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ABSTRACT 

Combinatorial libraries continue to play a key role in drug discovery. To increase structural diversity, 

several experimental methods have been developed. However, limited efforts have been performed so far 

to quantify the diversity of the broadly used diversity-oriented synthetic (DOS) libraries. Herein we report 

a comprehensive characterization of 15 bis-diazacyclic combinatorial libraries obtained through libraries 

from libraries, which is a DOS approach. Using MACCS keys, radial and different pharmacophoric 

fingerprints as well as six molecular properties, it was demonstrated the increased structural and property 

diversity of the libraries from libraries over the individual libraries. Comparison of the libraries to existing 

drugs, NCI Diversity and the Molecular Libraries Small Molecule Repository revealed the structural 

uniqueness of the combinatorial libraries (mean similarity < 0.5 for any fingerprint representation). In 

particular, bis-cyclic thiourea libraries were the most structurally dissimilar to drugs retaining drug-like 

character in property space. This study represents the first comprehensive quantification of the diversity 

of libraries from libraries providing a solid quantitative approach to compare and contrast the diversity of 

DOS libraries with existing drugs or any other compound collection. 

 

INTRODUCTION 

Synthetic combinatorial methods have advanced the ability to synthesize and screen large numbers of 

compounds because of improvements made in technology, instrumentation, and library design strategies 

(1).
  

Combinatorial chemistry combined with high throughput and other screening methodologies 

continues to play a key role in drug discovery (1-3).
  
A very successful synthetic method is the „Libraries 

from Libraries’ (LoL) approach (4).
  

 This concept is based on the use of well-established solid-phase 

synthesis methods for the generation of combinatorial libraries combined with the chemical 

transformation of such libraries. The chemical libraries that are generated by this process have very 

different physical, chemical, and biological properties compared to the libraries from which they were 
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derived (4).
  

 As such, LoLs can be regarded as a diversity-oriented synthetic (DOS) approach (5, 6),
  

where multiple scaffolds are generated from the same starting material. Increasing skeletal diversity is 

known to be a very efficient way to increase structural diversity (7).
  

 As opposed to high-throughput 

screening, where often a large number of compounds with different scaffolds are screened, LoL explores 

the bioactivity space around each scaffold of interest in much more detail, by using a large number of 

diversity appendages on every scaffold.  

A number of small molecule libraries have been prepared in our group using the LoL approach. 

These libraries have been used successfully to identify novel compounds across a wide range of 

therapeutic applications (4, 8).
  
 Figure 1 shows the LoLs considered in this study. Each LoL includes five 

individual combinatorial libraries containing the same number of diversity positions, identical side chain 

functionalities at each diversity position, and the same number of compounds. Libraries within each LoL 

differ only in the chemical nature of the central scaffold. 

It is well accepted that the structural diversity of LoLs improves upon the diversity of other 

combinatorial libraries, where the „multidimensional diversity‟ regarding both scaffold and appendages is 

often one of the key contributing factors. However, characterizing the diversity is not an easy task, and 

efforts have been pursued in this regard. One example is in the work of Spandl et al.(7)
  
in which the 

importance of skeletal diversity was stressed. Previously, circular fingerprints have been used to assess 

diversity of compound collections (9).
  
 While in this work overall good discrimination between DOS and 

target-oriented synthesis (TOS) libraries could be observed, the question of how to normalize for library 

size could not be answered completely – smaller libraries often assessed were more diverse, since larger 

libraries nearly necessarily contain repetitive chemical motives. Also, Rolfe et al. recently addressed the 

structural diversity of a number of 17 compounds obtained via a “click, click, cyclize” DOS strategy using 

principal component analysis (PCA) based on BCUT descriptors and principal moment of inertia. The 17 

compounds covered different regions of chemical space (10). 

The goal of this study was to characterize the structural diversity of 15 combinatorial libraries 

organized into three LoLs (Figure 1A-C). The analysis is based on two criteria: structural fingerprints and 



 4 

molecular properties. Thus, the LoL concept reported previously and perceived by chemists as giving rise 

to diverse compounds, is now assessed quantitatively for the first time. It is demonstrated that LoL 

generates molecules truly diverse in both structural and molecular property space. 

This work is organized into four sections. The first section describes the fingerprint-based diversity of 

each combinatorial library and LoL. The second section shows the cross-comparison of the three LoLs 

and the 15 libraries. The third section describes the structural comparison of the 15 libraries with external 

compound collections. Section four compares the compound datasets in terms of molecular properties. 

The approaches presented here are general and can be used to characterize the diversity of other LoLs or 

DOS libraries. 

Figure 1 here 

METHODS 

Data sets. Each LoL contains five individual combinatorial libraries reported previously (Figure 1): 

LoLA = A1 U A2 U A3 U A4 U A5 

LoLB = B1 U B2 U B3 U B4 U B5   

LoLC = C1 U C2 U C3 U C4 U C5 

where LoLA-C are the three libraries from libraries considered in this study. Figure 1A shows the bis-

heterocyclic LoLA that includes bis-cyclic diketopiperazines A1, bis-cyclic piperazines A2, bis-cyclic 

guanidines A3, bis-cyclic ureas A4 and bis-cyclic thioureas A5 (8, 11, 12).
  

 LoLB (Figure 1B) is 

composed of bis-cyclic diketopiperazines B1, bis-cyclic piperazines B2, bis-cyclic guanidines B3, bis-

cyclic ureas B4 and bis-cyclic thioureas B5 (8, 13).
  
 LoLC (Figure 1C) includes different pentaamines 

and pyrrolidine bis-heterocyclic libraries, such as pyrrolidine bis-diketopiperazine C1, pyrrolidine bis-

piperazine C2, pyrrolidine bis-cyclic guanidines C3, pentaamine C4 and pyrrolidine bis-cyclic thiourea 

C5 (14).  To note, libraries with the core scaffolds of LoLC and LoLB were screened in a -opioid 

receptor binding assay (1).
  
 The most active libraries had the scaffolds of B3 and C3 (1)

 
 and several 
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compounds of C3 had a Ki lower than 100 nM (1).
  

 Combinatorial libraries with the core scaffold of 

LoLC were recently screened for antitubercular activity leading to compounds with 90–100% inhibition 

against M. tuberculosis at concentrations less than 6.25 g/mL (14).
  
 

 Libraries A1-A5 and B1-B5 have three diversity positions, and C1-C5 have four diversity positions. 

To enumerate libraries A1-A5 and B1-B5, we used ten amino acids or carboxylic acids as building blocks 

for each diversity position. Thus, the size of each individual combinatorial library was 10 x 10 x 10 = 

1,000 compounds; hence LoLA and LoLB contained 5,000 structures each. In order to measure the effect 

of each core template in the diversity, the same set of ten amino acids or carboxylic acids was considered 

for each library. To enumerate C1-C5, we selected six amino acids and five carboxylic acids from the 

pool of the ten building blocks used in the libraries above. Thus, the size of each library C1-C5 was 6 x 6 

x 6 x 5 = 1,080 compounds, and LoLC contained 5,400 structures. A complete list of the building blocks 

used to enumerate the libraries is in Table S1 of the Supporting information. In order to compare the 

diversity across different libraries, we considered approximately the same library size; i.e., 1,000 – 1,080 

compounds. In addition, it has been reported that data sets of 1,000 molecules are representative samples 

to study the structural diversity of combinatorial and other libraries (15, 16).
  
 The combinatorial libraries 

were enumerated using the QuaSAR-CombiDesign module of the Molecular Operating Environment 

(MOE) program, version 2009.10 (17).
  
 The collection of drugs (1,490 compounds) was obtained from 

DrugBank (18) as collected in the ZINC database (download July 2008) (19).
  

 The NCI diversity set 

(1,832 compounds with unique SMILES as computed with MOE) was obtained from ZINC (download 

March 2010). The MLSMR collection was obtained from PubChem (20) (347,480 compounds 

downloaded in May 2010) and processed with MOE by disconnecting group I metals in simple salts and 

keeping the largest fragment. 

Comparison metrics. Compound collections were analyzed based on structural fingerprints and 

molecular properties. Similarity values were computed using the 2D fingerprints MACCS keys (21) (166 

bits), graph-based three point pharmacophores (GpiDAPH3), typed graph distances (TGD) implemented 

in MOE, and radial fingerprints (equivalent to ECFP4) implemented in Canvas (22).
  
 In addition, we used 
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the 3D fingerprint spatial three-point pharmacophore (piDAPH3) from MOE, calculated from the 

structures geometrically optimized using the MMFF94x force field implemented in MOE. The Tanimoto 

coefficient (23, 24) was used as the similarity measure for all fingerprints. 

Intra-library similarity. Pairwise similarities were computed for each combinatorial library. The 

distribution of similarities was analyzed by means of cumulative distribution function (CDF) curves. 

Inter-library similarity. LoLs were compared to each other computing the pairwise structural similarity. 

To this end, we employed random samples of 300 compounds per library so that each LoL contained 

1,500 members (25).
 
 The pairwise similarities were analyzed using CDF curves and multi-fusion 

similarity (MFS) maps. The MFS map is a method developed recently for the visual characterization and 

comparison of compound databases and is based on data-fusion similarity measures. The fusion data are 

plotted in two dimensions, where the ordinate represents the maximum-fusion values and the abscissa the 

mean-fusion values. Each point in the map is associated with a specific molecule in the test set, and its 

position is determined by the corresponding fusion values computed with respect to the molecules in the 

reference set (26).
  
 The MFS maps can be characterized quantitatively by the corresponding distributions 

of the max- and mean-fusion values (27).
  
 This approach has been employed to explore structure-activity 

relationships of compounds data sets (28) and to compare combinatorial libraries (16, 27, 29).
  
 

Comparison with external compound collections. The 15 libraries, with 1,000 (A1-A5, B1-B5) and 1,080 

(C1-C5) molecules each, were compared with a collection of drugs, the NCI Diversity set and the 

Molecular Libraries Small Molecule Repository (MLSMR) using MACCS keys, GpiDAPH3, TGD and 

piDAPH3 fingerprints. We employed MFS maps (setting the external compound collections as the 

reference sets) and Latent Trait Mapping (LTM) plots. LTM is a dimensionality reduction technique that 

is specially designed to visualize discrete data (30).
 
  It defines a function (or mapping) from the original 

data space to a lower-dimension (usually 2D) visualization space.  Because the mapping is non-linear, it 

often provides a more informative visualization than either plotting pairs of the original variables (such as 
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MFS maps) or linear maps (such as PCA).  The price to pay for the greater insight is that there is no 

interpretation of the axes on the visualization plot. 

Molecular properties and property space. The following properties were computed with MOE molecular 

weight (MW), number of rotatable bonds (RB), hydrogen bond acceptors (HBA), hydrogen bond donors 

(HBD), topological polar surface area (TPSA), and the octanol/water partition coefficient (SlogP). To 

obtain a visual representation of the property space (27),
  

 PCA was carried out in Spotfire 9.1.2 (31) 

considering the six molecular properties and plotting the first two principal components. 

RESULTS AND DISCUSSION 

Intra-library diversity 

Figure 2 summarizes the distribution of similarities of LoLA, LoLB and LoLC and the corresponding 

individual libraries using MACCS keys. Figure 2A shows a comparison of the diversity of LoLA and A1-

A5. The CDFs and the corresponding statistics indicate that LoLA is more diverse than each individual 

library. For example, compare the median and mean of the similarity distribution of LoLA (0.627 and 

0.641, respectively) with the corresponding values for the individual libraries (≥ 0.786 and ≥ 0.789, 

respectively). Also, compare the standard deviation of LoLA (0.110) with the standard deviation of A1-

A5 (≤ 0.08). The CDFs also indicated that A3 and A5 showed slightly higher diversity than A1, A2 and 

A4. Library A1 showed the lowest diversity. 

Figure 2 here 

 Figure 2B and 2C summarize the distribution of similarities of LoLB and LoLC, respectively, along 

with their corresponding individual libraries. LoLB and LoLC have higher diversity (lower similarity) 

than their corresponding libraries. Bis-cyclic diketopiperazine libraries (B1 and C1), had lower diversity 

as compared to other corresponding individual libraries within the same LoL. To note, a relatively small 

pre-defined MACCS keys (166 bits) was sufficient to differentiate between the libraries. These results 

suggest that MACCS keys could focus only on the discriminant features but neglect other relevant 
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chemistry. However, we obtained similar conclusions using other structural representations including 

TGD, GpiDAPH, radial and piDAPH3 fingerprints (see below). 

 

Inter-library diversity 

Figure 3 shows the heat maps of similarity matrices of the 15 combinatorial libraries calculated with 

MACCS, TGD, GpiDAPH, radial and piDAPH3 fingerprints. Each map visualizes 1,500 x 1,500 = 

2,250,000 pairwise comparisons and is color-coded by similarity value using a continuous scale from 

green (low similarity value) to red (high similarity value). The name of the individual libraries and LoLs 

are indicated in the figure. Each map can be divided into 15 x 15 = 225 “minor” regions or squares that 

correspond to the pairwise comparison of all 15 libraries. The maps can also be divided into 3 x 3 = 9 

“major” regions that are associated with the cross-comparisons of LoLA, LoLB and LoLC. The minor or 

major regions along the main diagonals starting from the top-left correspond to the self-library 

comparisons. The maps help to visually inspect the similarity between individual libraries that belong to 

the same LoL as well as to different LoLs. In general, in this study most of the similarity values computed 

with radial fingerprints were close to zero. TGD, piDAPH3 and GpiDAPH3 showed comparable 

similarity relationships among databases although with different scales; similarity values calculated with 

TGD were higher than the similarities calculated with piDAPH3 and GpiDAPH3. Noteworthy, the 

pharmacophoric fingerprints, TGD, piDAPH3 and GpiDAPH3, were unable to distinguish the pair of 

libraries A4-A5 or B4-B5. This is because the difference in the central scaffold of these libraries is an 

oxygen (A4-B4) or sulphur atom (A5-B5) that are treated as equal by TGD, piDAPH3 and GpiDAPH3. 

MACCS keys provided very insightful results and were able to distinguish all libraries; therefore, we will 

mainly focus on MACCS keys to discuss the inter-library similarity. 

Figure 3 here 

Along the main diagonal on the heat map based on MACCS keys (Figure 3), there are 15 black-to-red 

squares indicating a high similarity for the self-individual library comparisons; e.g., comparison of A1-

A1, A2-A2, A3-A3, A4-A4, B1-B1. In contrast, the three major regions along the main diagonal (self-
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LoL comparisons, LoLA-A, LoLB-B, LoLC-C), contain a number of green and black-to-green squares; in 

particular, LoLA-A and LoLB-B. This observation suggests a low similarity between the five individual 

libraries that belong to the same LoL. The visual analysis of the similarity matrix of random samples is in 

agreement with the increased diversity of each LoL as compared to the individual libraries (see above). A 

quantitative analysis of each major quadrant is discussed later in this section. 

A diagonal of black-to-red squares can be identified in the major region associated with the cross-

comparisons of LoLA-B. This diagonal indicates the high similarity between individual libraries that 

belong to different LoLs; for example, A1-B1, A2-B2, A3-B3, A4-B4 and A5-B5. This is because all 

these pairs of libraries have a bis-cyclic heterocyclic ring in common, namely, bis-cyclic 

diketopiperazines (A1, B1), bis-cyclic piperazines (A2, B2), bis-cyclic guanidines (A3, B3), bis-cyclic 

ureas (A4, B4) and bis-cyclic thioureas (A5, B5). Similar conclusions are obtained from the cross-

comparisons LoLA-C and LoLB-C. Note, however, that the A4-C4 and B4-C4 comparisons are green-to-

black indicating lower similarity. This observation is associated with the different scaffold of A4 and B4 

(bis-cyclic urea), and C4 (pentaamine). To note, the black-to-red square comparing libraries B3-C3 

indicates high similarity between these collections. To note, both libraries have a bis-cyclic guanidine 

moiety in the central scaffold, and libraries with these scaffolds were the most active in a -opioid 

receptor binding assay (1).
 
 The heat map calculated using MACCS keys also provides a quick inspection 

of the more diverse libraries; for example, the green squares corresponding to the pair of libraries A1-B3 

and A5-B1 indicate low similarity. 

The heat map of similarity matrices is a simple and powerful tool to explore structural relationships 

between LoLs and the individual libraries. The visual analysis was expanded with a quantitative study of 

the similarities between LoLs. Figure 4 shows the CDFs and corresponding statistics of the distribution of 

the MACCS pairwise similarities comparing the LoLs. The CDFs for the self-LoL comparisons with 300 

compounds per library are similar to the CDFs for the self-LoL comparisons with 1,000 (LoLA, LoLB) 

and 1,080 compounds (LoLC) per library. This result suggests that the random samples with 300 

compounds per library are representative. The CDF curves indicate that each of the LoL is structurally 
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diverse. Figure 4 shows that LoLA is the most diverse of the three LoLs, whereas LoLC is the least 

diverse. This result agrees with the conclusions obtained from the heat map in Figure 3 and CDFs in 

Figure 2A. The CDF for the cross-LoL comparisons (Figure 4) indicate the low similarity between any 

pair of LoLs. The pair LoLA-B has the highest diversity, whereas the pair LoLB-C has the lowest 

diversity. Similar conclusions were derived from the heat map (Figure 3). 

Figure 4 here 

Figure 5 depicts the MFS maps comparing the LoLs with themselves (self-reference) and with other 

LoL (cross-comparisons) using MACCS keys. The reference sets are designated along the top and the test 

sets along the left-hand side of the figure. The three maps along the main diagonal are self-referential. In 

all maps the mean similarity ranges within similar values (~0.5 < mean similarity < ~0.75) indicating 

comparable diversity of the reference sets. This result is in agreement with the similarity distributions of 

the three LoLs (Figure 2 and 4). Concerning the self-referential MFS maps, the maximum values are high 

(> 0.9 and several > 0.95) indicating that each molecule in the corresponding LoL has a close nearest-

neighbor (expected to belong to the same individual library). However, the corresponding mean values are 

lower than 0.75 indicating the higher diversity of the corresponding LoL. 

Figure 5 here 

The MFS maps along the left-hand side of Figure 5 show the relationship of LoLB and LoLC to 

LoLA (reference). LoLB has larger maximum values than LoLC indicating that LoLB has closer 

neighbors in LoLA. This result is difficult to deduce from the heat maps in Figure 3. The MFS maps 

along the center of Figure 5 show the relationship of LoLA and LoLC to LoLB (reference) suggesting a 

similar relationship between the two LoLs and LoLB. The MFS maps along the right-hand side of Figure 

5 depict the relationship of LoLA and LoLB with LoLC indicating an overall lower similarity of LoLA 

(32).
 
 

 

Structural comparison with external data sets 
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Figure 6 shows the MFS maps and the corresponding CDFs of the maximum- and mean-fusion values 

comparing the relationship between LoLA-C (test) and drugs (reference) using MACCS keys. The CDF 

of the maximum-fusion values are reminiscent of the nearest-neighbors curves (33, 34).
 
 These maps 

suggest that there are no identical compounds between any of the combinatorial libraries and drugs; 

moreover, all the compounds in the combinatorial libraries have a maximum MACCS keys similarity 

lower than 0.9 to any of the drugs and most of the compounds have maximum similarity lower than 0.85. 

Note also the larger distribution of the molecules in each of the three MFS maps considering the entire 

LoLs as compared to the distribution of the molecules of each combinatorial library. This result further 

supports the increased diversity of LoLs over the individual libraries. Similar conclusions were obtained 

with other fingerprint representations (see below). 

Figure 6 here 

Figure 6A shows the MFS maps and CDF for libraries A1-A5. A1 is towards the top right part of the 

MFS map suggesting a relative increased structural similarity to drugs as compared to A2-A5. This 

observation was further confirmed by the CDFs of the maximum- and mean-fusion values. A5 is located 

towards the bottom left part of the MFS map suggesting that this library is the least similar to drugs. A 

similar conclusion can be derived from the CDFs. Note, however, that the CDF of the mean-fusion value 

cannot distinguish A3 and A5 since these two libraries have the same mean similarity relationship to 

drugs. A2 and A4 are, in general, the second most similar libraries to drugs after A1 as suggested by the 

MFS map. To note, the corresponding CDFs of the maximum- and mean-fusion values indicate an 

opposite order of similarity for A2 and A4 with respect to drugs; the CDF of the maximum-fusion values 

for library A2 is shifted towards higher values than the corresponding curve for A4 indicating that the 

nearest neighbors of A2 in DrugBank are closer that the nearest neighbors for A4. However, the CDF of 

the mean-fusion values for library A4 is shifted towards higher values indicating that, on average, A4 is 

more similar to drugs than A2. These observations highlight the importance of considering more than one 

metric for a complete assessment of the relationship between compound collections. 
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Figure 6B shows the MFS maps and CDFs for libraries B1-B5. According to the MFS map B1, a bis-

cyclic diketopiperazine library (related to A1), is structurally more similar to drugs as compared to other 

libraries within LoLB. Library B5, a bis-cyclic thiourea (related to A5), is the less similar to drugs. 

Similar conclusions can be derived from the CDFs. The CDFs of the maximum- and mean-fusion values 

for B2 and B4, respectively, indicate that while B2 has closer nearest neighbors in the collections of 

drugs, B4 is on average more similar to drugs. Figure 6C shows the MFS maps and CDFs for C1-C5 

indicating that the pyrrolidine bis-cyclic thioureas C5 are the less structurally similar to drugs. According 

to the MFS map and CDF of the mean-fusion values, pyrrolidine bis-cyclic diketopiperazines C1 are 

more similar to drugs as compared to other libraries within LoLC. To note, the CDF for the maximum-

fusion values indicates that C1 and C2 have a similar nearest-neighbor relationships to drugs; however, 

C1 is on average structurally more similar to drugs than C2. 

Figure 7 depicts a visualization of the chemical space comparing LoLs and drugs using the LTM 

algorithm with MACCS keys (166 bits) as the molecular descriptors (35).
 
 The binary (0-1) data is well 

suited to this algorithm.  Figure 7A shows LoLA, LoLB, LoLC and drugs in the same space. For clarity, 

Figure 7B-D show a comparison of the chemical space of drugs with each LoL, respectively, within the 

same coordinates as Figure 7A. The LTM plots on the left-hand side of Figure 7B-D shows the LoL as 

one color, whereas the chemical space on the right-hand side shows each individual combinatorial library 

with different colors (color scheme as in Figure 1). Visualization of the chemical space in Figure 7B-D 

shows that LoLA-C cover a larger area of the chemical space than the space covered by each 

combinatorial library. This result supports the increased structural diversity of the LoLs over the 

individual libraries. 

Figure 7 here 

Visualization of the chemical space with the LTM plots shows different relationships of A1-A5, B1-

B5 and C1-C5 with drugs. As such, libraries with a bis-cyclic guanidine moiety in the core scaffold A3, 

B3, C3 (in black), and with a bis-cyclic urea moiety A5, B5 and C5 (in yellow) are the most dissimilar to 

drugs. In contrast, libraries containing a diketopiperazine moiety A1, B1 and C1 (in blue) are the most 
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structurally similar to drugs. Measuring the mean distance of drugs to each library in the LTM space 

further confirmed these conclusions (Table S3 of the Supporting information). Note, however, that there 

are no overlaps in the structural MACCS keys space between the combinatorial libraries and drugs. These 

results are in agreement with the MFS maps and CDF curves discussed above (Figure 6). In contrast to 

MFS maps, LTM plots enable the visualization of the reference set (i.e., drugs) in chemical space.  It is 

also noteworthy that the LTM plots show the separation between different classes much better than the 

MFS maps (and the PCA visualizations discussed below and shown in Figure 8). In addition, the 

relationships between different libraries (as measured by distance in the LTM space) are better defined, 

and there is more information about the groupings of compounds within each library. Further interactive 

exploration of these visualizations can be carried out using the Data Visualization and Modeling System 

(DVMS) tool (35, 36).
  

We also analyzed the structural relationship between LoLs and NCI diversity using the MFS maps 

and CDFs using MACCS keys (plots not shown). Similar to the comparison with drugs, the combinatorial 

libraries showed a different structural relationship to NCI diversity. It was also concluded that there are no 

identical molecules between NCI Diversity and any combinatorial library. Moreover, most of the 

compounds in any combinatorial library have maximum MACCS keys similarity of 0.80. Lower 

similarity values were computed with other fingerprint representations (see below). 

Since the chemical space depends on the molecular representation (37),
  
we investigated the structural 

relationship of the LoLs to drugs, NCI diversity and MLSMR using TGD, GpiDAPH3 and piDAPH3 

fingerprints. For MLSMR, a subset of 3,000 compounds was selected at random. The maximum- and 

mean-fusion values (Table S4 of the Supporting information), confirmed that the combinatorial libraries 

are structurally different from drugs, NCI diversity and MLSMR regardless of the structural 

representation. 

 

Property Diversity 
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Table 1 summarizes the median, mean and standard deviation of the distribution of the six molecular 

properties described in Methods for the 15 libraries, three LoLs and external data sets. Additional 

statistics of the distributions (e.g., maximum, minimum, first and third quartile and U95 and L95 values) 

are presented in Table S2 of the Supporting information. The three important molecular properties of size, 

flexibility and molecular polarity are described by MW; RB; and SlogP, TPSA, HBA and HBD, 

respectively. The six descriptors used here have been used to compare the property space covered by a 

virtual collection and reference databases (38) and other combinatorial libraries (16).
  
 According to Table 

1 and Table S2 of the Supporting information, each LoL has a wider distribution of molecular properties 

than their corresponding individual libraries as reflected by the larger standard deviation and range for 

most of the properties. Since all of the combinatorial libraries within a LoL contain the same number of 

diversity positions, identical side chain functionalities at each diversity position, and the same number of 

compounds with the library (see above), the variation in the properties within a LoL is due to the central 

scaffold. These results further demonstrate the observation that increasing skeletal diversity is a very 

efficient way to increase not only the structural diversity (7),
 
but also property diversity. 

Table 1 here 

 According to Table 1 and S2, LoLA and the corresponding individual libraries have, in general, more 

HBA, HBD, and larger TPSA values than drugs. The number of rotatable bonds in any of the libraries in 

LoLA is quite similar to the number of RB in drugs. Also, LoLA has a distribution of SlogP values 

comparable to drugs; in particular A4 and A5.  In general, LoLB and the corresponding individual 

libraries have larger SlogP, MW and RB values than drugs. B4, B3 and B5 have a distribution of HBA 

and HBD comparable to drugs (B3 also has a similar distribution of TPSA values). LoLC has, in general, 

larger values of HBA, RB and MW than drugs. C1, C2 and C5 have a distribution of HBD comparable to 

drugs (C1 also has similar distribution of SlogP values and C4 a similar distribution of TPSA values). 

In order to generate a visual representation of the property space, the six molecular properties were 

subjected to PCA after Z-scaling. Figure 8 depicts an approximation of the property space as defined by 

these properties. The first two principal components (PC) with eigenvalues 2.172 and 2.071, respectively, 
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account for 70.71% of the variance. (Components with eigenvalues less than 1.0 were not considered).  

Figure 8A shows LoLA, LoLB and LoLC, drugs and NCI Diversity sets in the same space. From this 

figure and the property distributions (Tables 1 and S2), it can be concluded that NCI diversity covers a 

similar region of the property space occupied by drugs. For the sake of clarity, Figures 8B-D show a 

comparison of the property space of drugs with each LoL, respectively, within the same coordinates as 

Figure 8A. The property space on the left-hand side of Figures 8B-D show the LoL is one color, whereas 

the property space on the right-hand side shows each individual combinatorial library with different colors 

(color scheme as in Figure 1). Table 2 summarizes the corresponding loadings and eigenvalues for the six 

PCs. For the first PC, the larger loadings correspond to MW followed by RB. For the second PC, the 

largest loading corresponds to HBD followed by TPSA, whereas for the third PC, the largest loading 

corresponds to TPSA followed by HBA. Figures 8B-D reveal that LoLA, LoLB and LoLC cover a larger 

area of the property space than the space covered by each individual library. This observation further 

demonstrates the increased property diversity of the LoLs over the individual combinatorial libraries. 

Figure 8 here 

Table 2 here 

Figures 8B-D also show a different degree of overlap between LoLs and drugs. LoLA has a 

significant overlap with drugs (Figure 8B). Noteworthy, LoLA is structurally dissimilar to drugs (see 

above). In other words, the chemical structures of LoLA are different from the structures of drugs; 

however, the molecular properties of LoLA are similar to the properties of drugs. This observation 

illustrates the dependence of chemical space with the structural representation (37) and further 

emphasizes the importance of considering multiple criteria when comparing compound data sets (39, 40). 

LoLB and LoLC cover regions of the property space sparsely populated by drugs (Figures 8C and 

8D, respectively). A major difference in the distribution of LoLB, LoLC and drugs occurs along the 

coordinates of the first PC that is mainly associated with MW and RB. These results are in agreement 

with the conclusions derived from the property distributions in Tables 1 and S2. The areas in the property 

space with few drugs represent areas that are biologically relevant as revealed by the presence of some 
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drugs but may not have been sufficiently explored (16).
 
In addition, LoLB and LoLC sample unexplored 

regions of the drug space. Coverage of regions unexplored by drugs has been reported for other DOS and 

combinatorial libraries (16, 41). Molecules in these areas, while potentially unlikely to make drugs by 

themselves, are valuable as chemical probes in order to better understand the structure-activity 

relationships associated with unknown targets (9, 16).
 
 Although the LTM (Figure 7) and PCA plots 

(Figure 8) represent visual approximations of the property space, they provide a useful idea of the 

molecules‟ distribution in the space.  The non-linear nature of the LTM means that it provides greater 

discrimination between libraries and also within each library. 

We also compared the property space of the LoLs with MLSMR using the same random subset 

employed in the structural study (42).
 
 A visualization of the property space is depicted in Figure S2. (The 

corresponding loadings and eigenvalues are summarized in Table S5 of the Supporting information). We 

concluded that LoLA, LoLB and LoLC not only occupy part of the property space of MLSMR but also 

sparse regions. 

The major focus of this study was to demonstrate quantitatively the increased diversity of the 

combinatorial libraries generated with the LoL approach. To this end, we considered a standard set of 

building blocks for each LoL enumerating ~1000 compounds per library. Note, however, that the actual 

size of the libraries can be much larger. For example, libraries with the pyrrolidine bis-cyclic scaffolds 

have been synthesized and screened with 738,192 compounds per library. Similarly, libraries with the bis-

cyclic scaffolds have been synthesized and screened with 45,864 compounds per library (1).
  
 

CONCLUSIONS AND PERSPECTIVES 

Herein we report a comprehensive characterization of the diversity of 15 combinatorial libraries obtained 

with the libraries from libraries (LoLs) approach. The 15 libraries are grouped in three bis-diazacyclic 

LoLs. Previous studies showed that several of the central scaffolds considered in this study are 

biologically relevant. Structural fingerprints, including MACCS keys, GpiDAPH3, TGD, radial and 

piDAPH3 fingerprints, as well as molecular properties, were considered to assess the diversity. Analysis 
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of the structural diversity of the libraries showed that the LoLs are more diverse than the corresponding 

individual libraries. Distributions of pairwise structural similarities and heat maps of similarity matrices 

revealed that libraries within the same LoL are structurally diverse, mainly combinatorial libraries in 

LoLA followed by libraries in LoLB. All these results provide quantitative measures of the different 

chemical and physical properties of the libraries generated by the LoL approach. Fingerprints-based 

comparisons indicated that the 15 libraries are structurally different from drugs, NCI Diversity and 

MLSMR. MFS maps and LTM plots revealed that libraries containing a bis-cyclic thiourea moiety in the 

central scaffold (A5, B5 and C5) are the most structurally dissimilar to drugs. In contrast, libraries with a 

bis-cyclic diketopiperazine moiety in the central scaffold (A1, B1 and C1) are more structurally similar to 

drugs. Comparison of the libraries with drugs using molecular properties showed that combinatorial 

libraries have a different degree of overlap with the property space of drugs. In particular, despite the fact 

that LoLA is structurally dissimilar to drugs, their properties are similar. 

Focused and targeted combinatorial libraries have gained an increased interest in recent years (43-

45).
 
 The core scaffolds presented here represent potential starting points of focused or targeted 

combinatorial libraries. The most suitable core scaffold(s) for a particular target family can be explored 

using computer-aided target fishing approaches (46, 47)
  
and in-silico “scaffold ranking” (1) to identify 

the most promising core scaffolds for a particular target or target family before synthesis. 
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Figure 1  Fifteen combinatorial libraries organized into three libraries from libraries (LoL) analyzed in 

this study. Each library within a LoL shares the same number of diversity positions, identical building 

block side chain functionalities, and the same number of compounds within each library 
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Figure 2  Intra-libraries similarities using MACCS keys. Figure shows the cumulative distribution 

function (CDF) of pair-wise similarities for each library and LoL. CDF for each library indicates the 

distribution of 499500 pairwise-comparisons taken from the similarity matrix. The CDF for the LoLs also 

contains 499500 points taken at random from the entire similarity matrix. (See also Figure 3 and text for 

discussion) 
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Figure 3  Heat maps of similarity matrices comparing 15 libraries (300 compounds at random per library) 

using different fingerprints, 2D (MACCS, TGD, GpiDAPH3 and radial) and 3D (piDAPH3). Similarity is 

colored using a continuous color scale from red (high similarity) to green (low similarity) 
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Figure 4 Cumulative distribution functions of the MACCS keys pairwise similarities between the LoLs 
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Figure 5  Multi-fusion similarity maps comparing the relationship of the LoLs. The reference LoLs are 

designated along the top and the test LoLs along the left-hand side of the figure. The three plots along the 

principal diagonal (upper left to lower right in the figure) correspond to self-referencing MFS maps. 

LoLA is in brown squares, LoLB in orange circles and LoLC in violet triangles 
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Figure 6 Relationship between a collection of drugs (reference) with the following test compounds: (A) 

libraries A1-A5, (B) libraries B1-B5 and (C) libraries C1-C5. MFS maps and the corresponding CDF of 

the maximum and mean values distributions are shown 
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Figure 7 LTM plots of three LoLs, 15 combinatorial libraries and drugs. (A) Drugs (gray), LoLA 

(brown), LoLB (orange) and LoLC (purple); (B) drugs and LoLA (left), drugs and A1-A5 (right); (C) 

drugs and LoLB (left), drugs and B1-B5 (right); (D) drugs and LoLC (left), drugs and C1-C5 (right). A1-

A5, B1-B5, C1-C5 are color- and shape-coded as in Figures 1, 5 and 6 
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Figure 8 Property space of three LoLs, 15 combinatorial libraries, drugs (gray) and NCI diversity (pink). 

The first two PC account for 70.71% of the variance. The loadings are summarized in Table 2. (A) Drugs, 

LoLA, LoLB, LoLC and NCI Diversity; (B) drugs and LoLA (brown) and drugs and A1-A5; (C) drugs 

and LoLB (orange) and drugs and B1-B5; (D) drugs and LoLC (purple) and drugs and C1-C5. A1-A5, 

B1-B5, C1-C5 are color coded as in Figures 1, 5 and 6 
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Table 1. Distribution of molecular properties 

 

Library 
HBA   HBD   RB 

Median Mean StdDev  Median Mean StdDev  Median Mean StdDev 

LoLA 4.00 3.70 1.26  3.00 3.30 1.13  6.00 6.30 1.21 

A1 5.00 4.90 0.79  3.00 2.90 0.79  6.00 6.30 1.21 

A2 5.00 4.90 0.79  3.00 2.90 0.79  6.00 6.30 1.21 

A3 3.00 2.90 0.79  5.00 4.90 0.79  6.00 6.30 1.21 

A4 3.00 2.90 0.79  3.00 2.90 0.79  6.00 6.30 1.21 

A5 3.00 2.90 0.79  3.00 2.90 0.79  6.00 6.30 1.21 

LoLB 3.00 3.10 1.08  1.00 1.70 0.92  11.00 11.10 1.18 

B1 4.00 4.30 0.46  1.00 1.30 0.46  11.00 11.10 1.18 

B2 4.00 4.30 0.46  1.00 1.30 0.46  11.00 11.10 1.18 

B3 2.00 2.30 0.46  3.00 3.30 0.46  11.00 11.10 1.18 

B4 2.00 2.30 0.46  1.00 1.30 0.46  11.00 11.10 1.18 

B5 2.00 2.30 0.46  1.00 1.30 0.46  11.00 11.10 1.18 

LoLC 5.00 4.70 1.17  2.00 2.50 1.42  11.00 11.90 2.38 

C1 5.00 5.50 0.65  1.00 1.50 0.65  11.00 10.90 1.29 

C2 5.00 5.50 0.65  1.00 1.50 0.65  11.00 10.90 1.29 

C3 3.00 3.50 0.65  3.00 3.50 0.65  11.00 10.90 1.29 

C4 5.00 5.50 0.65  4.00 4.50 0.65  16.00 15.90 1.29 

C5 3.00 3.50 0.65  1.00 1.50 0.65  11.00 10.90 1.29 

DrugBank 2.00 2.46 1.69  1.00 1.18 1.22  5.00 5.07 3.26 

NCI Diversity 2.00 2.70 1.64  1.00 1.36 1.19  3.00 3.39 2.14 

MLSMR(3000) 4.00 3.72 1.82  1.00 1.07 1.03  7.00 6.71 3.48 

MLSMR(347480) 3.00 3.35 1.49  1.00 1.07 0.90  6.00 6.16 2.90 

            

 
SlogP   TPSA   MW 

Median Mean StdDev  Median Mean StdDev  Median Mean StdDev 

LoLA 1.13 1.02 1.70  98.47 91.61 29.42  360.55 363.30 57.56 

A1 -0.58 -0.63 1.47  119.05 117.03 16.07  402.45 402.07 52.71 

A2 1.31 1.26 1.47  50.77 48.75 16.07  346.52 346.14 52.71 

A3 1.18 1.13 1.47  98.47 96.45 16.07  344.46 344.08 52.71 

A4 1.55 1.50 1.47  84.91 82.89 16.07  346.43 346.05 52.71 

A5 1.88 1.83 1.47  114.95 112.93 16.07  378.57 378.18 52.71 

LoLB 3.99 3.86 1.32  76.12 70.68 26.34  448.70 450.68 45.33 

B1 2.31 2.21 1.00  90.03 96.10 9.28  488.67 489.45 38.97 

B2 4.21 4.11 1.00  21.75 27.82 9.28  432.74 433.52 38.97 

B3 4.08 3.98 1.00  69.45 75.52 9.28  430.69 431.46 38.97 

B4 4.45 4.35 1.00  55.89 61.96 9.28  432.65 433.43 38.97 

B5 4.78 4.68 1.00  85.93 92.00 9.28  464.79 465.56 38.97 

LoLC 2.98 2.96 1.72  85.63 79.21 27.62  487.78 487.39 60.97 

C1 1.50 1.53 1.50  93.27 103.39 13.06  536.69 537.11 48.36 

C2 3.39 3.43 1.50  24.99 35.11 13.06  480.76 481.18 48.36 

C3 3.26 3.30 1.50  72.69 82.81 13.06  478.71 479.12 48.36 

C4 2.56 2.55 1.48  65.35 75.47 13.06  425.75 426.30 47.54 

C5 3.96 4.00 1.50  89.17 99.29 13.06  512.81 513.23 48.36 

DrugBank 1.63 1.44 2.57  67.09 71.82 41.47  310.34 310.32 91.93 

NCI Diversity 2.46 2.45 1.91   64.69 69.15 33.55   272.35 283.59 84.64 

MLSMR(3000) 2.80 2.72 1.59  80.47 81.41 33.30  401.47 395.19 102.14 

MLSMR(347480) 2.89 2.80 1.43  74.61 76.49 28.96  358.53 362.19 83.05 
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Table 2. Loadings for the six principal components of the property space 

 

Principal component PC1 PC2 PC3 PC4 PC5 PC6 

eigenvalue 2.172 2.071 0.736 0.642 0.286 0.094 

cumulative 

eigenvalue (%) 
36.192 70.709 82.97 93.677 98.440 100 

HBA 0.277 0.456 -0.659 0.273 -0.289 -0.351 

HBD 0.012 0.525 0.068 -0.795 -0.255 0.154 

RB 0.607 0.058 -0.038 -0.225 0.742 -0.159 

SlogP 0.398 -0.488 0.211 -0.251 -0.466 -0.527 

TPSA -0.0004 0.523 0.692 0.328 0.0140 -0.375 

MW 0.629 0.043 0.193 0.271 -0.289 0.639 
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Figure S1 Non-symmetry in nearest neighbor relationships. If molecule “m” in a compound collection 

“M” is the nearest neighbor of molecule “n” in a second compound collection “N”, this does not 

necessarily mean that molecule “n” is the nearest neighbor of “m”. 
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however, m1 is NOT the NN of n1: 

m2 is the NN of n1 
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Figure S2 Property space of 3 LoLs, 15 combinatorial libraries, drugs (gray), NCI diversity (pink) and 3000 

compounds from MLSMR selected at random (light blue). The first two PC account for 70.41% of the variance. 

The loadings are summarized in Table S5. Figures S2A, S2B and S2C show a comparison of the property space of 

MLSMR with each LoL. The left hand side of these figures shows the LoLs in one color and on the right hand side 

show, in different colors, each of the five combinatorial libraries within a LoL. The largest loadings for the first PC 

correspond to MW followed by RB. In contrast, the largest loadings for the second PC correspond to SlogP 

followed by TPSA and HBD. 
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Table S1. Building blocks used to enumerate the coombinatorial libraries. The name of the functionality is 

also indicated 

LoLA 

(10
3
 = 1000 

compounds per 

library) 

R1 = R2 = R3 (10 amino acids)  

Methyl  -  Boc-L-Ala  

Hydrogen  -  Boc-Gly  

S-Isobutyl  -  Boc-L-Leu  

S-Isopropyl  -  Boc-L-Val  

S-4-Hydroxybenzyl  -  Boc-L-Tyr(BrZ)  

S-Hydroxymethyl  -  Boc-D-Ser(Bzl)  

(S-S)-1-Hydroxyethyl  -  Boc-D-Thr(Bzl)  

S-Phenyl  -  Boc-L-Phenylglycine  

S-Propyl  -  Boc-L-Norvaline  

S-Cyclohexyl  -  Boc-L-Cyclohexylalanine  

   

LoLB 

(10
3
 = 1000 

compounds per 

library) 

R1 = R3 (10 carboxilic acids) R2 = (10 amino acids) 

Phenethyl  -  phenylacetic S-methyl  -  Boc-L-Ala 

Butyl  -  butyric Hydrogen  -  Boc-Gly 

Isobutyl  -  isobutyric S-isobutyl  -  Boc-L-Leu 

2-Methylbutyl  -  2 -methylbutyric S-isopropyl  -  Boc-L-Val 

3-Methylpentyl  -  3-methylvaleric S-4-hydroxybenzyl  -  Boc-L-Tyr(BrZ) 

4-Methyl-benzyl  -  p-toluic S-hydroxymethyl  -  Boc-D-Ser(Bzl) 

Cyclopently-methyl  -  cyclopentanecarboxylic (S-S)-1-hydroxyethyl  -  Boc-D-Thr(Bzl) 

Cyclohexyl-methyl  -  cyclohexanecarboxylic S-phenyl  -  Boc-L-Phenylglycine 

(2-Methyl-cyclopropyl)-methyl  -   

2-methylcyclopropanecarboxylic 

S-propyl  -  Boc-L-Norvaline 

Cyclobutyl-methyl   -   Cyclobutanecarboxylic S-cyclohexyl  -  Boc-L-Cyclohexylalanine 

   

LoLC 

(6 x 6 x 6 x 5  = 

1080 

compounds per 

library) 

R1 = R2 = R3 (6 amino acids) R4 (5 carboxilic acids) 

S-Methyl  -  Boc-L-Ala Butyl  -  butyric 

Hydrogen  -  Boc-Gly Isobutyl  -  Isobutyric 

S-isobutyl  -  Boc-L-Leu 2-Methylbutyl  -  2-methylbutyric 

S-isopropyl  -  Boc-L-Val 4-Methyl-benzyl  -  p-toluic 

S-hydroxymethyl  -  Boc-D-Ser(Bzl) Cyclopently-ethyl  -  cyclopentanecarboxylic 

S-phenyl  -  Boc-L-Phenylglycine  
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Table S2. Molecular properties profile of combinatorial libraries and other data sets 

Library Column Max Q3 Median Q1 Min Mean StdDev U95 L95 

LoLA 

LoLB 

LoLC 

HBA 8.000 5.000 4.000 3.000 2.000 3.856 1.350 3.877 3.835 

HBD 7.000 3.000 2.000 1.000 1.000 2.500 1.346 2.521 2.479 

RB 20.000 12.000 10.000 7.000 3.000 9.822 2.997 9.869 9.775 

SlogP 8.024 4.115 2.793 1.309 -5.014 2.622 1.980 2.653 2.591 

TPSA 159.510 98.470 85.930 65.350 21.750 80.465 29.076 80.924 80.006 

MW 683.853 487.781 437.761 384.657 196.258 435.184 75.875 436.383 433.986 

LoLA 

HBA 7.000 5.000 4.000 3.000 2.000 3.700 1.261 3.735 3.665 

HBD 7.000 4.000 3.000 2.000 2.000 3.300 1.127 3.331 3.269 

RB 9.000 7.000 6.000 5.000 3.000 6.300 1.213 6.334 6.266 

SlogP 5.213 2.228 1.131 -0.137 -5.014 1.017 1.703 1.064 0.970 

TPSA 159.510 114.950 98.470 71.000 30.540 91.607 29.418 92.422 90.792 

MW 572.618 402.451 360.546 324.381 196.258 363.304 57.558 364.899 361.709 

A1 

HBA 7.000 5.000 5.000 4.000 4.000 4.900 0.794 4.949 4.851 

HBD 5.000 3.000 3.000 2.000 2.000 2.900 0.794 2.949 2.851 

RB 9.000 7.000 6.000 5.000 3.000 6.300 1.213 6.375 6.225 

SlogP 2.750 0.438 -0.582 -1.657 -5.014 -0.634 1.471 -0.543 -0.725 

TPSA 159.510 119.050 119.050 98.820 98.820 117.027 16.065 118.023 116.031 

MW 572.618 436.468 402.451 366.462 254.246 402.069 52.705 405.336 398.803 

A2 

HBA 7.000 5.000 5.000 4.000 4.000 4.900 0.794 4.949 4.851 

HBD 5.000 3.000 3.000 2.000 2.000 2.900 0.794 2.949 2.851 

RB 9.000 7.000 6.000 5.000 3.000 6.300 1.213 6.375 6.225 

SlogP 4.643 2.332 1.311 0.236 -3.121 1.260 1.471 1.351 1.168 

TPSA 91.230 50.770 50.770 30.540 30.540 48.747 16.065 49.743 47.751 

MW 516.686 380.536 346.519 310.530 198.314 346.137 52.705 349.404 342.871 

A3 

HBA 5.000 3.000 3.000 2.000 2.000 2.900 0.794 2.949 2.851 

HBD 7.000 5.000 5.000 4.000 4.000 4.900 0.794 4.949 4.851 

RB 9.000 7.000 6.000 5.000 3.000 6.300 1.213 6.375 6.225 

SlogP 4.513 2.201 1.181 0.106 -3.251 1.129 1.471 1.220 1.038 

TPSA 138.930 98.470 98.470 78.240 78.240 96.447 16.065 97.443 95.451 

MW 514.630 378.480 344.463 308.474 196.258 344.081 52.705 347.348 340.815 

A4 

HBA 5.000 3.000 3.000 2.000 2.000 2.900 0.794 2.949 2.851 

HBD 5.000 3.000 3.000 2.000 2.000 2.900 0.794 2.949 2.851 

RB 9.000 7.000 6.000 5.000 3.000 6.300 1.213 6.375 6.225 

SlogP 4.884 2.572 1.551 0.476 -2.881 1.500 1.471 1.591 1.408 

TPSA 125.370 84.910 84.910 64.680 64.680 82.887 16.065 83.883 81.891 

MW 516.598 380.448 346.431 310.442 198.226 346.049 52.705 349.316 342.783 

A5 

HBA 5.000 3.000 3.000 2.000 2.000 2.900 0.794 2.949 2.851 

HBD 5.000 3.000 3.000 2.000 2.000 2.900 0.794 2.949 2.851 

RB 9.000 7.000 6.000 5.000 3.000 6.300 1.213 6.375 6.225 

SlogP 5.213 2.902 1.881 0.806 -2.551 1.829 1.471 1.921 1.738 

TPSA 155.410 114.950 114.950 94.720 94.720 112.927 16.065 113.923 111.931 

MW 548.732 412.582 378.565 342.576 230.360 378.183 52.705 381.450 374.917 

LoLB 

HBA 5.000 4.000 3.000 2.000 2.000 3.100 1.082 3.130 3.070 

HBD 4.000 2.000 1.000 1.000 1.000 1.700 0.922 1.726 1.674 

RB 15.000 12.000 11.000 10.000 9.000 11.100 1.179 11.133 11.067 

SlogP 7.117 4.879 3.985 2.953 -0.173 3.863 1.319 3.899 3.826 

TPSA 110.260 90.030 76.120 55.890 21.750 70.679 26.335 71.409 69.949 

MW 596.728 480.830 448.696 418.674 336.528 450.684 45.329 451.940 449.428 
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Table S2. (continued) 

B1 

HBA 5.000 5.000 4.000 4.000 4.000 4.300 0.459 4.328 4.272 

HBD 2.000 2.000 1.000 1.000 1.000 1.300 0.459 1.328 1.272 

RB 15.000 12.000 11.000 10.000 9.000 11.100 1.180 11.173 11.027 

SlogP 4.653 2.950 2.313 1.479 -0.173 2.212 1.001 2.274 2.150 

TPSA 110.260 110.260 90.030 90.030 90.030 96.099 9.275 96.674 95.524 

MW 596.728 515.215 488.673 462.635 394.516 489.449 38.969 491.864 487.034 

B2 

HBA 5.000 5.000 4.000 4.000 4.000 4.300 0.459 4.328 4.272 

HBD 2.000 2.000 1.000 1.000 1.000 1.300 0.459 1.328 1.272 

RB 15.000 12.000 11.000 10.000 9.000 11.100 1.180 11.173 11.027 

SlogP 6.547 4.843 4.207 3.373 1.721 4.106 1.001 4.168 4.044 

TPSA 41.980 41.980 21.750 21.750 21.750 27.819 9.275 28.394 27.244 

MW 540.796 459.283 432.741 406.703 338.584 433.517 38.969 435.932 431.102 

B3 

HBA 3.000 3.000 2.000 2.000 2.000 2.300 0.459 2.328 2.272 

HBD 4.000 4.000 3.000 3.000 3.000 3.300 0.459 3.328 3.272 

RB 15.000 12.000 11.000 10.000 9.000 11.100 1.180 11.173 11.027 

SlogP 6.417 4.713 4.077 3.242 1.591 3.975 1.001 4.037 3.913 

TPSA 89.680 89.680 69.450 69.450 69.450 75.519 9.275 76.094 74.944 

MW 538.740 457.227 430.685 404.647 336.528 431.461 38.969 433.876 429.046 

B4 

HBA 3.000 3.000 2.000 2.000 2.000 2.300 0.459 2.328 2.272 

HBD 2.000 2.000 1.000 1.000 1.000 1.300 0.459 1.328 1.272 

RB 15.000 12.000 11.000 10.000 9.000 11.100 1.180 11.173 11.027 

SlogP 6.787 5.083 4.447 3.613 1.961 4.346 1.001 4.408 4.284 

TPSA 76.120 76.120 55.890 55.890 55.890 61.959 9.275 62.534 61.384 

MW 540.708 459.195 432.653 406.615 338.496 433.429 38.969 435.844 431.014 

B5 

HBA 3.000 3.000 2.000 2.000 2.000 2.300 0.459 2.328 2.272 

HBD 2.000 2.000 1.000 1.000 1.000 1.300 0.459 1.328 1.272 

RB 15.000 12.000 11.000 10.000 9.000 11.100 1.180 11.173 11.027 

SlogP 7.117 5.413 4.777 3.942 2.291 4.675 1.001 4.737 4.613 

TPSA 106.160 106.160 85.930 85.930 85.930 91.999 9.275 92.574 91.424 

MW 572.842 491.329 464.787 438.749 370.630 465.563 38.969 467.978 463.148 

LoLC 

HBA 8.000 6.000 5.000 4.000 3.000 4.700 1.173 4.731 4.669 

HBD 7.000 4.000 2.000 1.000 1.000 2.500 1.420 2.538 2.462 

RB 20.000 13.000 11.000 10.000 8.000 11.900 2.379 11.963 11.837 

SlogP 8.024 4.198 2.981 1.794 -2.791 2.960 1.719 3.005 2.914 

TPSA 153.960 93.270 85.630 65.350 24.990 79.209 27.615 79.946 78.472 

MW 683.853 529.862 487.781 445.740 299.507 487.388 60.966 489.014 485.762 

C1 

HBA 8.000 6.000 5.000 5.000 5.000 5.500 0.646 5.539 5.461 

HBD 4.000 2.000 1.000 1.000 1.000 1.500 0.646 1.539 1.461 

RB 15.000 12.000 11.000 10.000 8.000 10.900 1.288 10.977 10.823 

SlogP 5.561 2.551 1.496 0.438 -2.791 1.532 1.499 1.621 1.442 

TPSA 153.960 113.500 93.270 93.270 93.270 103.385 13.064 104.164 102.606 

MW 683.853 569.747 536.694 505.693 407.515 537.112 48.356 539.996 534.228 

C2 

HBA 8.000 6.000 5.000 5.000 5.000 5.500 0.646 5.539 5.461 

HBD 4.000 2.000 1.000 1.000 1.000 1.500 0.646 1.539 1.461 

RB 15.000 12.000 11.000 10.000 8.000 10.900 1.288 10.977 10.823 

SlogP 7.454 4.444 3.389 2.332 -0.898 3.425 1.499 3.515 3.336 

TPSA 85.680 45.220 24.990 24.990 24.990 35.105 13.064 35.884 34.326 

MW 627.921 513.815 480.762 449.761 351.583 481.180 48.356 484.064 478.296 
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Table S2. (continued) 

C3 

HBA 6.000 4.000 3.000 3.000 3.000 3.500 0.646 3.539 3.461 

HBD 6.000 4.000 3.000 3.000 3.000 3.500 0.646 3.539 3.461 

RB 15.000 12.000 11.000 10.000 8.000 10.900 1.288 10.977 10.823 

SlogP 7.324 4.314 3.259 2.201 -1.028 3.295 1.499 3.384 3.205 

TPSA 133.380 92.920 72.690 72.690 72.690 82.805 13.064 83.584 82.026 

MW 625.865 511.759 478.706 447.705 349.527 479.124 48.356 482.008 476.240 

C4 

HBA 8.000 6.000 5.000 5.000 5.000 5.500 0.646 5.539 5.461 

HBD 7.000 5.000 4.000 4.000 4.000 4.500 0.646 4.539 4.461 

RB 20.000 17.000 16.000 15.000 13.000 15.900 1.288 15.977 15.823 

SlogP 6.269 3.591 2.560 1.533 -1.693 2.552 1.479 2.640 2.464 

TPSA 126.040 85.580 65.350 65.350 65.350 75.465 13.064 76.244 74.686 

MW 575.845 459.767 425.750 391.604 299.507 426.299 47.535 429.134 423.464 

C5 

HBA 6.000 4.000 3.000 3.000 3.000 3.500 0.646 3.539 3.461 

HBD 4.000 2.000 1.000 1.000 1.000 1.500 0.646 1.539 1.461 

RB 15.000 12.000 11.000 10.000 8.000 10.900 1.288 10.977 10.823 

SlogP 8.024 5.014 3.959 2.902 -0.328 3.995 1.499 4.084 3.906 

TPSA 149.860 109.400 89.170 89.170 89.170 99.285 13.064 100.064 98.506 

MW 659.967 545.861 512.808 481.807 383.629 513.226 48.356 516.110 510.342 

DrugBank 

HBA 11.000 3.000 2.000 1.000 0.000 2.460 1.686 2.546 2.375 

HBD 8.000 2.000 1.000 0.000 0.000 1.175 1.221 1.237 1.113 

RB 24.000 7.000 5.000 3.000 0.000 5.074 3.258 5.240 4.909 

SlogP 9.908 3.033 1.634 0.192 -13.609 1.442 2.571 1.572 1.311 

TPSA 266.490 97.530 67.085 40.460 0.000 71.819 41.471 73.924 69.713 

MW 537.576 376.776 310.336 246.078 75.067 310.324 91.933 314.992 305.656 

NCI 

HBA 12.000 3.000 2.000 2.000 0.000 2.695 1.635 2.770 2.620 

HBD 8.000 2.000 1.000 0.000 0.000 1.360 1.188 1.415 1.306 

RB 19.000 5.000 3.000 2.000 0.000 3.392 2.138 3.490 3.294 

SlogP 10.392 3.614 2.464 1.188 -3.342 2.452 1.908 2.539 2.365 

TPSA 214.110 87.157 64.690 46.530 0.000 69.148 33.550 70.685 67.612 

MW 696.129 328.544 272.348 224.262 114.108 283.589 84.642 287.465 279.713 

MLSMR 

(3000) 

HBA 18.000 5.000 4.000 3.000 0.000 3.721 1.820 3.786 3.656 

HBD 11.000 2.000 1.000 0.000 0.000 1.065 1.029 1.101 1.028 

RB 58.000 9.000 7.000 5.000 0.000 6.712 3.484 6.836 6.587 

SlogP 10.395 3.750 2.798 1.827 -4.562 2.715 1.594 2.772 2.658 

TPSA 356.010 98.770 80.470 60.912 0.000 81.410 33.302 82.601 80.218 

MW 1304.000 463.555 401.465 328.408 75.047 395.189 102.136 398.844 391.534 

MLSMR 

HBA 38.000 4.000 3.000 2.000 0.000 3.350 1.490 3.350 3.340 

HBD 38.000 2.000 1.000 0.000 0.000 1.074 0.901 1.077 1.071 

RB 143.00 8.00 6.00 4.00 0.00 6.161 2.896 6.171 6.151 

SlogP 25.738 3.728 2.889 1.966 -25.556 2.802 1.434 2.806 2.797 

TPSA 1470.000 93.210 74.610 57.120 0.000 76.490 28.960 76.586 76.393 

MW 3362.000 414.410 358.526 306.342 30.006 362.194 83.045 362.470 361.918 
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Table S3. Mean relative Tanimoto distance of drugs to combinatorial libraries in LTM plots 

LoL Library Distance Std 

LoLA A1 100.00 100.00 

 A2 106.57 287.25 

 A3 109.57 213.63 

 A4 102.78 147.69 

 A5 109.70 213.32 

LoLB B1 100.00 100.00 

 B2 108.31 206.65 

 B3 110.70 162.59 

 B4 103.61 144.50 

 B5 111.35 177.07 

LoLC C1 100.00 100.00 

 C2 107.60 202.91 

 C3 110.21 179.62 

 C4 109.93 201.73 

 C5 110.76 198.90 
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Table S4. Distribution of maximum and mean Tanimoto similarities of LoL to drugs, NCI diversity, and 

MLSMR using different structural representations 

 

Comparison with drugs (DrugBank) 

GpiDAPH3 

Library Max Q3 Median Q1 Min Mean Stdev U95 L95 

Maximum 

LoLA 0.654 0.504 0.471 0.433 0.290 0.466 0.052 0.468 0.465 

LoLB 0.620 0.553 0.528 0.497 0.405 0.524 0.041 0.525 0.522 

LoLC 0.603 0.504 0.478 0.452 0.340 0.478 0.044 0.479 0.477 

Mean 

LoLA 0.249 0.218 0.168 0.111 0.001 0.160 0.064 0.162 0.158 

LoLB 0.234 0.214 0.203 0.148 0.088 0.180 0.042 0.181 0.179 

LoLC 0.230 0.202 0.153 0.113 0.046 0.155 0.045 0.156 0.154 

 

piDAPH3 

Library Max Q3 Median Q1 Min Mean Stdev U95 L95 

Maximum 

LoLA 0.759 0.638 0.579 0.531 0.273 0.581 0.075 0.583 0.579 

LoLB 0.870 0.785 0.726 0.649 0.505 0.715 0.079 0.717 0.712 

LoLC 0.748 0.651 0.617 0.571 0.415 0.610 0.055 0.611 0.608 

Mean 

LoLA 0.330 0.287 0.229 0.160 0.000 0.216 0.080 0.219 0.214 

LoLB 0.352 0.309 0.288 0.203 0.109 0.258 0.064 0.260 0.257 

LoLC 0.330 0.289 0.202 0.158 0.039 0.217 0.068 0.218 0.215 

 

Comparison with NCI Diversity 

 

TGD 

Library Max Q3 Median Q1 Min Mean Stdev U95 L95 

Maximum 

LoLA 0.933 0.848 0.795 0.765 0.674 0.801 0.052 0.802 0.799 

LoLB 0.929 0.869 0.819 0.795 0.699 0.825 0.058 0.826 0.823 

LoLC 0.920 0.891 0.880 0.804 0.739 0.856 0.048 0.857 0.854 

Mean 

LoLA 0.561 0.539 0.518 0.499 0.455 0.519 0.026 0.519 0.518 

LoLB 0.537 0.519 0.502 0.489 0.460 0.502 0.020 0.503 0.501 

LoLC 0.536 0.512 0.500 0.491 0.473 0.502 0.015 0.502 0.502 

TGD 

Library Max Q3 Median Q1 Min Mean Stdev U95 L95 

Maximum 

LoLA 0.926 0.879 0.803 0.775 0.696 0.818 0.060 0.820 0.816 

LoLB 0.894 0.873 0.834 0.782 0.692 0.816 0.062 0.818 0.814 

LoLC 0.873 0.840 0.813 0.791 0.741 0.814 0.034 0.815 0.813 

Mean 

LoLA 0.633 0.598 0.563 0.530 0.475 0.564 0.039 0.565 0.563 

LoLB 0.587 0.560 0.539 0.505 0.481 0.533 0.029 0.534 0.533 

LoLC 0.588 0.551 0.533 0.505 0.481 0.531 0.027 0.532 0.530 
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Table S4. (continued) 

GpiDAPH3 

Library Max Q3 Median Q1 Min Mean Stdev U95 L95 

Maximum 

LoLA 0.708 0.514 0.466 0.420 0.221 0.464 0.068 0.466 0.462 

LoLB 0.645 0.543 0.494 0.427 0.335 0.489 0.070 0.491 0.487 

LoLC 0.543 0.448 0.415 0.388 0.306 0.419 0.043 0.420 0.418 

Mean 

LoLA 0.245 0.210 0.187 0.095 0.001 0.152 0.071 0.154 0.150 

LoLB 0.221 0.185 0.170 0.099 0.040 0.142 0.054 0.143 0.140 

LoLC 0.207 0.170 0.105 0.056 0.020 0.112 0.055 0.114 0.111 

 

 

 

Comparison with MLSMR 

MACCS 

Library Max Q3 Median Q1 Min Mean Stdev U95 L95 

Maximum 

LoLA 0.908 0.747 0.711 0.681 0.581 0.716 0.054 0.717 0.714 

LoLB 0.911 0.750 0.711 0.683 0.590 0.724 0.061 0.726 0.722 

LoLC 0.922 0.759 0.728 0.695 0.612 0.734 0.059 0.736 0.733 

Mean 

LoLA 0.469 0.435 0.403 0.374 0.320 0.403 0.035 0.404 0.402 

LoLB 0.480 0.430 0.391 0.362 0.319 0.394 0.039 0.396 0.393 

LoLC 0.490 0.410 0.381 0.362 0.312 0.390 0.041 0.391 0.389 

  

TGD 

Library Max Q3 Median Q1 Min Mean Stdev U95 L95 

Maximum 

LoLA 0.928 0.849 0.813 0.769 0.660 0.808 0.061 0.810 0.806 

LoLB 0.919 0.877 0.857 0.806 0.700 0.832 0.067 0.834 0.831 

LoLC 0.916 0.886 0.857 0.811 0.747 0.849 0.049 0.850 0.847 

Mean 

LoLA 0.694 0.635 0.606 0.514 0.393 0.583 0.074 0.585 0.581 

LoLB 0.683 0.670 0.624 0.537 0.519 0.609 0.062 0.611 0.607 

LoLC 0.697 0.648 0.612 0.519 0.481 0.593 0.070 0.594 0.591 

 

 

piDAPH3 

Library Max Q3 Median Q1 Min Mean Stdev U95 L95 

Maximum 

LoLA 0.778 0.625 0.569 0.521 0.000 0.574 0.074 0.576 0.572 

LoLB 0.831 0.767 0.713 0.602 0.458 0.687 0.091 0.690 0.685 

LoLC 0.728 0.623 0.584 0.548 0.406 0.583 0.055 0.585 0.582 

Mean 

LoLA 0.324 0.261 0.230 0.118 0.000 0.191 0.087 0.193 0.188 

LoLB 0.327 0.254 0.218 0.127 0.049 0.191 0.076 0.194 0.189 

LoLC 0.307 0.238 0.139 0.076 0.018 0.155 0.079 0.158 0.153 
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Table S4. (continued) 

GpiDAPH3 

Library Max Q3 Median Q1 Min Mean Stdev U95 L95 

Maximum 

LoLA 0.657 0.523 0.482 0.430 0.096 0.470 0.071 0.472 0.469 

LoLB 0.608 0.547 0.522 0.496 0.387 0.519 0.038 0.520 0.518 

LoLC 0.658 0.532 0.493 0.454 0.326 0.494 0.058 0.496 0.493 

Mean 

LoLA 0.294 0.253 0.220 0.091 0.000 0.178 0.088 0.180 0.175 

LoLB 0.281 0.246 0.230 0.124 0.051 0.188 0.071 0.190 0.186 

LoLC 0.268 0.231 0.139 0.080 0.029 0.152 0.073 0.154 0.150 

 

piDAPH3 

Library Max Q3 Median Q1 Min Mean Stdev U95 L95 

Maximum 

LoLA 0.798 0.665 0.612 0.550 0.000 0.604 0.086 0.606 0.602 

LoLB 0.802 0.719 0.688 0.644 0.514 0.679 0.052 0.681 0.678 

LoLC 0.764 0.676 0.631 0.584 0.406 0.626 0.065 0.628 0.624 

Mean 

LoLA 0.374 0.303 0.264 0.104 0.000 0.213 0.108 0.216 0.210 

LoLB 0.363 0.282 0.236 0.118 0.058 0.206 0.087 0.209 0.204 

LoLC 0.342 0.274 0.145 0.079 0.010 0.171 0.096 0.174 0.169 
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Table S5. Loadings for the six principal components of the property space of drugs, NCI diversity and MLSMR 

with 3000 compounds selected at random 

Principal component PC1 PC2 PC3 PC4 PC5 PC6 

eigenvalue 2.258 1.967 0.692 0.649 0.315 0.120 

cumulative eigenvalue (%) 37.629 70.417 81.947 92.757 98.006 100.000 

HBA -0.483 0.195 0.386 -0.626 0.313 0.301 

HBD -0.311 0.399 -0.794 -0.044 0.302 -0.144 

RB -0.513 -0.308 -0.263 -0.099 -0.709 0.246 

SlogP -0.033 -0.650 -0.211 0.182 0.523 0.474 

TPSA -0.348 0.411 0.241 0.723 8.5e-3 0.360 

MW -0.533 -0.341 0.222 0.204 0.185 -0.689 

 

 


	Manuscript_CDBB
	SupportingInformation_CDBB

