full-sib individuals the
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predicted proportion of the genome that is IBD is
0.5, while its standard deviation is 0.04 for a species
with 30 chromosomes each of 1 M in length (Guo,
1996).

DNA marker information can be used to calculate
the realized relationship matrix with elements the ac-
tual proportion of the genome that is IBD between
two individuals, with a high degree of precision, pro-
vided that a sufficient number of markers are used.
Nejati-Javaremi et al. (1997) demonstrated with
simulation that if the loci contributing to trait vari-
ation were known, and the alleles at these loci were
used to derive the realized relationship matrix, the
accuracy of breeding values calculated using this ma-
trix could be higher than that calculated using the
predicted relationship matrix. In practice, all the loci
contributing to trait variation are unlikely to have
been identified. Villanueva et al. (2005) demonstrated
by simulation that using the realized relationship
matrix derived from markers rather than the pre-
dicted relationship matrix in the calculation of esti-
mated breeding values (EBVs) could lead to higher
accuracies of selection. They proposed that marker
information used in this way could offer benefits in
selection programmes when no quantum trait locus
(QTL) has been mapped or when the underlying
genetic model can be considered the infinitesimal
model, where no individual QTL has a moderate to
large effect on the trait. For some traits such as height
in humans, this is indeed the case, with the largest
reported QTLs explaining only a small fraction of the
genetic variance (e.g. Sanna et al., 2008; Visscher,
2008).

While Villanueva et al. (2005) considered estimat-
ing realized relationships conditional on a known
pedigree (exploiting linkage information) realized re-
lationship coefficients can also be estimated for ‘un-
related’ individuals within a population. This requires
sufficient marker density to identify chromosome
segments in two individuals that are descended from
the same common, but unknown ancestor.

An alternative method by which DNA marker data
can be used to estimate breeding values is genomic
selection (Meuwissen et al., 2001). In this method, the
markers are used to track QTLs whose effects are es-
timated and summed to predict the breeding value of
each individual. However, if there are many QTLs
whose effects are normally distributed with constant
variance, then genomic selection can be equivalent
to the use of the realized relationship matrix (e.g.
Fernando, 1998; Habier et al., 2007; Van Raden,
2007 and Goddard, 2008).

Currently, there is no analytical method available
to predict the accuracy of EBVs calculated using the
genomic relationship matrix considering information
from relatives. Analytical expressions would be de-
sirable to guide the design of experiments aiming to

achieve a given accuracy of genomic breeding values
(GEBVs). Our objective was to derive such expressions
for the accuracy of GEBV considering information
from relatives. We also modify the expression of
Goddard (2008) for the accuracy of GEBV in random
mating populations to improve the predictions. Our
starting point for all derivations was the equivalent
genomic selection model. We then verified the ana-
lytical predictions using two simulation approaches.
First, we derive a prediction of the accuracy based on
the prediction error variance (PEV) where the realized
relationship matrix is determined by a large number
of informative markers. Secondly, we derive accuracy
from simulations with both markers and QTLs seg-
regating as the correlation between true and predicted
breeding values. We then investigate the sensitivity of
the results to the number of markers used, the number
of QTLs and effective population size.

2. Methods

(i) An equivalent model for genomic selection

This material is also contained in Goddard (2008) but
is included here for completeness. Consider a model
of the true breeding value of the ith individual (gi)
based on a large number of QTLs of small effect. To
simplify our analytical derivation, we will define a
parameter q as the number of independent chromo-
some segments. This model can be pictured as divid-
ing the chromosomes into segments that effectively
segregate independently and defining the effect of the
segment as the sum of the effects of the QTL carried
on that segment. The assumption here is that there are
at least as many QTLs as there are effective chromo-
some segments. Alternatively if QTLs are unlinked,
then q is the number of unlinked QTLs. Then

gi= g
q

j=1
Wijuj,

where uj is the allele substitution effect at the jth QTL
and is normally distributed uyN(0, su

2), where su
2 is

the variance of the effect of QTL alleles sampled ran-
domly from the population, and Wij is 0, 1 or 2 if
individual i carries 0, 1 or 2 copies of the second allele
at the jth QTL. In practice, it is convenient to subtract
the mean value of w from each element so that
Wij=0x2pj or 1x2pj or 2x2pj, where pj=the allele
frequency of the second allele at locus j. This
corresponds to the genomic selection model that
Meuwissen et al. (2001) called the BLUP model.
A simple version of genomic selection is to define the
Wij based on markers instead of the QTL. Then the
best estimates of the uj and hence gi can be obtained
by BLUP.

In matrix form g=Wu and V(g)=WWksu2, where
W is a design matrix allocating QTL allele effects to
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individuals. g is also normally distributed since it is
the sum of many normally distributed effects.

Now a vector of phenotypic records y can be mod-
elled as either

y=Xb+ZWu+e (1)

or

y=Xb+Zg+e, (2)

where X is a design matrix, b is a vector of fixed effects
and Z is matrix allocating records to individuals. The
two models are equivalent provided V(g)=Gsg

2=
WWksu2, where G=WWksu2/sg2 is the relationship ma-
trix calculated from the markers, and sg

2 is the genetic
variance. Elements of G are Gik, the proportion of the
genome that is IBD between individuals i and k.
Relationships, like inbreeding coefficients, are always
relative to a base population. By subtracting the mean
allele frequencies from the elements of W, the re-
lationships Gik are relative to the current population.
Consequently, they average approximately zero and
some are negative. This means that the genetic vari-
ance sg

2 is also the genetic variance in the current
population. The two models give the same estimates
of g=Wu. That is, a genomic selection model (1) with
normally distributed QTL effects is equivalent to a
conventional individual model (2) with the relation-
ship matrix among the individuals estimated from the
markers. Note that it assumes that the genotypes are
known without error.

(ii) Derivation of accuracies for breeding values
predicted with the equivalent model

When the marker data have been collected on a
sample of individuals, we can use either (1) or
(2) to calculate GEBVs for those individuals and their
reliabilities. However, it would be useful to predict in
general, before collecting the marker data, the accu-
racy that this form of genomic selection would
achieve. It is difficult to derive a formula for reliability
based on (2) because G is a complicated matrix. It is
perhaps easier to work with (1) but this is still difficult
because the design matrix, ZkWkWZ, the inverse of
which occurs in the system of equations required to
predict the QTL effects, is complex and likely to have
singularities. This complexity comes about because wij

for closely linked markers are correlated. Therefore,
we will approximate (1) by a model in which there are
q independent chromosome segments as described
above. In what follows, we first derive the number of
independent chromosome segments in different family
relationships or a random mating population, and
then use these numbers in the derivation of accuracy
of GEBV.

(a) Effective number of independent chromosome
segments within families

We will determine the effective number of chromo-
some segments by considering the variation in re-
lationship between pairs of individuals with the same
pedigree. For instance, based on pedigree all full sibs
have a relationship of 0.5 but in reality this relation-
ship varies from about 0.4 to 0.6 (Hill, 1993; Visscher
et al., 2006). This variation in relationship comes
about because sibs inherit large segments of chromo-
somes from their parents. The more the independent
chromosomes segments make up the genome the
more closely all full sibs would come to sharing ex-
actly 50% of their genome.

Formulae for the variation in realized relationship
between the different types of relatives have been
published by Hill (1993) and Guo (1996) and we will
use their formulae.

Consider a single locus and calculate the relation-
ship between relatives i and j, i.e. Gij. For full-sibs
25% of the time Gij=1, 50% of the time Gij=0.5 and
25% of the time Gij=0. So the variance is 1/8. If there
are q independent chromosome segments, then the
variance of Gij=1/(8q). However, the variance in Gij

can also be calculated for a genome consisting of
chromosomes of known length in Morgan. Hill (1993)
and Guo (1996) present formulae for this. For in-
stance, using their formula, if the genome consists of a
single chromosome 35 M long, then the variance in
relationship between pairs of full-sibs is 0.00177.
Equating this to the variance of Gij in our model
with q independent chromosome segments, 1/(8q)=
0.00177. So the effective number of loci is q=1/
(8*0

.00177)=70.6, close to the reported empirical
value of 82 for human full sibs (Visscher et al., 2006).
So if two gametes produced by the same sire (corre-
sponding to two sibs) are considered, then a 35 M
chromosome will experience approximately 70 cross-
overs (35 for each gamete). Therefore, the two gametes
can be considered as composed of 70 segments and for
each segment the probability that the two gametes are
identical is 0.5. Although we have assumed a single
chromosome here, Hill (1993) showed that the vari-
ation in relationship is not particularly affected by
assumptions on the number of chromosomes, pro-
vided the total length of the genome was kept con-
stant.

With the same assumptions as above, for half sibs,
the V(Gij) for a single locus is 1/16 and the variance
of relationship for a genome with one chromosome
35 M long is 0.00088 and so again qy70. For double
cousins, V(Gij) for a single locus is 3/32 and the vari-
ance in relationship from the formula of Guo (1996) is
0.00107, so q=88.

The number of effective loci is similar to the recom-
bination index for humans, assumed by Rasmusson
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(1993) to be the number of independently segregating
units in the genome.

(b) Effective number of chromosome segments in
a random mating population

To derive the effective number of loci in a random
mating population, consider two gametes taken at
random from the population. The position at one end
of a chromosome in both gametes can be traced back
until they coalesce. Positions close to this first point
will coalesce in the same ancestor but, as one moves
along the chromosome, a recombination will be
reached such that the next position coalesces in a dif-
ferent ancestor. Thus the two gametes can be seen to
be composed of a series of short chromosome seg-
ments that coalesce. The average length of these seg-
ments is 1/(4Ne), where Ne is the effective population
size (Stam, 1980). Therefore, the two gametes of
length L Morgan are divided into 4NeL segments.
However, some segments are larger by chance than
others so that if the effective number of segments is
calculated from the variation in relationship between
individuals in the population it is approximately
2NeL/log(4NeL) per chromosome (Goddard, 2008).
However, this approximation does not consider
the fact that the small segments may still contain as
many QTL mutations as the larger segments since
they have on average a longer time to trace back to
the same common ancestor and hence a longer time
for mutations to accumulate. Therefore, the most
appropriate value for the number of effective seg-
ments might be in between 4NeL and 2NeL/log(4NeL)
per chromosome. As an approximation, we will as-
sume that the effective number of loci is 2NeL and
then test the validity of this assumption with simu-
lated data.

The variation in relationship between two gametes
arises for two reasons. First, some pairs of gametes
are more closely related by pedigree than others. For
instance, some pairs of gametes may share a common
parent or grandparent, whereas other pairs do not.
Secondly, even considering pairs of gametes that have
the same pedigree relationship, they may share more
or less alleles than the average expected for that
relationship, due to Mendelian sampling. The first
source of variation in relationship is used by a con-
ventional individual model BLUP to estimate the
breeding values of individuals including those with no
phenotypic record. The second source of variation in
realized relationship is the source of the increase in
reliability of GEBVs. For a pair of gametes with
constant pedigree relationship, the ancestor in which
one chromosome segment coalesces is independent of
the ancestor in which another chromosome segment
coalesces. Consequently, the variation in relationship
due to this source would be zero if there were an

infinite number of unlinked loci. Even though
the number of positions in the genome may be very
large, linkage causes variation in relationship by gen-
erating chromosome segments that coalesce. Since
each segment coalesces independently conditional on
the pedigree, it again seems appropriate to estimate
the effective number of loci as in between the number
of segments (4NeL) and the number of segments
weighted by length (2NeL/log(4NeL) per chromo-
some), e.g. as 2NeL.

(c) Accuracy of genomic EBVs with information
from relatives

In what follows we will assume that fixed effects can
be adequately estimated and that the data have been
corrected for them, so y=Zg+e, where y is corrected
for fixed effects.

Even without any genetic markers, the breeding
value of an individual can be estimated from pedigree
and phenotypic records. We will focus on predicting
the increase in reliability due to markers of the GEBV
of an individual that has marker data but no pheno-
typic record and no offspring because that is the most
important use of genomic selection. That is, we will
calculate the increase in accuracy of GEBV above that
obtainable simply from the pedigree and records on
ancestors and collateral relatives. In this scenario, the
breeding value of the ith individual (gi) can be ex-
pressed as the mean of individuals with the same
pedigree as individual i ( f ) and a deviation from that
mean caused by the actual genes the individual in-
herited:

gi=f+ g
q

j=1
usij+ g

q

i=1
umij,

where f=family mean breeding value, usij=paternal
allele effect inherited by the ith individual at the jth
independent chromosome segment as a deviation
from family mean, umij=maternal allele effect in-
herited by the ith individual at the jth independent
chromosome segment as a deviation from the family
mean and summation is over all independent chromo-
some segments.

The variance of the breeding values is then

V(g)=V( f )+ g
q

j=1
V(usj)+ g

q

j=1
V(umj):

If we analyse the data y with the model and esti-
mate f, usj and umj :

ĝ= fˆ+ g
q

j=1
ûsj+ g

q

j=1
ûmj:

The components of this equation are independent,
as the effects of the sire and dam alleles are expressed
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as deviations from the family mean. Therefore

V(ĝ)=V( fˆ )+ g
q

j=1
V(ûsj)+ g

q

j=1
V(ûmj): (3)

The reliability of GEBVs is V(ĝ)/V(g) and the ac-
curacy is the square root of this reliability. The re-
liability can be calculated using eqn (3) and compared
with that obtained using only the family mean to
quantify the increase in reliability due to the marker
data.

With N progeny per family the reliability from
phenotypic and pedigree information alone is

V( fˆ )

V( f )
=

N

N+lf
,

where

lf=(V(y)xV( f ))=V( f ):

Now we calculate the increase in reliability with
genomic information. Assuming that there are n pa-
ternal alleles per family that are equally represented in
the data so that there are N/n individuals carrying
each paternal allele. As explained in the appendix
ls=2q/h2. Then

V(ûs)=s2
u(1x1=n)N=(N+nls) (derived in the

appendix)

g
q

j=1
V(ûsj)=0�5V(g)(1x1=n)N=(N+nls) because

V(g)=2qs2
u

gq

j=1V(ûdj) is calculated in a similar manner.
As an example consider the case of selecting among

a population of individuals consisting of full sib fam-
ilies. In this case V( f )=0.5 V(g), lf=(V(y)xV( f ))/
V( f )=(1x0.5h2)/(0.5h2) and V( fˆ )=0�5V(g)N

N+lf
: As

above, for full-sibs, if the genome consists of a single
chromosome 35-Morgan long, the variance in re-
lationship among pairs of full sibs is 0.00179 corre-
sponding to q=70 effective chromosome segments.
Consequently, su

2=V(g)/(2*70), ls=2q/h2=140/h2.
Within a family of full-sibs there are two paternal
alleles and two maternal alleles, so n=2,

g
q

j=1
V(ûsj)=0�5V(g)(1=2)N=(N+2ls)

and gq

j=1V(ûdj) is the same. If V(g)=1, N=99 and
h2=0.5, then

V( fˆ )=0�5*99=(99+3)=0�486:

So from eqn (3)

V(ĝ)=0�486+0�5*(1=2)*99=(99+2*280)

+0�5*(1=2)*99=(99+2*280)=0�561:

As V(g)=1, the reliability is 0.561.

(d) Accuracy of GEBVs in a random breeding
population

We also want to predict the increase in reliability of an
EBV using the realized relationship matrix compared
with the pedigree relationship matrix in a random
breeding population. As before, assume the breeding
value is the sum of many QTLs each of which is in
perfect Linkage disequilibrium (LD) with a marker.
That is, the breeding value of individual i is gi=
gq

j=1wijuj as before, except here it is convenient to ex-
press wij as a deviation from the mean, e.g. wij=
xijx2pj, where xij is 0, 1 or 2 representing homozygote,
heterozygote and other homozygote and pj is the allele
frequency at independent chromosome segment j and
as before uj is the allele substitution effect at the jth
independent chromosome segment assuming there
are only two alleles per independent chromosome
segment, and q is the number of independently segre-
gating chromosome segments, which for a randomly
mating population is derived above. The phenotypes
are modelled as in (1).

This derivation of accuracy of breeding value is
similar to those for full-sib families but differs in an
important way. In the full-sib case, each parent is as-
sumed to have two different alleles at each indepen-
dent chromosome segment, so the number of alleles at
one independent chromosome segment is four times
the number of families. Consequently, the genetic
variance at one independent chromosome segment in
the parental generation is 2su

2. However, in the case of
a random mating population, there are assumed to be
only two alleles per independent chromosome seg-
ment and the variance contributed by the jth inde-
pendent chromosome segment is V(wj) su

2=2pj(1xpj)
su
2 and the total genetic variance is sg

2=qV(w)su
2,

where V(w) is the average value of V(wj) over all in-
dependent chromosome segment. In the full-sib case,
we were estimating the effect of markers within a
family and so only the number of individuals within
the family could be used to estimate u. On the other
hand, the effective number of loci within a full-sib
family is small because large segments of chromosome
segregate within a family. By contrast in a random
mating population we are estimating the effect of u
across the population, so all individuals with pheno-
types (N) can be used but the effective number of loci
is large because there must be a marker close enough
to any QTL to be in high LD with it.

There is assumed to be no LD between the QTLs
so the BLUP equations for estimating u are approxi-
mately block diagonal with the jth independent
chromosome segment having a block of equations

[WkjWj+l] ûj=Wkjy
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or alternatively

NV(wj)=[NV(wj)+l]ûj=g
N

i

wijyi

and the reliability of ûi is NV(wj)/[NV(wj)+l], where
N=total number of individuals with phenotypic re-
cords, V(wj)=2pj(1xpj) is the marker variance and
l=se

2/su
2. The value of su

2 is calculated from the total
genetic variance as V(g)/(qV(w)), where q is the num-
ber of independent chromosome segments as de-
scribed above for a random mating population and
V(w) is the average heterozygosity of all independent
chromosome segments. If we assume that indepen-
dent chromosome segments are neutral, then the dis-
tribution of allele frequency p is f(p)=k/[2p(1xp)],
where k=1/log(2Ne) assuming that p is bounded by 1/
(2Ne) and 1x1/(2Ne), and V(w)=k (Hill et al., 2008).
Thus l=se

2/su
2=qk/h2 assuming, as in the Appendix,

that se
2 is close to the phenotypic variance.

Goddard (2008) showed that the reliability of the
EBV from many marker effects is a weighted average
of these individual marker reliabilities where the
weights are V(wj), i.e. the heterozygosity of each mar-
ker. Thus, the heterozygosity enters in two ways – the
greater the V(w), the greater the reliability of the
marker effect and the greater the weight. Assuming
the distribution of allele frequencies is that predicted
by the neutral model, Goddard (2008) gives the fol-
lowing formula for reliability of GEBVs calculated as
the sum of the marker effects :

Reliability of GEBV=[1xl=(2N
p
a)

*log ((1+a+2
p
a)=(1+ax2

p
a))],

(4)

where a=1+2l/N. We used this formula to calculate
the reliability of GEBV with Ne of 25, 50, 100 or 250,
with 1000 or 2500 phenotypic records.

For instance, consider the case where N=1000,
Ne=25, h2=0.5 and L=29.

Then k=1/log(2Ne)=0.256, q=2NeL=1450, l=
qk/h2=741, a=1+2l/N=2.48. The reliability of
GEBV in unphenotyped individuals is then

[1xl=(2N
p
a)* log ((1+a+2

p
a) =(1+ax2

p
a))]

=0�29:

(iii) Simulation approaches to verify analytical
predictions of accuracy of breeding values

To verify the analytical approach to predicting accu-
racy, we have used two simulation approaches. The
first approach calculates accuracy from the PEV of
breeding values derived from the left-hand side of the
mixed model equations, with realizations of the re-
lationship matrix from simulation.

Given model (2) above and assuming that b is
known, then BLP(g)=AZkVx1(yxXb), where A is

the predicted relationship matrix and V=ZAZksg2+
Ise

2.

V(ĝ)=AZkVx1ZA,

PEV=V(g)xV(ĝ)=AxAZkVx1ZA=A(IxZkVx1ZA):

If the variance components such as the additive
genetic variance are known, then we can predict the
accuracy of selection for every individual in the pedi-
gree file.

With marker data we can estimate the actual re-
lationship matrix G, with E(G)=A. Hence G is a
random ‘variable’. We are interested in the expected
value of PEV over repeated samples of G given the
pedigree, BLP(g|G)=GZkVG

x1(yxXb) where VG is
V above using G in place of A, and EG[V(ĝ|G)]=
E[GZkVG

x1ZG].
The samples of G can be generated using simu-

lation. The program Merlin (Abecasis et al., 2002)
was used to gene-drop whole genomes, and from these
simulations G and V(ĝ|G) were estimated. We re-
peated these simulations 100 times for 10 relatives and
10 times for 100 or more relatives to obtain an ex-
pected PEV for each individual in the pedigree and
therefore the expected increase in accuracy of selec-
tion by using the realized relationship matrix and
compared the expected PEV with the PEV for G=A.

The pedigrees simulated were identical to those
used in the analytical approach above, i.e. full sibs,
half sibs or double first cousins. Marker genotypes at
each locus were simulated with a number of equifre-
quent alleles. The limit of Merlin is 63 alleles/locus;
so, the frequency at each locus was 1/63. Elements of
G were genome-wide identical by state sharing stat-
istics calculated by simply averaging identity by states
(IBS) across the loci. For each pair of individuals and
each locus, IBS was calculated as IBS=1

2ggdjk, with
djk an indicator variable which is 1 if allele j (j=1, 2)
in the first individual is identical to allele k (k=1, 2)
in the second individual. Similarly for inbreeding/
homozygosity, for each locus and for each individual,
homozygosity identical by state (HIBS)=d, with d=1
if the two alleles are identical. These statistics were
averaged over all 3500 markers (spaced at 1 cM in-
tervals). To obtain an unbiased prediction of the
genome-wide IBD sharing, the following adjustments
were made:

pg(i, j)=[mean(IBS)ijx2=m]=(1x1=m),

fg(i)=[mean(HIBS)ix1=m]=(1x1=m),

where m is the number of alleles per marker (=63),
pg(i, j) is the estimate of genome-wide IBD sharing
between individuals i and j, fg(i) the estimate of the
genome-wide inbreeding coefficient of individuals i,
and the mean statistics are averaged over all 3500
markers. The adjustment is to account for the
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expected values of unrelated individuals. The defi-
nition of IBS here was 0.5*(IBS of all the four poss-
ible 4 allelic comparisons) between two individuals.
Then if the allele frequency of allele i is pi, then P
(IBSjunrelated)=2gm

ix1p
2
i : If the alleles are equifre-

quent, as is the case here, then P(IBS|unrelated)=2m/
m2=2/m. In order to get an unbiased estimated, the
term is then divided by 1x1/m.

Of the N progeny simulated, Nx1 had a pheno-
type. The accuracies of breeding value were for in-
dividuals without phenotypes.

The value of V(ĝ)/V(g) was the reliability of breed-
ing values.

Note that for the scenario simulated (a single
chromosome of 3500 cM in length), the genome-wide
SD in identity for full sibs, half sibs and double first
cousins are approximately 0.042, 0.030 and 0.033, re-
spectively.

This simulation is based on the PEV expected from
theory but no QTLs were included in the simulation.
The second simulation method simulates QTL and
markers to investigate the effect of the number of
markers, the number of QTLs and the effective
population size on the increase in accuracy as a result
of using the realized relationship matrix and to fur-
ther verify the analytical approach above.

To create a population in equilibrium between
mutation, drift and recombination, we simulated a
population of Ne=1000 individuals with random
mating for 6000 generations. Each individual in the
population consisted of 29 pairs of chromosomes, and
was either male or female (probability 0.5). Each
chromosome was 1 M long, and had 345 marker loci
and 340 QTLs. To create an offspring, a pair of par-
ents of different sex was randomly chosen from the
population. For each parent in a mating pair, a ga-
mete was formed from its chromosome pairs by sam-
pling the number of crossovers for each chromosome
pair from a Poisson distribution, with a mean of 1.
Crossover points were randomly positioned along
chromosome pairs. The haploid gametes were mu-
tated at a rate that gave an average final marker het-
erozygosity of 0.32. The mutation rate was adjusted
to ensure this heterozygosity using the formula u=H/
4Ne where H was the desired heterozygosity (chosen
as 0.32, as this is similar to the heterozygosity of
Single Nucleotide Polymorphism (SNP) from whole
genome association experiments in some species, e.g.
Hayes et al., 2007) andNe was the effective population
size simulated. The mutation rate at the QTL was
altered to give 10, 100 or 1000 segregating QTLs. If a
locus was mutated, a new allele was added. If the
locus was a QTL, the effect of the new QTL allele on
the quantitative trait following mutation was sampled
from a gamma distribution (scale=5.4 and shape=
0.42), and with an equal probability of favourable or
unfavourable effect, as described by Hayes &

Goddard (2001). The genetic value of individual i was
gi=gq

j=1usij+gq

i=1umij, where usij is the effect of the
paternal allele inherited by progeny i at QTL j, and
umij is the effect of the maternal allele inherited by
progeny i at QTL j.

To measure reliability in full sib families, in gener-
ation 6000, 10 males and 10 females were mated to
generate 10 full sib families, each of 200 individuals.
Phenotypes were created for 100 individuals in each
full sib family by adding a random normal variate to
gi, to give the desired level of heritability.

Breeding values for both phenotyped and non-
phenotyped individuals were then predicted by solv-
ing the equations for model (1) above:

[ĝ]=[ZkZ+Gx1s2
g]
x1[Zky], (5)

where Z is matrix allocating records to phenotypes, y
is a vector of phenotypic records, G is the realized
relationship matrix calculated as above, and sg

2 is the
additive genetic variance. G was calculated using ap-
proximately 100, 1000, 2500, 5000 or 10 000 equally
spaced markers. Reliabilities of breeding values for
the un-phenotyped progeny were the square of the
correlation between their true and predicted breeding
values. Results are averages of 10 replicates.

A second set of simulations were performed to as-
sess the effect of changing Ne on the accuracy of pre-
dicting breeding values for un-phenotyped individuals
drawn at random from a population. In these simu-
lations, the Ne for 6000 generations was 25, 100 or
250. Heterozygosity of markers was maintained at
approximately 0.32 for each value of Ne by adjusting
the marker mutation rate. The 1000 individuals were
assigned phenotypes as above. A further eight gen-
erations of breeding with random mating was then
performed, so that the differences between individuals
in ancestry eight generations ago, when phenotypes
were collected, were small. The idea here was to sep-
arate the contribution of linkage and linkage dis-
equilibrium to the reliability of the breeding values.
Breeding values were predicted with (5) for individ-
uals in generation 6009 using phenotypes and geno-
types from individuals in generation 6001. Breeding
values were also calculated for individuals in gener-
ation 6002 in some simulations.

3. Results

(i) Prediction of GEBV when the pedigree is known
and there are an infinite number of QTLs

The agreement between accuracy of GEBV calculated
by the analytical method and from simulation was
generally excellent (Table 1). Excluding cases where
h2=1, the average difference between the predicted
and observed reliabilities was 0.004, and the maxi-
mum difference was 0.023. Reliability increased with
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Table 1. Comparison of analytical (in bold) and simulated results for
reliability of GEBVs calculated using either predicted or realized
relationship matrices

Design h2
N
progeny

Reliability

Ratio (SE)A-matrix G-matrix

Full sibs 1.0 10 0.450 0.480 1.067 (0.006)
0.454 0.466

100 0.495 0.741 1.496 (0.013)
0.495 0.625

1000 0.499 0.968 1.939 (0.002)
0.499 0.890

0.50 10 0.374 0.384 1.025 (0.005)
0.385 0.383

100 0.486 0.582 1.201 (0.009)
0.485 0.560

1000 0.498 0.816 1.535 (0.009)
0.499 0.819

0.10 10 0.161 0.163 1.011 (0.006)
0.161 0.162

100 0.419 0.438 1.042 (0.002)
0.419 0.437

1000 0.491 0.619 1.261 (0.008)
0.491 0.622

Half sibs 1.0 10 0.188 0.194 1.036 (0.008)
0.189 0.195

100 0.243 0.320 1.320 (0.004)
0.243 0.308

1000 0.249 0.433 1.736 (0.014)
0.249 0.444

0.50 10 0.140 0.146 1.039 (0.008)
0.147 0.145

100 0.234 0.272 1.168 (0.003)
0.234 0.271

1000 0.248 0.392 1.577 (0.010)
0.248 0.408

0.10 10 0.047 0.048 1.021 (0.008)
0.047 0.048

100 0.179 0.188 1.046 (0.003)
0.179 0.188

1000 0.241 0.300 1.249 (0.007)
0.241 0.306

Double first cousins 1.0 10 0.188 0.200 1.068 (0.010)
0.189 0.200

100 0.243 0.356 1.469 (0.006)
0.243 0.336

1000 0.249 0.783 3.141 (0.015)
0.249 0.691

0.50 10 0.140 0.146 1.038 (0.008)
0.140 0.145

100 0.234 0.284 1.216 (0.004)
0.234 0.283

1000 0.248 0.538 2.169 (0.020)
0.248 0.561

0.10 10 0.047 0.048 1.019 (0.008)
0.047 0.048

100 0.179 0.189 1.054 (0.003)
0.179 0.190

1000 0.240 0.335 1.396 (0.008)
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increasing number of family members and heritability
within each type of family. This is expected because
with more family members the effects of alleles within
that family are estimated more accurately and as
heritability increases there is less environmental noise
affecting the phenotypic value. For full-sibs anddouble
first cousins, the reliabilities approach 1.0 if family
size is high enough. For example, when the herita-
bility of the trait was 0.5, and there were 1000 full sibs
per family, the predicted reliability of GEBV was
0.819 and the reliability observed in the simulations
was 0.816.

The reliabilities are high in these situations because
there are only two paternal and two maternal alleles
segregating within a full-sib family and four of each
within a double first cousin family. Consequently, if
there are enough records, the effect of these alleles can
be estimated accurately. For half-sib families, the ef-
fect of paternal alleles can be estimated accurately but
the effect of the maternal alleles cannot be estimated
at all because each new half sib carries a new maternal
allele. Therefore, the reliabilities for half-sibs ap-
proach are 0.5.

When the heritability of the trait was one, the agree-
ment between the analytical predictions and simu-
lation results was less consistent. Particularly as the
number of individuals per family became larger, the
analytical prediction tended to be lower than the
simulated results.

(ii) Prediction of GEBV when the pedigree is known
and there are a finite number of QTLs

In the second set of simulations, the markers simu-
lated were similar to SNPs in the number of alleles

and level of polymorphism, segregating in full sib
families with 100 individuals per family with pheno-
typic records. A large number of markers were re-
quired to achieve the reliabilities predicted by the
analytical method, regardless of heritability (Fig. 1).
With 5000 markers, reliability of GEBV for un-
phenotyped individuals was very close to that pre-
dicted by the analytical method.

Changing the number of QTLs affecting the quan-
titative trait did not alter the reliabilities of GEBV
that could be predicted for un-phenotyped full sibs,
provided the number of markers was large (Fig. 2).
However, reliabilities were high in the case of 10
QTLs even when relatively few markers were used.
With low numbers of QTLs, the effects of large seg-
ments of chromosome will be the same even with
some level of recombination, as many recombination
events will not add new QTL alleles to the chromo-
some segment. So even if these recombination events
cannot be detected as a result of using the limited
number of markers, provided the number of QTLs is
very low the effects of many IBS segments that are not
IBD will actually be zero, and this will have little im-
pact on accuracy.

(iii) Prediction of GEBV in random populations

In the random mating population, the deterministic
prediction of reliability was always higher than that
from the simulations (Table 2). In part this is because
the simulation measured the reliability of eight gen-
erations after the phenotypic data were collected.
Consequently, there have been eight generations of
recombination between markers and the QTL before
the prediction was tested. This would reduce the
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Fig. 1. Reliabilities with increasing number of markers in simulations for a full sib family of 100 individuals.
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reliability by 1–2% per generation and when this is
allowed for the simulated and predicted reliabilities
agree more closely.

For comparison, when the reliability of GEBV was
calculated for individuals in the generation sub-
sequent to collecting phenotypes, the reliabilities were
higher than the predictions. For example, with
Ne=25, the reliability of breeding values in gener-
ation 6002 was 0.44, compared with the predicted
value of 0.29. The high reliability in generation 6002
is likely to reflect the differences in pedigree between
individuals, the contribution of linkage between the
markers with the QTL, as well as linkage dis-
equilibrium between the markers and the QTL.

It is also possible that the reliability in the simu-
lations would have been greater had more than 10 000
markers been used since 5000 markers were needed

for maximum reliability even in full-sib families.
However, the derivation of the reliability used an
inexact value for the number of independent chromo-
some segments and this may be the reason why the
simulated reliability is less than that predicted. De-
spite the over-prediction of reliability by the predic-
tion method, it is still useful because it explains the
variables affecting reliability and gives a good guide
when Ne is large and simulation becomes very slow.

The results show that increasing Ne decreases re-
liability because it increases the number of effective
chromosome segments whose effects must be esti-
mated. The more effective the segments, the smaller
are their effects and the more records are required to
estimate them accurately. The formula and the results
in Table 2 show that the accuracy remains almost
constant if N/Ne remains constant.
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Fig. 2. Effect of different numbers of QTLs on the reliability of GEBV in full sib families.

Table 2. Effect of Ne on reliability of GEBV in random mating population

Effective
population
size (Ne)

Number of
records

Effective
number of
chromosome
segments h2

Reliability

Simulated Predicted

25 1000 1450 0.5 0.24 0.29
0.2 0.075 0.14

50 1000 2900 0.5 0.16 0.21
0.2 0.058 0.09

100 1000 5800 0.5 0.083 0.13
0.2 0.042 0.06

250 2500 14 500 0.5 0.09 0.15
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Decreasing the heritability also decreases the re-
liability because the ratio of phenotypic variance to
QTL variance increases, just as it does if the number
of effective chromosome segments is increased.

4. Discussion

In this paper, we have presented a model equivalent to
the BLUPmodel suggested byMeuwissen et al. (2001)
that uses the realized relationship matrix rather than a
design matrix to allocate chromosome segment effects
to individuals. If the number of markers being used
to estimate breeding values is much larger than the
number of individuals, a major advantage of our
equivalent model is the reduction in the number of
parameters that must be estimated from the number
of markers to the number of individuals. As the
models are equivalent there is no reduction in the ac-
curacy of predicting breeding values.

One extension of our equivalent model leads to an
analytical prediction of the accuracy of breeding
values that can be achieved for individuals without
phenotypes but belonging to kinships such as full sibs,
half sibs or double first cousins. Provided the herita-
bility of the trait was less than one, the agreement
between the analytical predictions and results from
simulations were very good.

The analytic method underestimates the reliability
when h2=1 because in this situation the approxi-
mation used for the residual variance fails. In the ap-
pendix we assumed that, when the effects at one QTL
are being estimated, the residual variance is not de-
creased by the estimated effects of all other QTLs.
That is, we assumed that the residual variance was
that which would occur if the effect of each QTL was
estimated by itself without fitting all other QTLs in
the model. This approximation works well except
when h2=1. In this situation there is in theory no re-
sidual variance and the estimated effects are accurate
enough to decrease the residual variance and conse-
quently increase the reliability above that calculated.
Since traits with h2=1 are rare, this should not be a
severe limitation in practice.

The analytical method predicts that breeding values
for individuals within families can be predicted with
close to 100% accuracy. However, large numbers
of phenotypic records are required to achieve this.
For example with h2=1, 1000 phenotypes from in-
dividuals in a full sib family would allow the GEBV
for another member of the family without a pheno-
type to be predicted with an accuracy of 0.94.
Villanueva et al. (2005), using simulation, also dem-
onstrated using the realized relationship matrix
rather than the predicted relationship matrix in the
calculation of breeding values could lead to higher
accuracies of selection. However, the gains they
achieved as a result of using the realized relationship

matrix were modest compared with those achieved
here, because they used relatively small family sizes
and a limited number of markers. In practice, the
ability to exploit the variation in the proportion of the
genome, which is IBD between individuals in kinships
such as full sibs to increase the accuracy of breeding
values, will be limited by the number of full sibs or
kindreds with phenotypes required in the prediction.
The number of markers required is also large, in the
order of 2500. While such large full or even half sib
families are rare in most species, they do occur in
aquaculture and plant species.

A second extension of our model leads to an ana-
lytical prediction of the accuracy of GEBV in ran-
domly mating populations. Here, the accuracy of
breeding values depends on the effective popu-
lation size, the number of phenotypic records, the
heritability and the number of markers. If Ne is large,
the number of independent chromosome segments is
also large. This means that the extent of LD will be
limited in the population, so a very large number of
markers are required to capture the effects of the
QTL. Further, a very large number of markers and
phenotypic records will be required to predict breed-
ing values for unphenotyped individuals with any ac-
curacy, particularly if the heritability is low (Fig. 3).
In humans, the effective population size is very large
(approximately 10 000) and the extent of LD is very
limited (e.g. Dunning et al., 2000; Reich et al., 2001;
Tenesa et al., 2007). Our analytical approach suggests
that very large numbers of phenotypic records would
be required to predict breeding values for unpheno-
typed individuals with any accuracy in the human
population.

In livestock populations, the effective population
sizes can be as low as 100 (e.g. Holstein Friesian cat-
tle, Riquet et al., 1999). In this situation, the analyti-
cal approach predicts that accurate breeding values
can be predicted with thousands of records rather
than hundreds of thousands, provided the heritability
of the trait is high. However, in some livestock popu-
lations, the number of independent chromosome seg-
ments is likely to be larger than what the current
effective population would predict because the effec-
tive population size has been larger in the past (e.g.
Hayes et al., 2003).

An alternative to predicting the number of inde-
pendent chromosome segments from effective popu-
lation size would be to use very dense SNP data
to infer the number of independent segments di-
rectly. For example, The International HapMap
Consortium (2007) genotyped three human popu-
lations for 3.3 million SNPs. They estimated the
number of ‘haplotype blocks’ in the human genome,
where a haplotype block contains SNPs in very high
LD within the block, but reduced LD between blocks.
These haplotype blocks are similar in concept to our
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independent chromosome segments. In the European
and Chinese plus Japanese population, the estimate of
the number of ‘haplotype blocks’ was approximately
300 000, while in the Nigerian population there were
more than 600 000 haplotype blocks. Again, such
large numbers imply that very large numbers of
phenotypic records would be required to predict
breeding values for unphenotyped individuals with
any accuracy in the human population.

In many species, there are some moderately large
families and so the use of the realized relationship
matrix would use both linkage based on families and
LD across the whole population. This can also be
achieved by the ‘LDLA’ method of Meuwissen &
Goddard (2004). As the pedigree is traced further and
further back in time, the linkage analysis becomes
indistinguishable from the LDLA method.

Our analytical method assumes that all indepen-
dent chromosome segments have an effect on the trait.
If the number of QTLs affecting a trait is substantially
less than the effective number of chromosome seg-
ments, then EBVs of higher accuracy can be obtained
by methods that assume that only some markers have
QTLs associated with them (Meuwissen et al., 2001;
Habier et al., 2007; Wray et al., 2007; Goddard,
2008). These methods of analysis can be described in
terms of model selection (which markers are included
in the model) or in terms of a prior distribution of
marker effects, which contains a large number of
markers with zero effect. If the assumption that there
are many chromosome segments with zero effect is

true, utilizing this assumption leads to higher EBV
reliabilities (Goddard, 2008). Our analytical predic-
tions will under-estimate the reliabilities achievable in
this case. However, if the number of QTLs ap-
proaches the number of chromosome segments, then
it is best to fit models such as those used in this paper
and to acknowledge that very large datasets will be
needed.

The analytical methods described here will be a
useful tool for designing experiments where the aim is
to predict either GEBVs or phenotypes where gene
action is additive, from dense marker data. Given a
desired level of accuracy of predicting GEBV for in-
dividuals with genotypes only, our analytical method
determines the number of individuals that must be
phenotyped and genotyped in order to achieve this
level of accuracy. For example, if the heritability of
the trait is 0.3, and Ne=1000, approximately 5750
individuals with genotypes and phenotypes are re-
quired in order to predict GEBVs of un-phenotyped
individuals in the same population with an accuracy
of 0.7. Further work could extend our analytical
method to simultaneously consider linkage and LD in
the prediction of accuracy of GEBV, and account for
imperfect marker coverage.

Appendix. Variance of estimated QTL effects within

family

The reliability of estimating the effect of individual
alleles can be derived from the BLUP equations.
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Ignoring fixed effects, the model for an individual re-
cord is

yi=f+ g
q

j=1
wsijusij+wdijudij
� �

+ei,

where, as in the main text, f=the family mean, w_j

indicates the allele at the jth QTLwith sub-script s or d
for sire and dam alleles and us_ and ud_ are the effects
of the sire and dam alleles.

This results in a large set of equations but many of
the terms are approximately independent. For in-
stance, the alleles at one effective QTL (wj) are in-
herited independently of the alleles at other effective
QTL (e.g. wj+1), given our definition of QTL as in-
dependent loci. This means that the equations are
approximately block diagonal. In the case of a family
of half-sibs, for instance, there are two paternal alleles
and approximately half the offspring (N/n, where
n=2) in the family will receive each one. Therefore,
we will approximate the complete set of equations
with the equations for one QTL and assuming that all
alleles are equally represented. In matrix notation, the
model becomes

y=f1n+Wu+e (A1)

and the mixed model equations, treating f as fixed
temporarily, are

1nk1n 1nkW
Wk1n WkW+lI

� �
f
u

� �
=

1nky
Wky

� �
:

When the terms are evaluated, the left-hand side
matrix becomes

N 1nkN=n
N=n1n (N=n+l)I

� �
:

The inverse of this matrix is

1=N+1=(nl) x1nk=(nl)
x1=(nl) (I+J(N=n2l)(n=N+nl)

� �
:

The PEV of û can be obtained from this inverse
matrix. The estimates of u are used for selection
within family, so we require the PEV of uxū. This is

lV(u) (nx1)=(N+nl):

Using the variance of the true uxū=s2
u(nx1)=n,

the variance of ûxū is

s2
u (nx1)=n*N=(N+nl):

Note that except for (nx1)/n, which corrects for
selection within only n possible alleles, this is the
normal formula for reliability of a BLUP solution
based on N/n records for each effect to be estimated,
i.e. (N/n)/(N/n+l).

In the full equation set, the residual variance is
V(y)(1xh2) because all the genetic variances are in-
cluded in the model. However, the full equations will
never be exactly balanced across all terms, and so the
PEV will be greater than that calculated above if l
were based on this residual. We have found that the
PEV are approximated better if we use the error in
eqn (A1), which is the phenotypic variance minus the
variance explained by one QTL allele. The variance
explained by one QTL is very small and 2qV(u)=
V(g), so l=V(y)/V(u)=1/(h2/(2q))=2q/h2.
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