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REPORT

Increased DNA Methylation at the AXIN1 Gene
in a Monozygotic Twin from a Pair Discordant for a Caudal
Duplication Anomaly

N. A. Oates, J. van Vliet, D. L. Duffy, H. Y. Kroes, N. G. Martin, D. I. Boomsma, M. Campbell,
M. G. Coulthard, E. Whitelaw, and S. Chong

The AXIN1 gene has been implicated in caudal duplication anomalies. Its coding region was sequenced in both members

of a monozygotic (MZ) twin pair discordant for a caudal duplication anomaly, but no mutation was found. Using bisulfite

sequencing, we examined methylation at the promoter region of the AXIN1 gene in these twins and in twin and age-

matched singleton controls. Methylation of the promoter region in peripheral blood mononucleated cells was variable

among individuals, including MZ pairs. In the MZ pair discordant for the caudal duplication, this region of the affected

twin was significantly more methylated than that of the unaffected twin ( ), which was significantly moreP ! .0001

methylated than those of the controls ( ). We have confirmed that this CpG island does function as a promoterP p .02

in vitro and that its activity is inversely proportional to the extent of methylation. This finding raises the possibility

that hypermethylation of the AXIN1 promoter, by mechanisms as yet undetermined, is associated with the malformation.

This case may be paradigmatic for some cases of MZ discordance.
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The high rate of discordance in MZ pairs for most complex

diseases is a continuing puzzle. Vague statements that “the

environment” is responsible for this discordance are sel-

dom backed up by data, despite often huge investments

in searching for the etiologic agents1; smoking as a risk

factor for lung cancer and heart disease is a rare exception.2

In recent years, there has been increasing interest in the

possibility that stochastically or environmentally trig-

gered differences in the epigenetic status of key genes may

be responsible for some MZ discordance and, indeed, for

much of the burden of complex disease.3,4 An obstacle to

the testing of this hypothesis is that, for most complex

traits, we still have very few identified genes whose meth-

ylation status can be investigated and, where we do, the

pertinent tissue may be inaccessible for methylation stud-

ies on living subjects. Until such genes for common dis-

eases become known, therefore, it is worth investigating

cases of MZ discordance for rare diseases in which the

causal gene(s) are known or strongly suspected.

In 2002, a pair of female MZ twins were described as

discordant for caudal duplication anomaly (MIM 607864),

in which one twin had a duplication of the distal spine

and other organs as well as a tumor in the lumbosacral

region and spina bifida.5 Caudal duplication anomaly is

sporadic and can involve multiple congenital anomalies,

but the hallmark is duplication of organs in the caudal

region, such as the distal spine.6 This spinal duplication

is similar to that seen in AxinFu mice, which carry a mu-

tation at the Axin locus.7 Highly penetrant mice display

bifurcating tails as a result of caudal duplication in the

distal region. Axin encodes an inhibitor of the Wnt-sig-

naling pathway and has been shown to regulate embry-

onic axis formation in mouse and in Xenopus.8 Suppres-

sion of wild-type Axin in Xenopus embryos results in the

duplication of the body axis. The role of Axin in caudal

duplication anomaly in humans is not known, but it re-

mains the strongest candidate. Sequence analysis of the

AXIN1 (MIM 603816) coding region in the twin with cau-

dal duplication syndrome revealed no pathogenic muta-

tions, although a rare missense variant was noticed in both

twins and in the father.5 Clearly, this missense variant

alone cannot account for the MZ discordance. We thought

it possible that AXIN1 inactivation may have occurred via

an epigenetic process.

In mammals, methylation of DNA occurs at cytosine

residues, mainly at CpG dinucleotides. There are stretches

of DNA, CpG islands, that are rich in CpG and are often

found at promoter regions of genes. CpG islands are nor-

mally unmethylated, but there is now evidence that a

small proportion of these are methylated in some tis-

sues.9,10 Aberrant de novo methylation of normally un-

methylated CpG islands in humans and mice is associated

with transcriptional silencing.11 For example, the pene-

trance and severity of the abnormal tail phenotype in in-

bred—and, therefore, isogenic—AxinFu mice correlate with

specific patterns of DNA methylation at the Axin locus.12

Here, we report the careful examination of cytosine meth-

ylation at the promoter and intergenic regions of human
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Figure 1. AXIN1 CpG island methylation in the MZ twin pair (A, unaffected; B, affected) discordant for caudal duplication anomaly,

their parents (D), and age- and sex-matched controls (C). An open circle represents an unmethylated CpG, a filled circle represents a

methylated CpG, and each row of circles represents the methylation state of all 15 CpGs on a single allele. The square represents a SNP

(GrT [dbSNP rs12928797]) commonly found in the samples analyzed. Overall percentage of methylation was calculated by determining

the proportion of methylated CpGs relative to all CpGs. A detailed analysis of the methylation state at each CpG site is also shown (E).

AXIN1 in the MZ twin pair discordant for caudal dupli-

cation anomaly, in their parents, and in several controls.

The probands were reported to be monochorionic and

probably monoamniotic (H. Kroes, personal communi-

cation). Peripheral blood mononucleated cell (PBMC)

DNA was collected from them at age 7 mo. Full blood

counts taken at the same time from both were unremark-

able. Methylation profiles may change slightly with age,13

so, for age-matched controls, we obtained PBMC DNA

from two female hospital patients, the first aged 5 mo with

a congenital malformation of the heart and trachea, and

the second aged 11 mo with viral myocarditis. PBMC DNA

from a further seven adult controls was also examined.

MZ twinning is itself a duplication event, so we were

keen to ensure that any abnormalities of methylation of

the AXIN1 gene were specific to the malformation and

not inherent to MZ twinning. We obtained PBMC DNA

from nine MZ pairs aged 12–14 years at the time of col-

lection, including eight sets of males and one set of fe-

males. These pairs were selected from a larger study14 as

being probably dichorionic because the mother had re-

ported two separate placentas at birth. It has been sug-

gested that monochorionic pairs exchange hematopoietic

stem cells in utero, making cotwins’ blood cell profiles

(and perhaps methylation status) more similar than they

might otherwise be. The extent of this alleged problem

has never been quantified, but, to the extent that it exists,

the monochorionicity of our proband pair would make

our search for methylation differences between cotwins

conservative. Monozygosity of all pairs, including the pro-

band pair, was confirmed by typing them with the use of

the ABI Profiler Plus set of nine highly polymorphic mi-

crosatellite markers and the amelogenin sex marker, yield-

ing a probability of dizygosity, given concordance of

!10�4.

AXIN1 is positioned near the telomere of human chro-

mosome 16 and has a CpG island at the 5′ end (the pu-

tative promoter).15 This CpG island surrounds exon 1 (En-

sembl Build 35 [accession numbers 341973-343464]). In

intron 2, there is a solitary long terminal repeat (LTR) that

exhibits enhancer activity.16 We used bisulfite sequenc-

ing17 to examine the pattern of cytosine methylation at

three distinct regions of AXIN1: the 5′ CpG island, intron

1, and intron 2-LTR (for PCR primers and conditions, see

table A1). The AXIN1 intron 1 (8 CpGs) and intron 2-LTR

(17 CpGs) regions were found to be hypermethylated in

PBMC DNA from all individuals tested, with no significant

difference between the affected MZ twin and controls. The

average percentages of methylated CpGs were, for intron

1, 98% ( ) for the affected twin and 100% ( )n p 11 n p 7

for the unaffected twin and, for intron 2-LTR, 80% (n p

) for the affected twin and 88% ( ) for the unaf-31 n p 29

fected twin. Methylation status of the AXIN1 5′ CpG island

(15 CpGs) was determined for the proband family and for

two age-matched controls (fig. 1). This region, in contrast

to most of the unmethylated CpG islands in the human

genome, is methylated to varying degrees both within and

among individuals. The precise pattern of methylation

varies considerably from clone to clone in all individuals,

including controls. The proportion of the 15 CpGs that

are methylated also varies considerably from clone to

clone in all individuals (fig. 2). Although whole blood con-

tains a mix of nucleated cell types, the majority are neu-

trophils, and the complexity of the clonal patterns cannot

be explained by this mix alone.

We modeled methylation at 15 CpG sites in twins and

controls, using a binomial generalized linear mixed mo-

del, as implemented in the lme4 package18 in the R sta-

tistical programming language.19 This approach allows the

appropriate modeling of within-family and within-indi-

vidual correlation in the binary (absent or present) meth-

ylation status across the different CpG sites. The multilevel

random effects were at the level of the family (19 families),

individual (4 individuals in the proband family [twins and

their parents], 2 in each of the other 9 MZ pairs, and 9

single individuals, for a total of 31 individuals), and clone

(3–17 distinct clones per individual, since, in the case of

duplicate methylation signatures from the same PCR, one

was discarded in case it represented clonal bias; 30 of 311

clones were so discarded). The outcome of the analysis is

essentially the same with or without this filtering process.

To reduce the impact of any bias, multiple PCRs were un-

dertaken for each sample. Disease status was treated as a

fixed effect and its significance was assessed using a like-

lihood-ratio test. Because of the presence of a SNP within

the amplified region of the proband pair, we were able to

see that both parental alleles were represented in the data

set and that they each showed a range of methylation

states (see fig. 1A and 1B).

The total level of methylation in the affected twin was

significantly higher than that in the unaffected twin

( ). The unaffected twin was also significantlyP ! .0001

more methylated than were controls ( ). The meth-P p .02

ylation levels of MZ twins differ from one another but are

more similar to each other than they are to unrelated in-

dividuals. We estimated the intraclass correlation for total

methylation at all 15 sites to be 0.76 ( ) for all 10P p .02

MZ pairs. Excluding the proband pair, the correlation was



Figure 2. Box-and-whisker plot of proportion-methylated CpG sites in the AXIN1 promoter per clone for each individual. Individuals

are ordered by familial mean methylation level, with the index family at the top. Length of bar is interquartile range, and bar width

is proportional to the number of clones analyzed for that individual. Solid diamonds are medians, and dashed lines extend to the

observations 1.5# the interquartile range from the median, with open circles representing more-extreme values.
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Figure 3. The degree of methylation of the AXIN1 promoter cor-

relates with its activity in HEK 293 cells. A fragment of the AXIN1

locus, corresponding to nucleotides �416 to �114 relative to the

start point of transcription (as determined by Evidence Viewer),

was amplified by PCR from human genomic DNA (Promega). For a

more detailed description of the methods used, see the main text.

A similar trend was also seen in HeLa cells (data not shown). Each

data point is the average of six replicates. Error bars represent

two SDs.

Figure 4. Quantification of X-chromosome inactivation in PBMCs.

The legend is available in its entirety in the online edition of The

American Journal of Human Genetics.

still 0.52. The MZ twin correlation in methylation status

at each of the 15 sites varied between 0.01 and 0.86, but,

with only 10 pairs available, this is still in keeping with

homogeneity, so we cannot say whether there is differ-

ential genetic control of methylation between sites. The

results suggest that the relatively high methylation levels

that we observe at the AXIN1 CpG island in the affected

and unaffected MZ twins are unlikely to be associated with

twinning itself, since the MZ twin controls do not have

significantly higher levels of methylation than the single-

ton controls ( ) (fig. 2).P p .73

For eight of these individuals (the proband pair, their

parents, and four other unaffected singles), we had buccal

DNA in addition to PBMC DNA. Buccal epithelia, unlike

PBMC, is ectodermal in origin. Methylation of CpG sites

in buccal DNAs was absent from all sites in all individuals,

including the proband pair and their parents (data not

shown), so the variable hypermethylation at the AXIN1

5′ CpG island is tissue specific.

To confirm that this CpG island functions as a promoter,

we cloned a fragment corresponding to nucleotides �416

to �114 relative to the start site of transcription, upstream

of a luciferase reporter gene, and we performed transient

transfections into the human cell line HEK293. The frag-

ment did function as a promoter, and in vitro methylation

of the construct decreased expression; partial methylation

(16% of CpGs) resulted in a reduction of expression, and

complete methylation resulted in no expression (see fig.

3). Similar results were obtained after transfection into

HeLa cells (data not shown).

The primers used to generate this insert were as follows.

The upstream primer contained a BglII site followed by

the AXIN1 sequence, CCAGTCTAGATCTCCACGCTCC-

TCACTTTATCCT. The downstream primer contained a

HindIII site followed by the AXIN1 sequence, CCAGTCAA-

GCTTGAGCCCGGCCCTACTCAC. The insert was cloned

into pGL3-Basic (Promega). The resulting construct was

methylated in vitro by either HpaII methylase (New En-

gland Biolabs) or SssI methylase (New England Biolabs).

Methylation was verified by digestion with the methyla-

tion-sensitive restriction enzyme, HpaII (New England

Biolabs). pRL-Luc was cotransfected, to control for trans-

fection efficiency. Methylation of 16% of the CpG dinu-

cleotides in the AXIN1 insert by HpaII correlated with a

36% reduction in luciferase activity, whereas methylation

of 100% of the CpG dinucleotides by SssI was associated

with a complete silencing of the luciferase gene.

Since the proband pair are female, it is possible that

unequal skewing of X inactivation resulting in expression

differences in X-linked genes and in any downstream au-

tosomal genes could underlie the phenotypic discordance

in the proband twin pair. Analysis of methylation, by use

of the human androgen gene assay,20 showed some evi-

dence for skewing in both the proband and her cotwin in

PBMC DNA, but the pattern was identical in both (fig. 4).

This finding is consistent with a previous study21 that

showed that most monochorionic MZ twins display

highly similar X-inactivation patterns, and it rules out

skewed X inactivation as an explanation for the discor-

dance in this instance.

We were curious to discover whether other neighboring

CpG promoters were also methylated in PBMC in the pro-

band. The a-globin locus (HBA1 [MIM 141800] and HBA2

[MIM 141850]) lies 170 kb downstream of the AXIN1 gene.

Bisulfite analysis of 16 CpGs in the HBA1 CpG island pro-

moter showed overall hypomethylation (0%–17%) in all

individuals tested, including the proband, the unaffected

cotwin, the two parents, and a pair of control MZ twins

(data not shown). These results are consistent with pre-

vious reports that the a-globin promoters are relatively

unmethylated in PBMCs of normal individuals22 and sug-

gest that the hypermethylation observed in the proband

is specific to the AXIN1 CpG island.

It is commonly held that, in normal cells, CpG islands

are unmethylated, except when they are located on the

inactive X chromosome of females or in the differentially

methylated regions (DMRs) of imprinted genes. Hyper-

methylation of normally unmethylated CpG islands is as-

sociated with transcriptional silencing. Our analysis of the

AXIN1 CpG island in MZ twins discordant for caudal du-
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plication anomaly identified the affected twin as the in-

dividual with the highest methylation state, which may

explain the disease phenotype. However, some degree of

AXIN1 CpG island methylation is observed even in un-

affected individuals. AXIN1 is not an X-linked gene and

does not show the characteristic allele-specific methyla-

tion patterns of an imprinted gene. Presumably, it rep-

resents a recently identified class of variably methylated

CpG islands in the human genome, which are not DMRs

of imprinted genes and are not on the inactive X chro-

mosome.23 It is interesting that these elements have been

shown to map to telomere-proximal positions on several

different chromosomes,23 since AXIN1 lies at the telomere

of the short arm of human chromosome 16.15

The variability in methylation at the AXIN1 CpG island,

both within an individual and between individuals, is

interesting. Yamada and colleagues used methylation-

sensitive restriction enzyme digestion to identify 8 CpG

islands (of 149 analyzed on chromosome 21q) that ex-

hibited so-called incomplete methylation, where several

CpGs on the same allele are differentially methylated,9

similar to those reported in this article. All eight were

located at promoter or 5′-UTR gene regions, but differences

in methylation between individuals were not addressed.9

Interindividual variation in methylation state, though not

necessarily at CpG islands, was reported at the major his-

tocompatibility complex region of human chromosome

6 and, similar to our results, this variation was not ob-

served in every tissue.24 The consistent hypomethylation

of the 5′ CpG island of AXIN1 in buccal tissue suggests

that the methylation occurred after differentiation of the

three germ layers, since buccal tissue is ectodermal in or-

igin, whereas blood is mesodermal. It is worth noting that

mesoderm gives rise to the notochord, which defines the

body’s axis and eventually becomes the vertebral column.

Ideally, we would examine methylation in the vertebral

column, but results from a tissue (blood) derived from the

same embryonic tissue layer are more likely to reflect the

relevant epigenetic state than results from a tissue (buccal

epithelium) that is not.

To the best of our knowledge, this study of human

AXIN1 is the first detailed analysis, by bisulfite sequencing,

of a CpG island promoter that exhibits variable methyl-

ation both within a tissue and among individuals and, in

particular, between genetically identical individuals. Such

alleles are referred to as “metastable epialleles” in mice

and plants.3 On the basis of what we have learned about

their behavior in other organisms,3,25–27 it is likely that they

will be sensitive both to genetic background and to en-

vironment, properties we should expect in agents of spo-

radic and complex disease. Although, in this instance, a

candidate-gene approach was appropriate, in many cases

where no obvious candidates are available, newly devel-

oped genomewide approaches13,28 are likely to be fruitful.

Although we favor the hypothesis that the hyperme-

thylation at AXIN1 in the proband is a purely epigenetic

event, a genetic rearrangement in cis is almost impossible

to rule out, since we know that such events can affect the

epigenetic state over long distances.29 It is also possible

that blood supply differences in utero or other postzygotic

events30,31 could be underlying causes of both the phe-

notypic discordance and the increased methylation levels.

We are aware of this and other limitations of our study

but believe nevertheless that MZ twins provide the best

opportunity to understand the relationship between epi-

genotype and phenotype in humans, and we hope that

our findings make a useful contribution to an inherently

difficult field.
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Appendix A

Table A1. Primers and Conditions Used for Amplification of

AXIN1 and HBA1 Promoter Regions

Region and

Primer Name

PCR

Round Primer Sequence

AXIN1 5′ CpG island:

ACGL1 1 and 2 5′-GGAGGTTTTGGTTTTTTAGAGAGYGGAG-3′

ACGR1 1 5′-AAACCCTAACCATCCCTACCTACCRACC-3′

ACGR1.5 2 5′-TCCTAAAAACCTACTTCCCTCAC-3′

HBA15′ CpG island:

HBAL1 1 and 2 5′-TTTTATAGTTTAGAGAGAATTTATTATGG-3′

HBAR1 1 5′-TAACCCTTAACCTAAACAAAACC-3′

HBAR2 2 5′-AAAAAAAACAAAAACATCCTAC-3′

AXIN1 intron 1:

AxIL1 1 5′-TGTTTATAATTTTAGTTATTTGGGAAGGT-3′

AxIR1 1 5′-ACCCCTTATTTTTACTCACACTTCTATT-3′

AxIL2 2 5′-ATAATTTTAGTTATTTGGGAAGGTTGAG-3′

AxIR2 2 5′-AACTTACTTAAATCCACAAACCCTATTT-3′

AXIN1 intron 2-LTR:

AxLTRL1 1 5′-GGATAAATATAGAAAAGGGTTAGGAATG-3′

AxLTRR1 1 and 2 5′-ATAAACTAAAAAACTCCTCAAATACCAC-3′

AxLTRL2 2 5′-TTTTTAAATTAAGTATGTGAAATTATTA-3′

NOTE.—A 263-bp fragment of the AXIN1 5′ CpG island and a 256-bp fragment

of the HBA1 promoter regions were amplified using semi-nested bisulphite

PCR. The PCR protocol involved 2 min at 94�C followed by 36 cycles for 30 s

at 94�C, 30 s at 55�C, and 45 s at 72�C, with a final extension of 6 min at

72�C. The PCR contained BSA (4 mg/mL) and, for the AXIN1 5′ CpG island

region, Polymate additive (Bioline) as well. The resulting PCR fragments were

subcloned into the p-GEM-T Easy Vector (Promega) and were sequenced.

Web Resources

Accession numbers and URLs for data presented herein are as

follows:

dbSNP, http://www.ncbi.nlm.nih.gov/SNP/ (for rs12928797)

Ensembl Build 35, http://www.ensembl.org (accession numbers

341973-343464)

Evidence Viewer, http://www.ncbi.nlm.nih.gov/

Online Mendelian Inheritance in Man (OMIM), http://www

.ncbi.nlm.nih.gov/Omim/ (for caudal duplication anomaly,

AXIN1, HBA1, and HBA2)
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