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Increased correlation between methylation sites in epigenome-wide replication studies: impact 1 

on analysis and results 2 

 3 
 4 
Abstract 5 

Aims: To show that an increased correlation between CpGs after selection through an EWAS might 6 

translate into biased replication results.  7 

Methods: Pairwise correlation coefficients between CpGs selected in two published EWAS, the top 8 

hits replication, Bonferroni p-values, Benjamini-Hochberg (BH) FDR and directional FDR r-values 9 

were calculated in the NINFEA cohort data. Exposures’ random permutations were performed to 10 

show the empirical p-value distributions. 11 

Results: The average pairwise correlation coefficients between CpGs were enhanced after selection 12 

for the replication (e.g. from 0.12 at genome-wide level to 0.26 among the selected CpGs), affecting 13 

the empirical p-value distributions and the usual multiple testing control. 14 

Conclusions: Bonferroni and BH-FDR are inappropriate for the EWAS replication phase, and 15 

methods that account for the underlying correlation need to be used. 16 

 17 
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Introduction 26 

Recent technological developments have enabled the widespread use of epigenome-wide 27 

association studies (EWAS) focused on identification of DNA methylation markers of disease state 28 

and progression and markers of a variety of exposures. Many large projects and some consortia 29 

have been established to reach a large sample size and allow comprehensive epigenetic mapping.  30 

Although methylation occurs throughout the genome, it is often clustered along a chromosome with 31 

CpG sites likely being in the same methylation state when they are spatially close together [1]. 32 

CpG-rich areas, known as CpG islands [2], contain correlated sites with similar methylation state. 33 

The issue of correlation between nearby loci has been tackled to some extent in the EWAS by 34 

analyzing together areas with analogous functions. Region discovery [3], bump hunting [4], 35 

different clustering methods [5,6], or grouping by genomic annotations are only some of the 36 

strategies proposed in the literature that cope with correlated CpG sites. These methods offer 37 

biologically interpretable results but replication after the discovery phase is not straightforward [7]. 38 

As well recognized in the context of genome-wide association studies, replication and validation of 39 

epigenome-wide findings is essential and may be challenging. This task traditionally implies testing 40 

of few candidate CpG loci identified as top hits in the discovery sample, by applying gold-standard 41 

experimental methods, such as pyrosequencing, in an independent sample. Recently, high-42 

throughput epigenome-wide studies focusing on exposures that have extensive impact on DNA 43 

methylation identify hundreds or thousands of potentially relevant single methylation sites. 44 

Replication/validation of these candidates with pyrosequencing is not possible in practice. 45 

Therefore, we often rely on replication in an independent sample with available epigenome-wide 46 

data, such as those from large epigenome consortia.  47 

Under such scenario, it is intuitive that the average pairwise correlation between single sites in the 48 

large discovery EWAS will be lower than the average pairwise correlation between the few 49 

hundreds of single sites selected for the replication study. This fact is rarely taken into consideration 50 
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in EWAS replication studies and the analyses in the replication sample may, thus, be biased. 51 

Benjamini-Hochberg False-discovery rate (FDR) correction [8], which is typically used both in the 52 

discovery and replication phase of the epigenome-wide studies is robust, yet does not take into 53 

account the underlying correlation structure. For what we have said insofar, the robustness of the 54 

procedure to the lack of independence is much more important for the replication than for the 55 

discovery study. In replication studies based on epigenome-wide data, an appropriate null 56 

hypothesis must be considered as, for example, done by permutation procedures. Alternatively, 57 

directional false-discovery rate (FDR) control for the replicability null hypotheses - the so-called 58 

FDR r-value has been recently proposed [9, 10].  59 

This article has an illustrative intent. We first show with real data examples that the average 60 

pairwise correlation between CpG sites increases after selection through an epigenome-wide 61 

discovery analysis, and then illustrate how this increased correlation may influence the p-value 62 

distribution under the null hypothesis and translate into biased interpretations of the results in 63 

replication analyses. Finally, we present one of the available methods appropriate for replication 64 

studies – r-value - that quantifies the strength of replication taking into account the underlying 65 

correlation structure [9].
 

66 

Materials 67 

Literature dataset 68 

We used findings from two studies assessing DNA methylation in newborns in association with two 69 

different exposures: i) a study on 6685 children from the Pregnancy and Childhood Epigenetics 70 

(PACE) consortium that identified 6073 over 464,628 CpG sites whose methylation levels were 71 

associated with maternal sustained smoking during pregnancy [11], and  ii) a study on sex 72 

differences in DNA methylation in 111 Mexican-American newborns, members of the 73 

CHAMACOS study, that identified 3031 over 410,072 CpG site candidates located on the 74 

autosomal chromosomes [12]. Both studies involved analyses on DNA methylation from cord blood 75 
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samples measured using the Infinium HumanMethylation450K BeadChip array. CpG sites for 76 

replication were selected by using a fixed threshold of Benjamini and Hochberg FDR-corrected p-77 

values of 0.05.  78 

In addition, a publicly available data set (the Gene Expression Omnibus database accession number 79 

GSE77716) with whole blood DNA methylation data measured using the Infinium 80 

HumanMethylation450K BeadChip array for 573 participants of Mexican and Puerto Rican descent 81 

from the GALA II study [13] was used to determine the correlation between CpG sites selected in 82 

the PACE and CHAMACOS study. The complete GALA II data included pre-processed 83 

methylation data from 473,838 CpG sites [13].  84 

NINFEA replication study 85 

The selected CpG candidates from the two literature datasets described above were retested in 86 

epigenome-wide data coming from the NINFEA birth cohort [14]. The study design was a nested 87 

case-control study on 72 cases with at least one reported episode of wheezing between 6 and 18 88 

months of age and 72 controls matched to cases by sex, age at sampling and seasonality/calendar 89 

year of sampling. In the NINFEA birth cohort saliva samples are routinely collected from infants at 90 

approximately 6 months of age using a mailed Oragene self-collection kit, and in the nested case 91 

control study we focused on saliva DNA methylation markers of childhood wheezing (data not 92 

published). DNA extracted from the saliva samples of cases and matched controls was assessed for 93 

epigenome-wide methylation using the Illumina Infinuim HumanMethylation450 BeadChip. Three 94 

cases and three matched controls were excluded during the quality control checks, leading to a total 95 

of 138 subjects available for the analyses. The baseline NINFEA questionnaire is completed by 96 

mothers during pregnancy and includes questions on sustained smoking in pregnancy, while 97 

information on child’s sex is obtained at the first follow-up questionnaire completed 6 months after 98 

delivery. 99 
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The Ethical Committee of the San Giovanni Battista Hospital and CTO/CRF/Maria Adelaide 100 

Hospital of Turin approved the NINFEA study (approval N. 0048362, and subsequent 101 

amendments), and all the participating mothers gave their informed consent before taking part in the 102 

study. 103 

Methods 104 

Statistical analyses  105 

NINFEA cases and controls were pooled together. DNA methylation at more than 485,000 CpG 106 

sites was measured by the Illumina Infinuim HumanMethylation450 BeadChip and expressed both 107 

as percentage (Beta values) and converted to M values by a logit transformation [15].
 
After quality 108 

control checks and probes filtering (probes corresponding the SNPs inside the probe body and SNPs 109 

at CpG sites, cross hybridizing and probes on the sex chromosomes) a total of 321,084 probes were 110 

available in the NINFEA dataset.  111 

For two literature datasets (the PACE consortium and the CHAMACOS study) we retrieved the 112 

published selected altered CpG sites that were then used in the NINFEA and the GALA II datasets. 113 

Due to different probes filtering between the NINFEA study and the two literature datasets, there 114 

was an incomplete overlap of the top hits. 115 

All the analyses were performed using R statistical computing software (version 3.4.0) and RStudio 116 

(version 0.99.491) [16].  117 

The analytical flow is summarized in Figure 1 and described below in details.                                                       118 

Correlation analysis 119 

For the two groups of selected CpG sites – derived from the literature examples – we estimated, in 120 

138 subjects from the NINFEA dataset, the partial pairwise Spearman correlation coefficients 121 

between the CpG site M values controlling for batch. To ensure that an increased correlation was 122 

not influenced by the small sample size or different tissue type we performed sensitivity analyses by 123 
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calculating pairwise Spearman correlation coefficients between CpG sites M values measured from 124 

whole blood of 573 GALA II participants. The distributions of correlation coefficients were 125 

compared with the distribution of genome-wide pairwise correlation coefficients between CpG sites 126 

(histograms, summary statistics with the 3
rd

, 50
th

 and 97
th

 percentiles, F test on homogeneity of 127 

variance on Fisher’s zeta transformation [17]). To obtain the genome-wide correlation distribution, 128 

we calculated the pairwise correlation coefficients between 100,000 randomly selected CpG pairs 129 

among all available CpG sites in the NINFEA and GALA II datasets. 130 

Replication analyses 131 

Replication of CpG sites associated with maternal smoking and those associated with child’s sex 132 

was then conducted in the NINFEA data. It should be noted that the replication analyses were 133 

performed only for demonstration purposes, as the NINFEA dataset was underpowered to replicate 134 

findings from the discovery studies. Our main aim was to permute and re-analyze the selected 135 

exposures in order to show the effect of an increased correlation on the empirical p-value 136 

distributions under the null hypothesis (see below).  137 

For both replication analyses we specified models identical to the models of the discovery studies. 138 

Replication of the top hits associated with maternal smoking during pregnancy was performed using 139 

robust linear regression model adjusted for maternal age, maternal education (low, medium and 140 

high), parity and batch. Heteroscedasticity consistent standard errors were calculated using vcovHC 141 

function with the HC2 estimator, available in the package sandwich implemented in the R system 142 

for statistical computing [18].   143 

Methylation levels at CpG sites selected in the CHAMACOS study were related to child’s sex using 144 

linear regression models with heteroscedasticity consistent standard errors, adjusted for batch. To 145 

improve the models fit, the discovery study on child’s sex adjusted the models also for the cell 146 

composition estimated directly from the samples [12]. We did not adjust for cell composition as, to 147 

the best of our knowledge, no widely-accepted reference data set for the saliva cell composition 148 
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exists. The most commonly used reference-free method [19] has been shown to have poor 149 

performance in scenarios with binary phenotypes [20], may diminish important phenotypic 150 

variation, and we are not aware of studies assessing its performance in saliva samples. Finally, the 151 

association between sex and cell composition is unlikely, and even if present the cell composition 152 

would likely be on the pathway between child’s sex and DNA methylation levels.  153 

Histograms and quantile-quantile (QQ) plots were used to graphically evaluate the observed versus 154 

the expected uniform null distribution of p-values. Deviations from the uniform distribution were 155 

also formally tested using the Kolmogorov-Smirnov test [21].
 

156 

Assessment of the empirical p-value distributions 157 

To evaluate the impact of the increased correlation among the selected CpG sites, we assessed the 158 

p-value distributions under the null-hypothesis of no effects of the exposures on the methylation 159 

levels in the selected CpG sites. For this purpose, we generated 10,000 random shuffling of the 160 

exposed-unexposed status for each individual in the two datasets (maternal smoking during 161 

pregnancy and child’s sex) while maintaining the same ratio between exposed and unexposed 162 

subjects within each batch as in the original data. The associations between the randomly attributed 163 

exposure and methylation in the CpG sites associated with maternal smoking or CpG sites 164 

associated with child’s sex were estimated in each replicate using the same models as for the 165 

replication analyses. P-value distributions of the 10,000 replicates were described in terms of 166 

symmetry by estimating the skewness and in terms of deviation from a uniform distribution by 167 

performing Kolmogorov-Smirnov [21, 22] and Anderson-Darling tests [22–24].
 
To compare 168 

empirical distributions, we generated additional 10,000 replicates for both examples (maternal 169 

smoking and child’s sex) with random assignment of the exposure variables and random CpG sites 170 

selection. 171 

To ensure that the low exposure frequency in the analyses on maternal smoking did not affect the 172 

underlying distribution under the null hypothesis, we analyzed all NINFEA subjects with available 173 
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EWAS data by shuffling the imaginary exposure with 69 “cases” and 69 “controls” and relating it 174 

to methylation levels in 4794 smoking-related CpG sites. 175 

Finally, to decrease the underlying correlation from both sets of CpG sites (maternal smoking and 176 

child’s sex) we selected only sites that have all pairwise correlation coefficients below 0.40 in the 177 

NINFEA dataset. On these two subsets of low-correlated CpG sites associated with maternal 178 

smoking and child’s sex we conducted the same analyses with 10,000 randomly assigned exposures 179 

and for comparison randomly assigned CpG sites.  180 

Random permutations of the exposure variables within each batch were performed using permute 181 

function developed as a part of gtools package [25], skewness was calculated using moments 182 

package [26], while foreach package [27] was used for constructing permutation loops. 183 

Multiple testing corrections and r-values 184 

Multiple comparisons correction of the NINFEA results using Bonferroni or Benjamini-Hochberg 185 

FDR procedure would not be appropriate due to the underlying correlation structure. Under 186 

scenario of highly correlated tests, permutation-based methods are the methods of choice.  187 

Alternatively, Heller et al [9] developed r-values to quantify the evidence for replication while 188 

controlling FWER or FDR in genome-wide association studies. This procedure uses multiple testing 189 

correction to control for proportion of false replicability claims among all those called replicated 190 

when both discovery and replication samples are available. FDR r-value is defined as the lowest 191 

FDR at which the finding can be called replicated,
 
and with its modified version accounts for 192 

arbitrary dependence between the p-values within the primary study [9]. This method has been 193 

further extended [10] to incorporate the direction of observed associations, i.e. to replicate only 194 

associations with the same direction in both studies.  195 

For each CpG site of the two datasets (maternal smoking and child’s sex) we computed both 196 

directional FDR r-values and its modified version that accounts for the underlying correlation 197 

(modified r-values) using R function included in the script available in RunMyCode [28]. Default 198 
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settings were selected for all the parameters included in the r-value computation. A CpG site is 199 

considered replicated if the r-value < 0.05 [9]. 200 

For
 
demonstration purposes we also present p-values corrected using Bonferroni correction and 201 

Benjamini-Hochberg FDR procedure [8]. More details on computation of Bonferroni correction 202 

(Family-Wise Error Rate [FWER]), Benjamini-Hochberg FDR, FDR r-value and its modified 203 

version are summarized in the Technical note of the Supplemental Material. 204 

Results 205 

CpG sites selection 206 

As a result of quality control exclusions and different probes filtering criteria there was an 207 

incomplete CpG overlap between literature and the NINFEA EWAS datasets: 4794 CpG sites 208 

(78.9% of the selected CpG sites) were included in the analyses on maternal smoking, and 2544 209 

CpG sites (83.9% of the selected CpG sites) for the analyses on child’s sex. There was a complete 210 

overlap between CpG sites selected in the two literature datasets and the GALA II EWAS data.  211 

A total of 6 children from the NINFEA data set (4.3%) were exposed to maternal sustained smoking 212 

during pregnancy and matched to the unexposed children (N=30) by batch in which samples were 213 

analyzed, keeping a constant 1:5 ratio between exposed and unexposed children. Therefore, a total 214 

of 36 children were included in the analyses on maternal smoking. 215 

The analyses on child’s sex were performed in 80 children, by choosing the maximum number of 216 

exposed children (females) available within each batch that could be matched with unexposed 217 

children (males) from the same batch to keep a constant 1:3 ratio between “exposed” (N=20) and 218 

“unexposed” (N=60) subjects.  219 

Correlation analyses 220 
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Table 1 reports the summary statistics for the partial Spearman correlation coefficients calculated in 221 

the NINFEA data between the top CpG sites from the two literature datasets and for unselected 222 

genome-wide CpG pairs. The corresponding distributions are reported in Figure 2.  223 

When being pre-selected in the discovery studies, such as in the examples presented here, the 224 

average correlation between CpG sites tends to increase depending on the exposure under study. 225 

For example, the mean correlation of 0.26 between several thousands of CpG sites associated with 226 

maternal smoking during pregnancy was much higher than the original genome-wide mean 227 

correlation of 0.12. The variance of correlations in the pre-selected CpG sites also increased 228 

substantially compared with the genome-wide CpG sites (all p-values for F test <2.2x10
-16

, visual 229 

inspection of Figure 2).  230 

The same analyses performed on the GALA II data, with DNA methylation levels measured from 231 

whole blood in 573 children study, showed similar correlation patterns (see Supplemental 232 

Material; see Table S1). The NINFEA and GALA II datasets had the same mean genome-wide 233 

correlation coefficient of 0.12. Compared with the NINFEA study, the mean correlation coefficient 234 

in the GALA II study was lower between CpG sites associated with maternal smoking and higher 235 

between CpG sites associated with child’s sex, (Table 1, see Supplemental Material; see Table 236 

S1). 237 

When CpG sites from the PACE and CHAMACOS study were selected on the basis of Bonferroni 238 

correction, the pairwise correlation coefficients calculated in the NINFEA and GALA II datasets 239 

were even higher than when the selection was based on the Benjamini-Hochberg FDR control (data 240 

not shown). 241 

Replication analyses 242 

Figure 3 reports the p-value distributions and the QQ plots for the replication analyses of the top 243 

CpG sites for maternal smoking and child’s sex in the NINFEA data. For both exposures, there was 244 

a clear deviation of the p-value distributions and QQ plots from what would be expected by chance 245 
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(Kolmogorov-Smirnov p-value <2.2 x 10
-16 

in both analyses). The analysis on child’s sex revealed 246 

393 CpG sites (15.5%) with a p-value <0.05 and 1989 CpG sites (78.2%) with the same direction of 247 

the effect as in the CHAMACOS study.  Maternal smoking during pregnancy was associated with 248 

424 CpG sites (8.8%) at conventional 5% level of significance, and 2199 CpG sites (45.9%) had the 249 

same direction of the effect as in the PACE study. 250 

Assessment of the empirical p-value distributions 251 

In the absence of correlation, by randomly permuting and re-analyzing the data we would expect 252 

the p-value distribution to be approximately uniform in most of the replications. Distributions as 253 

those observed in Figure 3 - skewed versus lower p-values - are expected to be seen in a small 254 

proportion of the replications. After visual inspection of the p-value distribution histograms from 255 

the 10,000 random permutations of the exposure variables we noticed that the percentage of 256 

replications not following the uniform p-value distribution was much higher than the expected 5%, 257 

both in the case of pre-selected CpG sites and in the case of genome-wide randomly selected CpG 258 

sites.  259 

In fact, Kolmogorov-Smirnov p-values were low even when the p-value distribution histograms 260 

visually showed quite uniform patterns (see Supplemental Material; see Figure S1). Accordingly, 261 

as reported in Table 2, more than 90% of the replications were associated with a Kolmogorov-262 

Smirnov p-value < 0.05. This proportion was higher in the case of pre-selected than randomly 263 

selected CpG sites. The Anderson-Darling test, considered more sensitive to the tails of a 264 

distribution than the Kolmogorov-Smirnov test [24], gave similar results (data not shown). 265 

However, it should be considered that, with large sample sizes, these test are likely to give strong 266 

evidence against the null hypothesis (i.e. they are able to detect even small departures from the 267 

theoretical distribution) [29].  268 

To further explore the impact of the correlation structure on the empirical p-value distributions we 269 

plotted the skewness of the underlying p-value distributions from the 10,000 replications for each of 270 
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the examples (Figure 4). Symmetric distributions, such as the uniform or normal distribution, have 271 

the skewness value zero, while right- or left-skewed distribution have positive or negative values, 272 

respectively. The average absolute skewness was 0.34 and 0.22 for 10,000 permutations of maternal 273 

smoking and child’s sex, respectively. On the contrary, the average absolute skewness was much 274 

lower when both, exposures and CpG sites, were selected at random (0.15 for maternal smoking 275 

and 0.17 for child’s sex). From Figure 4, it can be noted that in the presence of a higher correlation 276 

between CpG sites, such as in the examples presented here, the skewness of the p-value 277 

distributions has a larger variation and is shifted towards positive values (right-skewed 278 

distributions) compared to the distributions of genome-wide randomly selected CpG sites. A similar 279 

pattern was also observed when all 138 subjects were analyzed with CpG sites associated with 280 

maternal smoking during pregnancy (see Supplemental Material; see Figure S2), thus ruling out a 281 

possible impact of the small sample size on the empirical p-value distributions in the example with 282 

maternal smoking during pregnancy. 283 

It is noteworthy that the biases that we have so far described are mainly due to the underlying 284 

correlation structure. For demonstration purposes we have selected 256 out of 4794 CpG sites 285 

related to maternal smoking during pregnancy and 129 out of 2544 CpG sites related to child’s sex 286 

that have all pairwise correlation coefficients below an arbitrary level of 0.40 in the NINFEA 287 

dataset. Mean absolute correlation coefficient was 0.09 for both low-correlated data sets, and thus 288 

lower than the underlying genome-wide mean correlation of 0.12.  289 

P-value distributions of the 10,000 random permutations of the exposure variables were non-290 

uniform, i.e. associated with a Kolmogorov-Smirnova p-value < 0.05 in 17.0% permutations of 291 

maternal smoking and 5.7% permutations of child’s sex. The average absolute skewness was 0.09 292 

for maternal smoking and 0.10 for child’s sex, with standard deviations much smaller than that for 293 

genome-wide randomly selected CpG sites (Figure 5). The results were similar when analyses on 294 
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256 CpG sites associated with maternal smoking were performed in all 138 subjects from the 295 

NINFEA data (see Supplemental Material; see Figure S3). 296 

Multiple testing correction and r-values for replicability 297 

After the initial replication performed in Step 2 (Figure 1, Figure 3) a standard naïve and incorrect 298 

practice would then be to consider the results of the single CpG sites, after implementing some of 299 

the procedures that take into account multiple testing and reduce the number of false positives, such 300 

as Bonferroni or Benjamini-Hochberg FDR multiple testing correction. After the Benjamini-301 

Hochberg correction at the 0.05 FDR level methylation levels at fourteen CpG sites were associated 302 

with child’s sex, while only one CpG site remained associated with maternal smoking during 303 

pregnancy, reflecting the small number of exposed subjects (N=6) in the NINFEA dataset (Table 304 

3). The two top ranked CpG sites that passed Benjamini-Hochberg correction (both p-values=0.02) 305 

remained associated with child’s sex also after more conservative, Bonferroni correction (both p-306 

values=0.04), and the only CpG site associated with maternal smoking at 0.05 FDR level remained 307 

associated also after Bonferroni correction (p=0.04).  308 

One of the approaches that would be correct for a replication study is the FDR-based replication p-309 

value (r-value). For the analyses on sex differences in methylation levels, only one CpG site was 310 

replicated (cg03168896) with the directional FDR r-value=0.04, and it remained replicated in the 311 

NINFEA cohort also after considering the underlying correlation (modified r-value=0.04). It should 312 

be noted that the methylation level at the replicated cg03168896 was positively associated with 313 

female sex both in CHAMACOS and in the NINFEA study, and had a Benjamini-Hochberg FDR p-314 

value=0.02. Other thirteen CpG sites that passed the Benjamini-Hochberg FDR correction, despite 315 

having the same direction of the effect in the CHAMACOS and the NINFEA study, were not 316 

replicated (Table 3). No CpG site was replicated for maternal smoking during pregnancy. 317 

Discussion 318 
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The large number of tests performed in epigenome-wide association studies requires statistical and 319 

computational methods to control for multiple testing both in the exploratory and in the replication 320 

phase. The most commonly used methods dealing with this issue, such as Bonferroni and 321 

Benjamini-Hochberg FDR corrections, rely on the assumption of independence of the tests. This 322 

assumption is often violated in EWAS, as spatially related CpG sites are very often in similar 323 

methylation state. 324 

As shown in this paper, a certain degree of correlation already affects the discovery phase of 325 

EWAS, when analyses are carried out at the genome-wide level. This underlying correlation 326 

structure is enhanced in large sample size studies of exposures/outcomes that broadly affect DNA 327 

methylation, in which thousands of candidate CpG sites are selected for replication. The increase in 328 

correlation can be substantial: in one of the examples that we evaluated in this paper the mean pair-329 

wise correlation coefficient increased from 0.12 at the genome-wide level to 0.26 among the 330 

selected CpG sites. Thus, the independency assumption of standard multiple testing procedures can 331 

be seriously violated, resulting in spurious replication findings. It should be noted that we analyzed 332 

the correlation structure using only two datasets, one with child saliva DNA methylation,and one 333 

with cord blood DNA methylation. The underlying correlation between the pre-selected CpG sites 334 

was higher in both datasets compared to the genome-wide mean correlation coefficient of 0.12. 335 

Average correlation at genome-wide level and that of pre-selected CpG sites might be different in 336 

other data sets, populations, age groups or tissues/biofluids. 337 

As the examples presented here [11,12], most of the EWAS studies use Benjamini-Hochberg FDR 338 

method to adjust for multiple tests, both in the discovery and replication analysis [30, 31]. We argue 339 

that in situations of high correlation it is important to explore its magnitude by conducting 340 

permutations in which the exposure/outcome status is randomly shuffled. The so-called permutation 341 

procedure that empirically generates a model-free p-value is based on this approach, and it is robust 342 

to the data correlation – a Family-wise Error Rate (FWER) control procedure (i.e. a procedure to 343 
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control for type I errors in the context of multiple testing) based on permutations was proposed in 344 

the literature [32]. The only assumption behind permutation procedures is that the observations are 345 

exchangeable under the null hypothesis [32], while the most important limitation is the long 346 

computational time, especially in large EWAS. Several alternatives that account for the underlying 347 

correlation structure have been proposed and are shown to be as efficient as the permutation 348 

procedure, for example methods dealing specifically with linkage-disequilibrium in GWAS such as 349 

pACT method [33], SNPSpD [34] and permutation-based method by Dudbrige and Koeleman [35], 350 

or more general resampling-based FDR for correlated tests [36] and Benjamini-Yekutieli 351 

modification of standard FDR [37]. The implementation of these approaches requires much less 352 

time, but to our knowledge, they are seldom used in the analysis of EWAS. Although not in the 353 

context of an increased correlation in replication studies, a recent study by van Iterson at al. [38] 354 

sheds light on the inflation and bias of test statistics in EWAS and transcriptome-wide association 355 

studies. They proposed a Bayesian method for the estimation of the empirical null distribution and 356 

bias and inflation correction in the presence of correlated test statistics, and might be an effective 357 

alternative to standard methods also for the replication studies. 358 

Apart from using alternative methods to account for the underlying correlation, an option for the 359 

replication phase would be to select a subgroup of CpG sites using ad-hoc algorithms to decrease 360 

the correlation, including, for example, approaches based on the genomic location or the 361 

introduction of a maximum threshold for pairwise correlation coefficients. To our knowledge, the 362 

performance and validity of possible selection criteria remains to be systematically investigated in 363 

methodological studies. 364 

In this study we applied directional r-values as an FDR-based measure - a valuable method 365 

specifically developed for replication studies. The modified version of r-value guarantees false-366 

discovery rate control under arbitrary dependence between tests. Moreover, directional FDR r-367 

values quantify the evidence of replication that accounts for the consistency between the directions 368 
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of associations in the discovery and replication studies [10]. In the GWAS context Sofer et al. [10] 369 

showed that r-value approach provides better control of false discovery error rate compared to 370 

commonly used approaches, while retaining the same power, and a gain in power of the replication 371 

study the larger the discovery study is.  372 

The r-value computation largely depends on the nature of the replicability problem and the design 373 

of the study.  As pointed out in Heller et al. [9] the advantage of combining evidence from the 374 

discovery and replication study offers new perspectives for developing methods that take into 375 

account the relative importance given to the replication study, i.e. in the context of replication of 376 

EWAS findings, the use of unequal penalties to the errors of the discovery and replication studies. 377 

As the directional FDR r-value approach addresses the issues of the consistency in the direction of 378 

the effects between the discovery and the replication studies and the underlying correlation between 379 

pre-selected CpG sites, we applied this method for demonstration purposes. However, our study 380 

was not designed to test the robustness of this method given particular scenarios, or to compare its 381 

performance with other available methods dealing with correlated tests in the context of replication 382 

studies. Further investigations are required to provide evidence on the gold-standard methods for 383 

EWAS replication studies, and best approaches for the determination of sample size in the 384 

discovery and replication studies. 385 

One of the limitations of our study is the relatively small sample size used for the replication 386 

analyses (36 subjects for analyses on maternal smoking and 80 subjects for analyses on child’s sex). 387 

In fact, since p-values depend on a combination of sample size and effect size, the NINFEA study 388 

was underpowered to replicate the findings, especially in the case of the PACE study that had a 389 

much larger sample size compared to the NINFEA study. Our study, however, had illustrative 390 

purposes and we showed that a false impression of replication might arise when correlation 391 

structure was not taken into account (even in presence of a small sample size for the replication 392 

study). Specifically, the main aim of this study was to illustrate how increased correlation in the 393 
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replication phase of EWAS influences the empirical p-value distribution, and consequently the 394 

usual Bonferroni and Benjamini-Hochberg FDR control. The permutation procedures that we 395 

performed were conducted under the null hypothesis, where the issue of small sample size is less 396 

relevant. We also conducted sensitivity analyses by considering scenarios of increasing sample size 397 

(from 36 to 138 subjects) and showed that the very small sample size did not affect the empirical p-398 

value distribution under the null hypothesis. Moreover, the impact of sample size on the correlation 399 

structure has been further evaluated by using an external data set with a sample size of 573. 400 

Finally, we have also shown that the Kolmogorov-Smirnov and Anderson-Darling tests, often used 401 

to assess departures from a uniform distribution of p-values, become extremely sensitive in 402 

presence of large sample sizes. Thus, if hundreds or thousands correlated CpG sites are selected for 403 

replication, these tests will almost invariably generate low p-values, and a spurious result of a 404 

global replication of the exploratory phase is very likely.  405 

Conclusions 406 

We caution against using FWER control procedures (e.g. the simple Bonferroni correction) or 407 

Benjamini-Hochberg FDR control in epigenome-wide replication studies, where the correlation 408 

between CpG sites can be substantial and the null hypothesis different than the null hypothesis of a 409 

discovery study. Permutation procedures are proposed as the method of choice to control FWER in 410 

the circumstances of highly correlated tests, but they are time-consuming when applied to large-411 

scale studies, and are seldom used in EWAS. In replication studies, CpG sites for replication could 412 

also be selected a priori, based on different criteria or their combinations, such as significance in 413 

the discovery sample, correlation with other CpG sites, genomic location or biological significance. 414 

Another option is the computation of r-values, which focus specifically on the strength of 415 

replication in the presence of highly correlated tests, as in the context of epigenome-wide 416 

replication studies. 417 

 418 
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 419 

Executive summary 420 

• The most commonly used approaches dealing with multiple testing in the replication phase 421 

of epigenome-wide association studies are type I error rate and false-discovery rate controls 422 

that, although claimed to be robust, assume independence between tests. 423 

• The correlation between CpGs is enhanced after selection during the discovery phase. 424 

• In the replication phase of EWAS an increased correlation between CpGs influences 425 

empirical p-value distributions, affecting also the usual control by Benjamini-Hochberg 426 

FDR procedure. 427 

• Bonferroni correction and Benjamini-Hochberg FDR method might not be adequate for the 428 

replication phase of EWAS. 429 

• Replication studies should consider methods that take into account the underlying 430 

correlation structure, including permutation procedures and r-values to detect replicated 431 

associations. 432 
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 543 

Table 1. Summary statistics of the partial correlation coefficients’ distributions, expressed as 544 

absolute values, in 138 children of the NINFEA cohort. 545 

Set of CpG sites N 3
rd 

percentile
Mean Median 97

th
 

percentile 

Genome-wide 321,084 0.01 0.12 0.09 0.47 

Child’s sex 2544 0.01 0.18 0.13 0.64 

Maternal smoking during pregnancy 4794 0.01 0.26 0.19 0.77 

 546 
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Table 2. Kolmogorov-Smirnov test assessing the uniformity of the p-value distributions from 567 

10,000 permutations  568 

Permutations 

(N=10,000) 

Percentage of permutations 

associated with a Kolmogorov-

Smirnov
a
 p-value < 0.05 (%) 

Maternal smoking during pregnancy 98.4

Random CpG sites 91.4

Child’s sex 95.3

Random CpG sites 91.8

a
 Kolmogorov-Smirnov test to determine if the distribution of p-values from 

each replication is equal to the expected uniform distribution. 
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 588 

Table 3. Smoking- and sex-associated CpG sites that passed Benjamini-Hochberg (BH) FDR correction in the NINFEA replication study, and 589 

corresponding discovery and replication p-values, FWER (Bonferroni-corrected p-values), BH FDR p-values, FDR r-values and modified r-values. 590 

Smoking-associated  

CpG sites 

Discovery study 

two-sided p-value

Replication study 

two-sided p-value
FWER BH FDR 

p-value

FDR  

r-value
a

Modified 

r-value
b

cg12793610 4.42e-05 9.12e-06 0.04 0.04 0.91 1.00

Sex-associated  

CpG sites 

cg23092538 7.43e-05 1.69e-05 0.04 0.02 0.18 0.74

cg03168896 1.86e-08 1.73e-05 0.04 0.02 0.04 0.04

cg14022202 1.17e-05 2.55e-05 0.06 0.02 0.16 0.39

cg25438440 3.72e-18 6.76e-05 0.17 0.04 0.07 0.08

cg15089217 8.44e-06 9.52e-05 0.24 0.04 0.12 0.36

cg19544707 8.12e-12 9.98e-05 0.25 0.04 0.07 0.08

cg12763978 1.13e-06 1.17e-04 0.30 0.04 0.07 0.26

cg03298305 5.27e-04 1.38e-04 0.35 0.04 0.31 1.00

cg23332732 1.68e-05 1.38e-04 0.35 0.04 0.17 0.41

cg26955850 5.55e-04 1.44e-04 0.37 0.04 0.33 1.00

cg14546619 1.57e-04 1.67e-04 0.42 0.04 0.24 1.00

cg01063965 3.42e-06 1.67e-04 0.42 0.04 0.08 0.27

cg26213873 3.34e-18 2.15e-04 0.55 0.04 0.09 0.14

cg18305433 2.24e-05 2.17e-04 0.55 0.04 0.17 0.41
a Directional FDR r-value 
b Conservative r-value modification that accounts for arbitrary dependence between tests  
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Figure 1. The main steps of the analysis 591 

 592 

 593 

Figure 2. Distribution of correlation coefficients (left side) and their absolute values (right side) for 594 

genome-wide CpG sites, 4794 CpG sites associated with maternal smoking during pregnancy, and 595 

2544 CpG sites associated with child’s sex. Vertical gray line indicates genome-wide mean 596 

correlation coefficient (absolute values). Vertical red lines indicate mean correlations coefficients 597 

(absolute values) for each set of the selected CpG sites. 598 
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 599 

Figure 3. Replication in the NINFEA cohort: Distribution of replication p-values and Q-Q plots of 600 

observed versus expected p-values for the associations between methylation levels at smoking-601 

related (N=4794) and sex-related (N=2544) CpG sites and maternal smoking during pregnancy, and 602 

child’s sex. 603 
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 604 

 605 

Figure 4. Skewness of p-value distributions from the analyses of the association between smoking-606 

related (N=4794) and sex-related (N=2544) CpG sites and permutations of maternal smoking 607 

during pregnancy and child’s sex from 10,000 replications. “Random” indicates random 608 

permutations of both CpG sites and exposure under study.  609 
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 610 

 611 

Figure 5. Skewness of p-value distributions from the analyses of the association between smoking-612 

related “low-correlated” (N=256) and sex-related “low-correlated” (N=129) pre-selected CpG sites 613 

and permutations of maternal smoking/child’s sex from 10,000 replications. “Random” indicates 614 

random permutations of both CpG sites and exposure under study.  615 

 616 
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Methods 

 

Technical note 

 

We assume that we are testing m independent null hypotheses H01, H02,...,H0m. The possible 

outcomes when testing m hypotheses simultaneously are summarized as follows: 

 

 Rejecting Ho Accepting Ho Total 

True null hypothesis V U m0 

False null hypothesis S T m1 

Total R W m 

 

where  

• V is the number of false rejections (or false discoveries), 

• U is the number of true acceptances, 

• S is the number of true rejections, 

• T is the number of false acceptances. 

 

The total number of true null hypotheses, m0, is fixed but unknown. Random variables V, S, 

U, and T are not observable, while the random variables R=S+V and W=U+T, the number of 

rejected and accepted null hypotheses, respectively, are observable. 

 

In a single study analysis, there are two different approaches to address the issue of multiple 

testing: the family wise error rate (FWER) and the false discovery rate (FDR).  

 

FWER 

It is the probability of falsely rejecting at least one null hypothesis. In formula: 

 

 
 

FDR 

It is the expected proportion of falsely rejected hypotheses among all rejected hypotheses. In 

formula: 

 
 

The maximum between “R” and 1 guarantees that FDR is equal to 0 when no hypothesis is 

rejected.  

In Heller et al.
1
 a generalization of FWER and FDR was developed in order to give a formal 

method to declare that findings from a discovery study have been replicated in a replication 

study.  

Consider a family of null hypotheses tested in each of two independent studies. Let 

be the indicator of whether  is false in study i: 

    if  is true in study i (i.e. =0) 

    if  is false in study i (i.e. 0) 
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where i=1,2 (1=discovery study; 2=replication study) and j is the index that refers to a specific 

test, hereafter referred as locus in the context of epigenome-wide association studies.  

Let  be the set of the four possible results for the specific locus j: 

 

 

 
 

R is the total number of replicability claims. Denote the number of true positives and 

 the number of false positives. Note that in a single study V is the 

number of false positives, while in a discovery and replication analysis the number of false 

positives is the sum of the three terms ( ). 

The FWER and FDR for replicability analysis are defined as:  

 
 

 

The /  r-value for a specific locus is defined as the lowest FWER/FDR level at 

which we can say that the finding has been significantly replicated.  

These definitions of r-values do not account for the direction of the observed association. For 

this reason the r-values approach was then extended by Sofer et al.
2
 to incorporate the 

direction of observed associations. Define the left-sided (right-sided) alternative as the 

scenario in which a given locus is negatively (positively) associated with an 

exposure/outcome in a given study. Let 

    if the right-sided alternative is true for locus j in study i (i.e. >0) 

   if the right-sided alternative is true for locus j in study i (i.e. =0) 

 if the left-sided alternative is true for locus j in study i (i.e. <0) 

 

where i=1,2 (1=discovery study; 2=replication study) and j is the index that refers to a specific 

locus.  

 

Let  be the set of the nine possible results for the specific locus j: 

 

 

 
 

Suppose that R is the total number of replicability claims, i.e. the number of rejected 

hypotheses in the replication analysis. Denote and the indicators of whether the null 

rejections are made in the right or left direction, respectively, for locus j. The number of 

erroneously rejected hypotheses is , where :  

 

 
The directional replication FWER and FDR are defined as: 
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The /  r-value for a specific locus is defined as the lowest FWER/FDR 

level at which we can say that the locus association has been significantly replicated with the 

same direction.  

The FWER/FDR controlling procedures for testing the family of no replicability null 

hypotheses in the replication studies are described in Heller et al.
1
 and Sofer et al.

2
 for r-

values and directional r-values, respectively. These procedures require data and parameters as 

input for r-values computation: 

1. m, the number of hypotheses examined in the discovery study; 

2. , the set of loci selected for replication based on the discovery study results; 

3. the directional p-values for the followed-up loci ; 

4. , the user-specified lower bound on the fraction of locus associations, out 

of the m loci examined in the discovery study, that are null in both studies (default 

value ); 

5. , the emphasis given to the follow-up study (default value ). 

These procedures declare as replicated all findings with FWER/FDR r-values ≤ q.  

Heller et al.
1
 gave a theorem that shows that:  

• if the p-values in the discovery study are independent, and the p-values from the 

replication study are jointly independent or are positive regression dependent on the 

subset of null hypotheses, then the FWER/FDR on false replicability claims is 

controlled at level q; 

• for arbitrary dependence among the p-values in the discovery study, replacing m by  

 

in the r-value computation, the FWER/FDR on false replicability claims is controlled 

at level q.  

The procedure with m* instead of m computes the modified r-values that takes into account 

arbitrary dependencies among tests.  

In this paper, we computed FWER, FDR, directional FDR r-values (r-values) and directional 

FDR r-values with m* modification for arbitrary dependence among p-values (modified r-

values). 
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Results 

Table S1. Summary statistics of the correlation coefficients’ distributions, expressed as 

absolute values, in 573 children of the GALA II study 

Set of CpG sites N 3
rd 

percentile
Mean Median 97

th
 

percentile

Genome-wide 473,838 0.01 0.12 0.10 0.32

Child’s sex 3031 0.01 0.20 0.18 0.48

Maternal smoking during pregnancy 6073 0.01 0.15 0.13 0.45
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Figure S1. Histograms of p-value distributions from random permutations and Kolmogorov-Smirnov p value assessing whether the observed p-

value distributions come from a hypothesized uniform distribution 
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Figure S2. Skewness of p-value distributions from the analyses of the association between 

4794 CpG sites associated with maternal smoking and 10,000 permutations of an imaginary 

exposure for 138 subjects from the NINFEA cohort. “Random” indicates random 

permutations of both CpG sites and exposure under study. 
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Figure S3. Skewness of p-value distributions from the analyses of the association between 

256 low-correlated CpG sites associated with maternal smoking and 10,000 random 

permutations of an imaginary exposure for 138 subjects from the NINFEA cohort. “Random” 

indicates random permutations of both CpG sites and exposure under study.  


