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Abstract

Magnetic resonance imaging studies have reported significant functional and structural differences between depressed
patients and controls. Little attention has been given, however, to the abnormalities in anatomical connectivity in depressed
patients. In the present study, we aim to investigate the alterations in connectivity of whole-brain anatomical networks in
those suffering from major depression by using machine learning approaches. Brain anatomical networks were extracted
from diffusion magnetic resonance images obtained from both 22 first-episode, treatment-naive adults with major
depressive disorder and 26 matched healthy controls. Using machine learning approaches, we differentiated depressed
patients from healthy controls based on their whole-brain anatomical connectivity patterns and identified the most
discriminating features that represent between-group differences. Classification results showed that 91.7% (pa-
tients = 86.4%, controls = 96.2%; permutation test, p,0.0001) of subjects were correctly classified via leave-one-out cross-
validation. Moreover, the strengths of all the most discriminating connections were increased in depressed patients relative
to the controls, and these connections were primarily located within the cortical-limbic network, especially the frontal-
limbic network. These results not only provide initial steps toward the development of neurobiological diagnostic markers
for major depressive disorder, but also suggest that abnormal cortical-limbic anatomical networks may contribute to the
anatomical basis of emotional dysregulation and cognitive impairments associated with this disease.
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Introduction

Major depressive disorder (MDD), which has been linked to a

15% suicide rate among those suffering from the disorder, serious

social problems and tremendous economic loss, both directly and

indirectly, has been ranked by the World Health Organization as

the number one reason why people file for disability benefits [1].

Although tremendous efforts have been made to understand the

neuropsychology and etiology of depression, little is known about

its pathogenesis. These days, magnetic resonance imaging (MRI)

provides a powerful tool for exploring the neuropathology of this

complex mental disorder [2]. For example, functional MRI (fMRI)

studies have reported abnormalities in several specific brain areas

in patients suffering from depression, including the amygdala [3],

hippocampus [4], caudate, ventral striatum [5], orbitofrontal

cortex (OFC) [6], prefrontal cortex [7], subgenual cingulate and

thalamus [8]. In MDD patients, structural MRI studies using

voxel-based morphometry (VBM) have shown alterations in gray

matter volume of the hippocampus [9], anterior cingulate (ACC),

OFC [10], right amygdala [11] and caudate [12].

The widely distributed functional and structural abnormalities

found in the brains of MDD patients suggest that depression may

be considered a multi-dimensional and systems-level mental

disorder, which affects discrete but functionally integrated circuits,

rather than dysfunction in one or more discrete brain regions [13].

Furthermore, the remaining normal brain that fails to maintain

homeostatic emotional control in times of increased cognitive or

somatic stress is believed to be associated with MDD [14].

Investigators even speculate that depression is caused by the

dysfunction of coping mechanisms rather than lesioned brain areas

[15]. Further evidence from functional connectivity studies of

depressed patients reveal altered network connectivity in the

limbic-cortical-striatal-pallidal-thalamic circuit (LCSPT) [1], the

prefrontal-limbic network [16], the default-mode network (DMN)

[8,17], the cerebellar network [18], the cognitive control network

and the affective network [19]; therefore, some researchers

speculate that dysfunction in these circuits or networks can

produce pathological emotional symptoms [1]. The anatomical

basis of these disorder-related connectivity abnormalities both

within and across different functional networks remains unclear.

In studies searching for anatomical changes in MDD, diffusion

tensor imaging (DTI) has been suggested as a non-invasive method

for detecting subtle changes in tissue microstructural organization

[20]. There are two main research methods in DTI studies: the

fractional anisotropy (FA) study and white matter (WM) tracto-

graphy. As a measure of the directionality of diffusion anisotropy,
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FA has been widely used to investigate the WM abnormalities

present in many mental disorders [2,21,22,23]. It is nearly

impossible, however, to interpret the precise physiological

meaning of these observed changes because the changes in FA

may result from alterations in axonal morphologic structure, in the

interaxonal spacing of fiber bundles, and so on [20]. In contrast,

WM tractography can be used to study connectivity between

neural regions of interest (ROIs) and give rise to astonishing

visualizations of brain circuitry. By using anatomical connectivity

to investigate neural differences, several DTI studies have

identified connectivity abnormalities in those who suffer from

bipolar disorder [24], aging [25], etc. Nevertheless, anatomical

connectivity is seldom utilized to investigate abnormal brain

networks in patients with MDD.

In recent years, machine learning approaches have been

increasingly used for brain image analysis [17,26,27,28,29]

because they are capable of extracting stable patterns from

neuroimaging data, finding significant neuroimaging-based bio-

markers and identifying depressed patients from control partici-

pants at individual subject levels [26,30]. Using adaptive regional

elements and a linear support vector machine (SVM) classifier,

Fan has even differentiated individuals with mild cognitive

impairment from controls with a 100% classification rate [26].

Unfortunately, it is unclear whether machine learning approaches

can extract whole-brain anatomical connectivity patterns to

differentiate depressed patients from controls with a high level of

accuracy.

Here, we hypothesized that there were significant anatomical-

connectivity abnormalities in MDD. Furthermore, we speculated

that the changed anatomical connectivity patterns could be used to

differentiate depressed patients from controls on a case-by-case

basis and may be considered a potential biomarker for MDD. To

test these hypotheses, we first adopted DTI-based probabilistic

tractography to reconstruct the tracts and to extract anatomical

networks. Second, we used machine learning approaches to select

the most discriminating connections. Finally, the selected connec-

tions were further discussed in terms of potential use as biomarkers

for MDD.

Results

Whole brain inter-regional tractography
The averaged connectivity matrix for each group was shown in

Figure 1A and B. The mean strength for non-zero connectivities of

the depressed patients was significantly higher

(Mean+SD=0.049960.0053) than that of controls

(Mean+SD=0.041260.0045), with p=0.021. The significance

level of the differences in the connectivity matrix between the two

groups was presented in Figure 1C.

Classification results and the most discriminating
features
Fifty of the most discriminating features were selected for each

fold in a leave-one-out cross-validation (LOOCV), with two-

sample t-tests (TSTT), and the p-values of these features were all

found to be lower than 0.001. Using the SVM classifier with a

local linear embedding (LLE) algorithm, we obtained a classifica-

tion rate of 91.7% (sensitivity 86.4%, specificity 96.2%; permu-

tation test, p,0.0001) via LOOCV. Here, twenty-three local

neighborhood points were chosen, and the number of intrinsic

dimensions was reduced to fifteen in the LLE. Moreover, we

trained the SVM classifier with a Gaussian radial basis kernel

function, defined as K xi,xj
� �

~exp -Dxi,xjD
2
�

2s2g
� �

, where xi
represented the i-th feature vector and s was set to be equal to 3.

Because the training data sets differed slightly from fold to fold

in the LOOCV, the selected feature sets may also differ from fold

to fold. Thirty-three features were included in each fold in the

LOOCV, which may be viewed as the most discriminating

features, named ‘‘consensus features’’ [29]. All of these consensus

features exhibited increased connectivity in depressed patients,

and they were primarily distributed in the cortical-limbic network.

Furthermore, the cortical-limbic network, in which the consensus

connections were distributed, could be sub-divided into the

frontal-limbic, parietal-limbic and temporal-limbic networks. In

addition, four connections were located in the temporal-occipital

network, including connections from the right inferior temporal

gyrus to the superior occipital, the middle occipital and the

calcarine gyri (see Table 1). The region weight, which represents

the relative contribution to identification, was denoted by its

occurrence number in the consensus anatomical connections. In

this study, the left OFC exhibited the greatest brain region weight

out of all the consensus connections. The region weight and

distribution of the consensus connections are shown in Figure 2.

Discussion

In this work, we adopted anatomical connectivity and machine

learning approaches to study the whole-brain anatomical network

differences in macroscopic neural tracts between depressed

patients and controls. The classifier successfully distinguished the

depressed patients from controls with an accuracy of 91.7%

(permutation test, p,0.0001) and identified thirty-three of the

most discriminating consensus connections. The altered anatom-

ical connections were all increased in depressed patients and

primarily distributed in the cortical-limbic network. In addition,

four connections were located in the temporal-occipital network.

Altered anatomical networks
Frontal-limbic network. The consensus connections were

mainly distributed in the cortical-limbic network, which may be

sub-divided into the frontal-limbic, parietal-limbic and temporal-

limbic networks. The abnormal connectivity in the frontal-limbic

network was in keeping with limbic-cortical-striatal-pallidal-

thalamic circuits involved in mood regulation and cognition

[1,31], such as the connections between the OFC, basal ganglia,

thalamus, hippocampus and insula. The OFC, which played a

dominant role in the frontal-limbic network in this study, was

mostly implicated in emotional processing, emotional regulation

[32] and emotional response to stressors [33]. Furthermore, the

OFC projects to the striatum, which then projects to the

mediodorsal thalamic nucleus and then back to the OFC.

Dysfunction in this circuit is hypothesized to bias information-

processing in MDD in such a way that depressed individuals

selectively attend to and remember affectively negative material

[34]. In addition, several abnormal connections in the frontal-

limbic network were located in the ventral system, including the

insula, ventral striatum, ventral anterior cingulate gyrus and

prefrontal cortex. The ventral system is involved in the identifi-

cation of the emotional significance of a stimulus, the production

of affective states and the automatic regulation of emotional

responses [35]. Increased connectivity within the ventral system

may result in a restricted emotional range, biased toward the

perception of negative rather than positive emotions [35]. Because

the structures in the frontal-limbic network are involved in

emotional regulation, changes in any portion of the network could

potentially result in depressed mood in MDD patients [31,36,37].

Parietal-limbic network. Altered connectivity in the parie-

tal-limbic network was found to be related to the DMN in regions

Increased Anatomical Connectivity in Depression
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known to be involved in attention, cognition and self-referential

activity [19,38], including the superior parietal lobe, the insula, the

posterior cingulate, and the precuneus. The superior parietal lobe

is essentially related to the elaboration of somatosensory informa-

tion [39] and selective attention [40]. In addition, the parietal and

cingulate areas are involved in attentional, motivational, and

emotional modulations of the sensorimotor functions [41].

Abnormal connectivity between the parietal and cingulate areas

may lead to biased attention and restricted emotions in MDD.

Furthermore, increased connectivity in the frontal-limbic and

parietal-limbic networks was consistent with the limbic-cortical

model proposed by Mayberg [13,14,42,43]. The limbic-cortical

model is found to be critical in the integrated regulation of mood,

associated motor, cognitive and somatic behaviors [13,44]. Altered

connectivity in these two networks may lead to a restricted

emotional range with a bias towards the perception of negative

emotions [35].

Temporal-limbic network. Episodic memory seems to be

the main feature of cognitive functioning that is vulnerable to the

negative effects of MDD, while temporal lobe and hippocampus

lesions in the temporal-limbic network typically disrupt episodic

memory and cognition [45]. DTI studies reported a correlation

between memory and learning impairment and abnormality in the

hippocampal and temporal cortex [46]. Increased connectivity

between hippocampal and the temporal gyrus may disrupt

memory and cognition in MDD. These findings implied that the

anatomical abnormalities in the temporal-limbic network may

contribute to some types of cognitive impairment seen in major

depression [47]. Taken together, it was tempting to speculate that

the imbalanced anatomical connectivity in the cortical-limbic

network could result in mood and cognitive dysfunction in MDD.

Temporal-occipital network. The reported abnormal con-

nectivities within the temporal-occipital network were in keeping

with the inferior longitudinal fasciculus involved in visual emotion

and visual memory [48]. The occipital lobe is the visual processing

center of the mammalian brain, and the superior occipital cortex is

related to object selection [49]. The inferior temporal gyrus is

involved in the processing of complex emotional visual stimuli [50]

and visual memory [51]. Abnormal connections between the

occipital and inferior temporal gyrus would disrupt the occipito-

temporal visual system that modulates visual and emotional

expertise [52]. Task-related fMRI studies report that depressed

patients show abnormal filtering of irrelevant information in the

visual cortex [53] and negative biases in visual emotion expression

recognition [54,55]. It was reasonable to speculate that the altered

anatomical connectivity in the temporal-occipital network may

provide new insights into the abnormal filtering of irrelevant

information in MDD.

Statistical analysis and reliable identification of major
depression
The mean strength for nonzero connectivities of the depressed

patients was significantly higher than that of controls. This result

indicated that the overall network connectivities of depressed

patients were strengthened, which was in partial agreement with

previous findings suggesting that depressed patients showed

increased function in some regions and networks such as the

visual cortical areas [17], default-mode network (DMN) [8,17],

cognitive control network and affective network [19]. Moreover,

these significantly altered connections were widely distributed

throughout the whole brain, implying that depression was a multi-

dimensional and system-level mental disorder [13]. In the present

study, a combination of the TSTT, LLE and SVM machine

learning approaches was designed to identify altered anatomical

connectivity in depressed patients compared with controls. The

TSTT and SVM are effective, simple and have been widely used

in neuroimaging studies [8,27,29,56,57,58]. LLE not only aims at

reducing data dimensionality, but also attempts to discover an

intrinsic low-dimensional structure of the data [30]. To better

understand the contribution that LLE made to the performance of

the classifier, we also performed the classification without LLE.

The result achieved an accuracy of 85.4%, showing that the LLE

method did improve classification performance. The parameters

in the SVM and LLE would clearly influence the performance of

estimation. In this paper, the parameters have been chosen to

maximize the final classification accuracy. We regarded each

subject’s classifier score as a threshold; the receiver operating

characteristics (ROC) curve was determined to further estimate

the performance of our classifier (Figure 3). The area under the

classifier’s ROC curve (AUC) equaled 0.9336, which indicated

that our classifier had satisfactory generalization ability. In

addition, permutation tests were employed to assess statistical

significance of the classification results. Permutation tests validated

the relationship between the data and the labels, with a maximum

Figure 1. Mean connectivity strength matrix and significance matrix across populations. A: mean connectivity strength matrix of
depressed patients. B: mean connectivity strength matrix of healthy controls. C: significance matrix, representing t-statistics for the significance of any
differences across populations for all connections. Left color bar represents connectivity strength, while right color bar represents p-value. Results are
indexed in 90690 matrices. Symmetry is enforced.
doi:10.1371/journal.pone.0045972.g001
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probability of being wrong at 0.0001. In other words, our

approaches reliably identified the MDD patients from controls and

captured the group differences in the anatomical connectivity

patterns; therefore, the anatomical connectivity changes in these

networks could be potentially used as a biomarker for MDD.

Cortical parcellation and definition of connectivity
There are several other types of automatic cortical parcellation

methods, such as DICCCOL (Dense Individualized and Common

Connectivity-Based Cortical Landmarks) [59], automatic labeling

in the Freesurfer [60], random parcellation [61] and the graph

theory [62]. Given the lack of a gold standard for cortical

parcellation, we utilized the most widely used AAL cortical

parcellation method [25,63,64,65,66]. It has been demonstrated

that this cortical parcellation method holds basic connectivity and

network properties [65], which is critical for the analysis of

network abnormalities discussed in this paper. Many studies define

the fiber number between two ROIs as connectivity or use a

threshold to construct binary connectivity [65,66,67]. Region size

differs tremendously in the AAL regions, which means that the

total number of fibers reconstructed from each region varies

significantly. Because each connection contributed equally to the

classification, we normalized the connectivity with the region size.

By doing this, we corrected the variable size of cortical ROIs [60],

finding it to be helpful with classification. We used the fiber

numbers as features for classification, and the results turned out to

be poor (GR=79.2%, SS= 63.6%, SC=92.3%) compared with

our method (GR=91.7%, SS= 86.4%, SC=96.2%). These

results justified that our definition of connectivity was quite

suitable for this study. Although our anatomical network

construction seemed to be appropriate for identifying abnormal

connections in depressed patients, we still need to investigate the

extent to which this construction could be robust to different

approaches of cortical parcellation and definition of structural

connections.

Figure 2. Region weights and distribution of the consensus anatomical connections. The consensus anatomical connections are displayed
both on a surface rendering of the brain and in a circle. The thickness of connections adjusts according to their connectivity strength. The
connectivity for either low or high values is color-coded in blue and orange. The diameter of a sphere represents the corresponding region weight of
a ROI. The ROIs are color-coded according to brain areas (red, limbic cortex; green, prefrontal cortex; yellow, parental cortex; orange, temporal cortex;
blue, occipital cortex). R = right hemisphere, L = left hemisphere. SFG= Superior Frontal; ORBsup= Superior Orbital Frontal; MFG=Middle Frontal;
ORBmid=Middle Orbital Frontal; IFGtriang= Inferior Triangular Frontal; ORBinf = Inferior Orbital Frontal; SMA= Supplementary Motor Area;
ORBsupmed=Medial Orbital Frontal; INS= Insula; ACG=Anterior Cingulate; DCG=Middle Cingulate; PCG=Posterior Cingulate; HIP =Hippocampus;
CAL=Calcarine; SOG= Superior Occipital; MOG=Superior Occipital; FFG= Fusiform; SPG= Superior Parietal; ANG=Angular; PCUN=Precuneus;
PCL = Paracentral Lobule; CAU=Caudate; PUT=Putamen; PAL =Pallidum; THA=Thalamus; MTG=Middle Temporal; ITG = Inferior Temporal. Brain
networks are visualized using the BrainNet Viewer (http://www.nitrc.org/projects/bnv/).
doi:10.1371/journal.pone.0045972.g002
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Advantages and limitations
Unlike most of the previous DTI studies on MDD that focus on

an analysis of intravoxel anisotripy changes [2,23,68,69], the

present study takes advantages of a probabilistic tractography

technique and regional anatomical connectivity of the whole brain

to investigate network abnormalities between depressed patients

and controls. There are many advantages to our approaches in

DTI processing. First, in contrast to other diffusion tracking

studies, we adopt an automatic parcellation method that does not

require time-consuming manual selection for specific ROIs, but

rather parcellates the cerebral cortex into 90 regions automatical-

ly. Second, diffusion tensor tractography allows for the visualiza-

tion of fiber bundles and provides a tool for estimating WM

microstructural and macrostructural characteristics. As a modified

diffusion tensor tractograph, the probabilistic tractography tech-

nique has many advantages for tracking specific WM tracts in

relation to fiber crossing [70]. Moreover, contrary to other voxel-

based methods, the probabilistic tractography technique locates

the end point of a fiber, which may be crucial when the impact of

the disease depends on the origin of these connections [25].

Our current study does have several limitations. First, DTI-

based tractography is a relatively new and evolving technique, and

it cannot achieve the level of resolution that has been previously

obtained by using classic anatomical methods. Without the

possibility of distinguishing afferent from efferent pathways using

DTI-based tractography, we cannot infer the directionality of

reconstructed connections [71]. In addition, using the diffusion

images with only fifteen gradient directions limits the angular

resolution and therefore increases the uncertainty in fiber tracking

[70]. Thus, one must use thirty-two or more directional data in the

Table 1. The consensus features (Thirty-three anatomical connections between two ROIs).

ROI A ROI B Network Subnetwork p-value

Superior Frontal Gyrus L Middle Frontal Gyrus L Cortical-Limbic frontal-limbic 9.11E-05

Superior Frontal Gyrus L Insula L Cortical-Limbic frontal-limbic 2.05E-04

Superior Orbital Frontal Gyrus L Middle Orbital Frontal Gyrus L Cortical-Limbic frontal-limbic 6.49E-05

Superior Orbital Frontal Gyrus L Hippocampus L Cortical-Limbic frontal-limbic 8.57E-05

Superior Orbital Frontal Gyrus L Putamen L Cortical-Limbic frontal-limbic 3.39E-04

Middle Orbital Frontal Gyrus L Inferior Orbital Frontal Gyrus L Cortical-Limbic frontal-limbic 2.16E-04

Middle Orbital Frontal Gyrus L Hippocampus L Cortical-Limbic frontal-limbic 1.07E-04

Middle Orbital Frontal Gyrus L Putamen L Cortical-Limbic frontal-limbic 2.02E-04

Middle Orbital Frontal Gyrus L Pallidum L Cortical-Limbic frontal-limbic 3.57E-04

Inferior Triangular Frontal Gyrus L Inferior Orbital Frontal Gyrus L Cortical-Limbic frontal-limbic 2.28E-04

Inferior Orbital Frontal Gyrus L Insula L Cortical-Limbic frontal-limbic 6.85E-07

Inferior Orbital Frontal Gyrus L Thalamus L Cortical-Limbic frontal-limbic 2.47E-04

Medial Orbital Frontal Gyrus L Anterior Cingulate Gyrus R Cortical-Limbic frontal-limbic 3.52E-04

Anterior Cingulate Gyrus R Middle Cingulate Gyrus R Cortical-Limbic frontal-limbic 3.92E-05

Supplementary Motor Area L Putamen L Cortical-Limbic frontal-limbic 1.51E-04

Supplementary Motor Area R Anterior Cingulate Gyrus R Cortical-Limbic frontal-limbic 1.44E-04

Hippocampus L Thalamus L Cortical-Limbic frontal-limbic 1.83E-04

Caudate Nucleus R Thalamus R Cortical-Limbic frontal-limbic 1.76E-04

Pallidum L Thalamus L Cortical-Limbic frontal-limbic 3.46E-04

Insula R Superior Parietal Gyrus R Cortical-Limbic parietal-limbic 2.26E-05

Posterior Cingulate Gyrus R Superior Parietal Gyrus R Cortical-Limbic parietal-limbic 3.07E-04

Posterior Cingulate Gyrus R Precuneus R Cortical-Limbic parietal-limbic 7.61E-05

Superior Parietal Gyrus R Putamen R Cortical-Limbic parietal-limbic 1.15E-05

Superior Parietal Gyrus R Angular R Cortical-Limbic parietal-limbic 3.97E-04

Precuneus L Paracentral Lobule R Cortical-Limbic parietal-limbic 2.12E-05

Fusiform L Thalamus L Cortical-Limbic temporal-limbic 4.73E-05

Hippocampus L Middle Temporal Gyrus L Cortical-Limbic temporal-limbic 2.15E-04

Hippocampus L Inferior Temporal Gyrus L Cortical-Limbic temporal-limbic 1.88E-04

Hippocampus R Inferior Temporal Gyrus R Cortical-Limbic temporal-limbic 1.96E-04

Calcarine R Inferior Temporal Gyrus R Occipital-Temporal 2.20E-04

Superior Occipital Gyrus R Middle Occipital Gyrus R Occipital-Temporal 3.26E-04

Superior Occipital Gyrus R Inferior Temporal Gyrus R Occipital-Temporal 5.85E-05

Middle Occipital Gyrus R Inferior Temporal Gyrus R Occipital-Temporal 4.16E-04

Network shows the network to which the connection belongs. Subnetwork shows the subnetwork to which the connection belongs. A p-value indicates the mean p-
value of the connection in a two-sample t-test. L represents the left hemisphere, while R represents the right hemisphere.
doi:10.1371/journal.pone.0045972.t001
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future. Another limitation of the present study is the small sample

size of the test datasets. A small sample size directly impacts the

significance level of the TSTT and the generalization rate of the

classifier. Therefore, our findings should be confirmed by using a

larger sample size in the future.

Conclusion
In conclusion, this study adds an anatomical connectivity

perspective to MDD research and demonstrates that the machine

learning approaches can, based on whole-brain anatomical

connectivity, identify major depressive individuals from healthy

controls with a classification accuracy rate of 91.7%. The most

discriminating consensus features show increased anatomical

connectivity in the cortical-limbic network of depressed patients.

Our results suggest that the altered anatomical connectivity in the

cortical-limbic network may contribute to the anatomical basis of

emotional dysregulation and cognitive impairments in MDD and

may be used as potential biomarkers for MDD diagnoses.

Materials and Methods

Ethics Statement
This study was approved by the Ethics Committee of the First

Affiliated Hospital of China Medical University. All clinical

investigations were conducted according to the principles set forth

in the Declaration of Helsinki, and all participants provided

written informed consent. Each participant was first informed

about the details of the project and then was asked to sign the

informed consent form. We confirmed that all potential partici-

pants who declined to participate or otherwise did not participate

were eligible for treatment (if applicable) and were not disadvan-

taged in any other way by not participating in this study.

Participants
The participants consisted of 23 MDD patients from the

outpatient clinic at the First Affiliated Hospital of China Medical

University who were experiencing a first major depressive episode,

and 26 demographically similar healthy controls who were

recruited through advertisements. All subjects were right-handed,

native Chinese speakers. One depressed patient was removed

because we failed to obtain a structural MRI image of the patient.

Depressed patients met the criteria for a current episode of

unipolar recurrent MDD based on DSM-IV criteria [72]. Clinical

psychiatrists diagnosed the subjects as depressed patients through

direct interviews using the Structured Clinical Interview for DSM-

IV (SCID) [73]. Regarding illnesses, we also excluded participants

with a history of head injuries resulting in loss of consciousness and

major psychiatric or neurological illness other than depression.

None of the subjects had a history of substance abuse or

dependence. On the days of the scans, the patients’ depressive

symptoms were assessed using the 17-item Hamilton Depression

Rating Scale (HDRS) [74] and the Clinical Global Impression

Scale-Severity (CGI-S) [75]. The remaining 22 MDD patients and

26 healthy controls were matched for age, gender, weight and

education. Details regarding both participant groups are shown in

Table 2.

Figure 3. ROC curve of SVM classifier. Numbers around the curve are the correct classification rates (%) corresponding to different sensitivities
and specificities. A circular orange point on the curve corresponds to the classification rate, with zero as the classification threshold.
doi:10.1371/journal.pone.0045972.g003
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Imaging Protocol
DTI scans were acquired using a 1.5T GE Signa Imaging

System (General Electric Medical Systems, Milwaukee, Wisconsin,

USA) employing a single-shot echo planar imaging sequence. To

reduce head movement, the subjects’ heads were fixed using foam

pads with a standard birdcage head coil. For each slice, 15 images

were collected using high diffusion-weighted imaging along 15

non-colinear and non-coplanar directions. The imaging parame-

ters were listed as follows: repetition time (TR) = 12 s; echo time

(TE) = 102.4 ms; voxel dimensions = 0.9460.9464 mm, scan ma-

trix = 2566256635, slice thickness = 4 mm, field of view

(FOV) = 24062406140 mm, b value = 1000 sec/mm2.

Region of Interest Segmentation and Fiber Tracking
We used an automatic parcellation method for ROI segmen-

tation and a standard probabilistic tractography algorithm for

fiber tracking. ROI segmentation and fiber tracking were all

implemented by FSL (http://www.fmrib.ox.ac.uk/fsl) [76]. In

contrast to the traditional deterministic-streamline tracking

algorithm, the probabilistic algorithm does not simply track WM

fibers from voxel to voxel, but also models local diffusion

properties and estimates their directions and probabilities. This

algorithm generates posterior distributions on the principal

direction of diffusion by Markov Chain Monte Carlo (MCMC)

sampling and Bayesian inference [25,70].

Extraction of the structural networks was implemented in the

following manner, which is displayed graphically in Figure 4:

1) Cortical parcellation. The automated anatomical labeling

(AAL) atlas [63] was applied when parcellating the entire

cerebral cortex into 90 regions (45 in each hemisphere). First,

all images were skullstripped using the FSL Brain Extraction

Tool (BET) [77]. Then, the skullstripped T1-weighted MP-

RAGE images were registered to the skullstripped b0 image

using a 12-parameter affine registration with a mutual

information cost function implemented in Flirt (FSL tool)

[78] and a nonlinear registration implemented with FNIRT

(FSL tool) [79]. Finally, the transformed T1-weighted images

were registered to the skullstripped T1 template of ICBM152

in the Montreal Neurological Institute (MNI) space with Flirt,

and the resulting transformation matrix was inversed to warp

the AAL atlas from the MNI space to the diffusion-MRI

native space. In this manner, we obtained an AAL template

for each subject (Figure 4, step 1).

2) Interregional connectivity based on probabilistic tractogra-

phy. The four-dimensional diffusion tensor images were

aligned to the first volume using McFlirt (FSL tool) [78] to

eliminate head motion error. Then, the aligned diffusion

tensor images were corrected for distortions caused by eddy

currents by using affine registration in Eddy Current

Correction (FSL tool). After completing these preprocesses,

a diffusion tensor model was fitted at each voxel using DTIFit

(FMRIB Software Library’s Diffusion Toolbox) and followed

by estimating the local probability distribution of fiber

directions at each voxel with BedpostX (FMRIB Software

Library’s Diffusion Toolbox) [80]. Here, a computation

model allowing for automatic estimation of two fiber

directions within each voxel was selected to improve the

tracking sensitivity of non-dominant fiber populations in the

brain [70]. BedpostX generated the basis for probabilistic

tractography that was implemented in ProbtrackX (FMRIB

Software Library’s Diffusion Toolbox). The probabilistic

tractography was performed between two ROIs using only

direct connections by sampling 5000 streamline fibers with a

turning threshold of 60 degrees per voxel (Figure 4, step 2),

and then the probabilistic tractography was further con-

strained to ignore fibers passing through tissue that had a

50% or an even higher probability of being cerebrospinal

fluid or gray matter.

By assuming that the i-th ROI contained n voxels, we seeded

5000 samples at each voxel; therefore, the total number of fibers

connected with this ROI was 50006n. Furthermore, if the number

of fibers from the i-th to the j-th ROI was m, we obtained the

strength of connectivity from the i-th to the j-th ROI by dividing

50006n by m [70]. The fibers estimated from the i-th ROI to the j-

th ROI did not necessarily match the fibers estimated from the j-th

to i-th ROI because seed location affected the probabilistic

tractography. The connectivity strength between two regions was

defined by averaging these two strengths, and all the connectivity

strengths together constituted an anatomical network for the brain

(Figure 4, step 3) that was represented in a symmetric 90690

connectivity matrix (Figure 1 A, B) [81]. Due to low resolution of

the DTI images and limitations of the probabilistic tractography, it

was inevitable that there were a few false-positive connections

between ROIs. Furthermore, the probability of false-positive

connections increased when the estimated connectivity strength

between the two ROIs was relatively low. A threshold value of

Table 2. Characteristics of the participants.

Variable Patient Control p-value

Sample size 22 26

Gender (M/F) 7/15 7/19 0.86a

Age (years) 31.18611.05 (19–52) 34.9269.93 (19–52) 0.54b

Education (years) 11.8263.22 10.7662.95 0.66b

Weight (kg) 60.5610.93 62.5568.59 0.45b

Number of previous episodes 1.6460.79

Duration of current episode (months) 5.6866.46

Hamilton Depression Rating Scale (HDRS) 25.9565.10 4.2460.99

Clinical Global Impression Scale-Severity (CGI-S) 5.9260.65

aPearson Chi-square test;
bTwo-sample t-test.
doi:10.1371/journal.pone.0045972.t002
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0.01 was applied to reduce false-positive connections between

ROIs and to eliminate the connectivities with extraordinarily low

strengths [64]. The connectivity derived from this probabilistic

tractography has been well-recognized and applied in many

neuroimaging studies [64,81,82].

Feature Selection and Classification
First, all the elements in the connection matrix were concate-

nated to a feature vector and combined as a row in a large feature

matrix. Because of noise, low image resolution, registration error

and individual differences, the highly discriminating features that

account for only a small part of the whole feature matrix are

buried by inadequate features. TSTT were applied to identify the

significantly different features between groups, which were

considered to be the most discriminating. Next, LLE (for more

details, see [83]), a manifold learning technique, was introduced to

reduce feature space dimensionality to a more manageable level.

LLE was chosen because it was capable of obtaining a low-

dimensional embedding of the data while preserving the intrinsic

data structures [30,83]. Finally, we adopted SVM with a Gaussian

radial basis function kernel for classification.

Classification was performed N times with LOOCV. In each

fold of LOOCV, one subject was extracted as the test group, and

the other N-1 subjects were retained to train the SVM classifier.

First, the most discriminating features were selected from the N-1

training subjects using TSTT and further projected into the

feature space, in which variables between patients and controls

were best represented. Then, training samples were used to train

the classifier, and test samples were employed to evaluate the

classifier performance by comparing classification results with the

ground truth class labels. As there are N samples, LOOCV trained

the classifier N times. The performance of a classifier was

quantified using Sensitivity (SS), Specificity (SC) and Generaliza-

tion Rate (GR) based on the results of LOOCV, such that:

GR~
TPzTN

TPzFNzTNzFP
ð1Þ

SS~
TP

TPzFN
ð2Þ

SC~
TN

TNzFP
ð3Þ

In this case, TP, TN, FP and FN represented the number of

patients predicted accurately, controls predicted accurately,

controls classified as patients and patients classified as controls,

respectively. The SS indicated the proportion of patients classified

Figure 4. Extraction of a whole brain anatomical network. The DTI image is presented in a reconstructed color-coded tensor map, showing
the direction of the principal axis of diffusion using the standard scheme. Blue codes for the superior-inferior, red for left-right, and green for anterior-
posterior orientation. (1) Cortical parcellation. The DTI images are mapped with an AAL atlas in the diffusion-MRI native space. (2) Fiber tractography
between ROIs. Probabilistic tractography is performed between two ROIs defined in step (1), with only direct connections being retained. (3) Whole
brain anatomical network construction. All of the connections in step (2) constitute the whole brain anatomical network.
doi:10.1371/journal.pone.0045972.g004
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correctly, and the SC represented the proportion of controls that

were classified correctly. The overall proportion of samples

classified correctly was represented by GR.

To assess the statistical significance of the observed classification

accuracy, permutation tests were applied using the generalization

rate as the statistic that measured dissimilarity between two

populations [84]. The class labels of the training data were first

randomly permuted, and then the cross-validation was carried out

for each set of label-permuted data. The entire permutation

process was repeated 10,000 times [29]. Given the null hypothesis

that the classifier could not learn the relationship between the data

and the labels reliably when the generalization rate obtained by

the classifier trained on the real class labels was lower than the

95% confidence interval of the classifier trained on randomly re-

labeled class labels. For any value of the estimated generalization

rate GR0, the appropriate p-value P(GR0) represented the

probability of observing a classification prediction rate that was

no less than GR0. We were supposed to reject the null hypothesis

and declare that the classifier learned the relationship between the

data and the labels with a probability of being wrong at most

P(GR0).
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anatomical networks: does the choice of nodes matter? NeuroImage 50: 970–
983.

67. Liu T (2011) A few thoughts on brain ROIs. Brain Imaging Behav 5: 189–202.

68. McLaughling NCR, Paul RH, Grieve SM, Williams LM, Laidlaw D, et al.
(2007) Diffusion tensor imaging of the corpus callosum: a cross-sectional study
across the lifespan. Int J Devl Neuroscience 25: 215–221.

69. Versace A, Almeida JRC, Quevedo K, Thompson WK, Terwilliger RA, et al.
(2010) Right orbitofrontal corticolimbic and left corticocortical white matter
connectivity differentiate bipolar and unipolar depression. Biol Psychiatry 68:
560–567.

70. Behrens TE, Johansen BH, Jbabdi S, Rushworth MF, Woolrich MW (2007)
Probabilistic diffusion tractography with multiple fibre orientations: what can we
gain?. NeuroImage 34: 144–155.

71. Gutman DA, Holtzheimer PE, Behrens TE, Johansen BH, Mayberg HS (2009)
A tractography analysis of two deep brain stimulation white matter targets for
depression. Biol Psychiatry 65: 276–282.

72. APA (2000) Diagnostic and statistical manual of mental disorders(4th edition).
Washington, DC: American Psychiatric Press.

73. First MB, Spitzer RL, Gibbon M (1995) Structured clinical interview for DSM-
IV axis 1 disorder-patient edition(SCID-I/P). New York: New York State
Psychiatric Institute.

74. Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry
23: 56–62.

75. Guy W (1976) Clinical global impressions: in ECDEU assessment manual for
psychopharmacology. Revised DHEW Pub. (ADM). Rockville,MD: National
Institute for Mental Health. 218–222 p.

76. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, et al.
(2004) Advances in functional and structural MR image analysis and
implementation as FSL. NeuroImage 23: 208–219.

77. Smith SM (2002) Fast robust automated brain extraction. Human Brain
Mapping 17(3): 143–155.

78. Jenkinson M, Bannister P, Brady M, Smith SM (2002) Improved optimization
for the robust and accurate linear registration and motion correction of brain
images. NeuroImage 17(2): 825–841.

79. Andersson J, Jenkinson M, Smith SM (2007) Non-linear registration, aka Spatial
normalisation. FMRIB technical report TR07JA2.

80. Behrens TE, Woolrich MW, Jenkinson M, Johansen BH, Nunes RG, et al.
(2003) Characterization and propagation of uncertainty in diffusion-weighted
MR imaging. Magn Reson Med 50: 1077–1088.

81. Behrens TE, Johansen BH, Woolrich MW, Smith SM, Wheeler-Kingshott CA,
et al. (2003) Non-invasive mapping of connections between human thalamus and
cortex using diffusion imaging. Nat Neuroscience 6: 750–757.

82. Johansen-Berg H, Behrens TE, Robson MD, Drobnjak I, Rushworth MF, et al.
(2004) Changes in connectivity profiles define functionally distinct regions in
human medial frontal cortex. Proc Natl Acad Sci USA 101: 13335–13340.

83. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear
embedding. Science 290: 2323–2326.

84. Golland P, Fischl B (2003) Permutation tests for classification: towards statistical
significance in image-based studies. Inf Process Med Imaging 2732: 330–341.

Increased Anatomical Connectivity in Depression

PLOS ONE | www.plosone.org 10 September 2012 | Volume 7 | Issue 9 | e45972


