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Introduction
The airway surface is covered by a thin layer of  liquid (airway surface liquid; ASL), whose ion composition 

plays an important function in the innate defense mechanisms against microbial agents (1). Ion composition 

of  ASL is controlled by the coordinated activity of  ion channels, transporters, and pumps. Among such mem-

brane proteins, the function of  the CFTR anion channel is particularly critical. In cystic fibrosis (CF), one 

of  the most frequent genetic diseases, loss of  CFTR-dependent Cl– secretion causes dehydration of  airway 

surface and impairment of  mucociliary clearance. CFTR is also involved in bicarbonate secretion, directly or 

through other transporters (e.g., SLC26A4) that exchange Cl– secreted by CFTR with intracellular bicarbon-

ate (2–5). Defective bicarbonate secretion may cause ASL acidification with multiple negative consequences, 

including impairment of  antimicrobial mechanisms and production of  a dense, difficult to clear mucus (6–8). 

In contrast with various studies reporting an abnormality in ASL pH, a recent paper has shown no difference 

in pH between CF and non-CF airways (9). The reason for such contrasting results is, at the moment, unclear.

ATP12A — the nongastric form of  the H+/K+-ATPase (10), which is localized on the apical mem-

brane of  airway epithelial cells (3, 5, 11) — is one of  the ion transporters involved in ASL pH regula-

tion. ATP12A is emerging as an important pathogenic factor in CF and other chronic respiratory dis-

eases such as asthma (3, 12, 13). Indeed, in normal airways, the proton secretion operated by ATP12A 

is expected to be compensated by the parallel bicarbonate transport. In CF patients, loss of  CFTR-

dependent bicarbonate secretion leaves proton secretion unchecked. Interestingly, ATP12A was found 

to be expressed in human and pig, but not in murine, airways (3). The absence of  ATP12A in mice 

could explain the lack of  a human-like lung disease in animals devoid of  CFTR function.

Proton secretion mediated by ATP12A protein on the surface of the airway epithelium may 

contribute to cystic fibrosis (CF) lung disease by favoring bacterial infection and airway obstruction. 

We studied ATP12A in fresh bronchial samples and in cultured epithelial cells. In vivo, ATP12A 

expression was found almost exclusively at the apical side of nonciliated cells of airway epithelium 

and in submucosal glands, with much higher expression in CF samples. This could be due to 

bacterial infection and inflammation, since treating cultured cells with bacterial supernatants 

or with IL-4 (a cytokine that induces goblet cell hyperplasia) increased the expression of ATP12A 

in nonciliated cells. This observation was associated with upregulation and translocation of 

ATP1B1 protein from the basal to apical epithelial side, where it colocalizes with ATP12A. ATP12A 

function was evaluated by measuring the pH of the apical fluid in cultured epithelia. Under resting 

conditions, CF epithelia showed more acidic values. This abnormality was minimized by inhibiting 

ATP12A with ouabain. Following treatment with IL-4, ATP12A function was markedly increased, 

as indicated by strong acidification occurring under bicarbonate-free conditions. Our study reveals 

potentially novel aspects of ATP12A and remarks its importance as a possible therapeutic target in 

CF and other respiratory diseases.
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We previously found that ATP12A expression in cultured bronchial epithelial cells is strongly upregu-

lated by IL-4, particularly in nonciliated mucus-producing cells (3). More recently, this type of  response 

was also found for IL-13 (13). IL-4 and IL-13, 2 cytokines involved in Th2 immune response and the 

development of  bronchial asthma, are known to induce goblet cell hyperplasia (14, 15), a process that also 

involves upregulation of  many other ion channels and transporters (e.g., TMEM16A/ANO1, SLC26A4/

pendrin, SLC12A2) associated with Cl– and bicarbonate secretion (5, 16). It is believed that bicarbonate 

secretion is important in the release and expansion of  mucins (5, 7, 17, 18). In a recent in vitro study, strong 

ATP12A induction by IL-13 was found to be associated with increased mucus viscosity (13). Therefore, 

because of  usually elevated IL-13 level in asthmatic patients, it can be hypothesized that an abnormally 

high ATP12A function in vivo contributes to airway obstruction in asthmatic patients. Furthermore, the 

acidification mediated by ATP12A in CF ASL could directly predispose to mucus hyperviscosity and bac-

terial infections by impairing antibacterial activity of  specialized peptides (3).

We have carried out studies on respiratory cultured cells and ex vivo samples to unravel various aspects 

related to ATP12A expression and function. Our findings demonstrate that ATP12A expression is increased 

in the airways of  CF patients as a consequence of  bacterial infection and inflammation. Furthermore, our 

studies reveal that ATP12A expression in the plasma membrane requires the association with ATP1B1, a 

β subunit of  Na+/K+-ATPase (19, 20). We also find a more acidic pH in the apical fluid of  CF epithelia in 

vitro, an abnormality that can be contrasted by pharmacological inhibition of  ATP12A. Finally, we found 

that ATP12A upregulation is associated with depletion of  K+ in ASL, an effect that, in addition to proton 

pumping, may have an important role in the barrier function of  airway epithelium.

Results
We investigated the expression of  ATP12A in fresh bronchial samples obtained from CF and non-CF 

individuals undergoing lung transplant. After lung resection, a piece of  bronchial wall was fixed and pro-

cessed for immunodetection of  ATP12A and other epithelial proteins, particularly acetylated tubulin and 

MUC5AC, to identify ciliated and goblet cells, respectively. We collected samples from 15 CF patients and 

from 8 individuals transplanted for other diseases, including idiopathic fibrosis, pulmonary sarcoidosis, and 

scleroderma. Figure 1 shows representative images of  the bronchial surface and submucosal glands from 

multiple CF and non-CF bronchi. Quantification of  ATP12A expression is reported in Figure 2A. ATP12A 

immunostaining was clearly detectable in the surface epithelium of  CF patients (Figure 1). ATP12A was 

present almost exclusively in nonciliated cells, frequently associated with MUC5AC (Figure 2B). In con-

trast, ATP12A signal was hardly detectable in the surface epithelium of  non-CF individuals (Figures 1 and 

Figure 2A). A notable exception is represented by patient HBE4, whose epithelium showed a clear apical 

membrane staining (Figure 1). To explain this finding, we inspected the clinical information available for 

this individual. Importantly, we found that HBE4 was affected by IgG deficiency and recurrent bacterial 

infections. This finding suggested that ATP12A hyperexpression can be directly induced in epithelial cells 

by bacteria and/or through a host response to infection involving cytokine release.

We also found evidence for ATP12A expression in the lumen of  submucosal glands (Figures 1 and Figure 

2C), a finding never reported before. In submucosal glands, the difference between CF and non-CF samples 

was less dramatic compared with surface epithelium. In particular, non-CF patients HBE4, HBE6, and HBE7 

displayed an extent of  ATP12A expression comparable with that of  CF patients (Figures 1 and Figure 2C).

We investigated ATP12A expression in cultured bronchial epithelial cells from CF and non-CF individu-

als. By immunofluorescence, we found no evidence of  increased ATP12A expression in CF cells kept under 

resting conditions (Figure 3A). To mimic bacterial infection, we treated cells with a bacterial supernatant 

and, for comparison, with IL-4. As shown before (5), IL-4 induced a strong increase in ATP12A expression, 

particularly in nonciliated cells. The bacterial supernatant also induced ATP12A expression, in both CF and 

non-CF cells, although less than IL-4. To confirm these results, ATP12A protein levels were also assessed 

by immunoblots. The results from multiple samples were in agreement with those obtained by immuno-

fluorescence: treatment with the bacterial supernatant and, to a larger extent, with IL-4 similarly enhanced 

ATP12A expression in both CF and non-CF cells (Figure 3, B and C).

It is known that trafficking of  ATP12A to the plasma membrane requires assembly with a β subunit. 

However, identity of  this subunit is controversial. Possible candidates are the β subunit of  the gastric K+/

H+-ATPase (i.e., ATP4B) or one of  the β subunits of  the Na+/K+-ATPase, known as ATP1B1, ATP1B2, 

and ATP1B3 (10, 21–24). We reasoned that the correct partner of  ATP12A in the airway epithelium also 
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had to be localized in the apical membrane and, possibly, upregulated by IL-4. We investigated the extent 

of  expression and localization of  β subunits by immunofluorescence (Figure 4). Only 1 subunit, ATP1B1, 

appeared to be strongly upregulated by IL-4. Interestingly, ATP1B1 underwent a dramatic shift in subcel-

lular localization. As evident from xy and xz confocal sections (Figure 4A), ATP1B1 was largely localized 

in the basolateral membrane of  untreated cells. Treatment with IL-4 markedly increased the expression of  

ATP1B1 in the apical membrane. Figure 4B shows that this change is not caused by a general perturbation 

of  cell polarity, since the Na+/K+-ATPase, ATP1A1, remained in the basolateral membrane of  cells treated 

with the cytokine.

We further investigated the relationship between ATP12A and ATP1B1 by staining both proteins 

within the same cell preparation (Figure 5). In control cells, ATP1B1 was mostly present in the basolat-

eral membrane. In a small fraction of  cells, ATP1B1 was present in the apical membrane and colocalized 

with ATP12A. Upon treatment with IL-4, an increased number of  cells showed a strong apical signal for 

both ATP12A and ATP1B1. To get further support for colocalization of  the 2 proteins, we used super-

resolution microscopy by structured illumination microscopy (SIM) (Figure 5B). We took images from 

an apical plane, identified by staining of  cilia, and from a more basal plane. Both ATP12A and ATP1B1 

signals showed strong overlap in the apical plane, whereas only ATP1B1 was visible in the basal plane 

(Figure 5B). We also evaluated the ATP1B1 expression in freshly excised bronchial samples. In CF air-

ways, ATP1B1 was clearly present in the basolateral membrane but was also coexpressed in the apical 

membrane, together with ATP12A (Figure 5C).

We also investigated ATP12A and ATP1B1 interaction using the proximity ligation assay proximity 

ligation assay  (PLA) (Figure 6A). This method generates a fluorescent signal when 2 proteins, recognized 

by separate primary antibodies, are very close to each other. The proximity of  the 2 antibodies allows a 

rolling circle DNA synthesis and subsequent binding of  a fluorescent probe to amplified DNA. Using 

antibodies against ATP12A and ATP1B1, we clearly detected bright fluorescent spots, which indicate close 

Figure 1. ATP12A protein expression in human bronchi. Representative confocal microscope images showing immunodetection of ATP12A (green), MUC5AC 
(red), and acetylated tubulin (magenta) in bronchial histological sections. Nuclei were counterstained with DAPI (blue). Scale bar: 20 μm. Images show the sur-
face epithelium (SE) and submucosal glands (SMG) for di�erent non-CF (top) and CF (bottom) bronchi. ATP12A expression was found in the apical membrane of 
all CF samples and of 1 non-CF bronchus (HBE4 individual). ATP12A was also expressed in the lumen of submucosal glands, particularly in those of CF patients.

https://doi.org/10.1172/jci.insight.123616
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physical association between the 2 proteins. As expected, such spots were more numerous in cells treated 

with IL-4. Importantly, no spots were visible when the antibody for ATP4B was used in place of  that for 

ATP1B1 (Figure 6A). A quantification of  PLA data is shown in the dot plot of  Figure 6A.

The results obtained in bronchial epithelial cells suggested a possible requirement of  ATP1B1 for the 

trafficking of  ATP12A. When ATP12A was transfected alone in bronchial CFBE41o- cells, we mostly 

found a perinuclear staining (Figure 6B, left). When both proteins were transfected together, we found 

appearance of  ATP12A on the cell border, with a close overlap with ATP1B1 signal (Figure 6B, right).

The subcellular localization of  ATP1B1 was also studied in the mouse colon (Figure 7). The β subunit 

was localized in the apical membrane of  WT mice, together with ATP12A. In contrast, the subunit showed 

an exclusive basolateral localization in ATP12A-KO mice.

To assess the function of  ATP12A, we measured the pH of the apical fluid collected from cultured human 

bronchial epithelia kept under a 5% CO
2
 atmosphere. With respect to a previous study (5), we kept the fluid 

on epithelia for only 3 hours (instead of  48 hours) and also included CF epithelia. The graph in Figure 8A 

compares the pH of CF vs. non-CF epithelia, with and without IL-4. We found that the pH of CF epithelia 

under unstimulated conditions was significantly more acidic than that of  non-CF epithelia (median of  7.31 

vs. 7.77). This finding is in agreement with previous studies, which reported an abnormal acidification in CF 

(11) but is different from a more recent paper showing no difference in pH (9). Intriguingly, cells stimulated 

with IL-4, both CF and non-CF, showed a markedly alkaline fluid (pH > 8) compared with untreated cells. 

Under these conditions, there was essentially no difference in pH between the 2 cell types (Figure 8A). The 

high pH value induced by IL-4 could be explained by an increased rate of  bicarbonate secretion consequent 

to upregulation of  several anion channels and transporters, including TMEM16A, SLC26A4, and SLC12A2 

(5). To evaluate the net contribution of  ATP12A to pH, we carried out experiments without bicarbonate and 

also used apical ouabain as an inhibitor of  the pump. The graphs in Figure 8, B and C, report the pH values 

for the different conditions. As expected, removal of  bicarbonate caused acidification of  the apical fluid. In 

untreated (no IL-4) cells, incubation with the bicarbonate-free basolateral solution decreased pH by nearly 0.5 

pH units. Importantly, addition of  apical ouabain blocked this acidification and brought the pH of CF and 

non-CF epithelia to similar values (Figure 8D). The pH change caused by bicarbonate removal was particular-

ly dramatic for cells treated with IL-4, being equivalent to nearly a 1.4 pH unit drop for both CF and non-CF 

epithelia. The absolute pH value under this condition (IL-4, no bicarbonate) was below 7 (median of  6.75 and 

6.68 for non-CF and CF samples, respectively). This particular extent of  acidification may be explained with 

the net activity of  ATP12A (upregulated in cytokine-treated epithelia) not buffered by bicarbonate transport. 

In agreement with this assumption, apical ouabain significantly increased pH in the absence of  bicarbonate. It 

should be noted that ouabain was ineffective in epithelia treated with IL-4 but kept with bicarbonate (Figure 

8, B and C), a surprising result since ATP12A was expected to be active under these conditions.

We also measured K+ concentration in the apical fluid as another parameter reporting ATP12A 

activity (Figure 9). For this purpose, we used the same solution used for pH measurements, which con-

tains 3 mM K+. After 3 hours on the apical side of  untreated epithelia, the K+ concentration of  the fluid 

Figure 2. Quantification of ATP12A protein expression in human bronchi. (A) Dot plot reporting ATP12A expression 
(percent of ATP12A+ cells) in surface epithelia of non-CF and CF samples (n = 8 and 15, respectively); *P < 0.05 by 
nonparametric test. (B) Pie chart showing expression of ATP12A in specific cell types of the surface epithelium. (C) Dot 
plot reporting ATP12A expression (percent of ATP12A+ glands) in submucosal glands of non-CF (n = 8) and CF (n = 15) 
patients; *P < 0.05 by nonparametric test. Horizontal bars in dot plots indicate median values.

https://doi.org/10.1172/jci.insight.123616
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remained close to the initial value. Instead, the fluid of  epithelia treated with IL-4 revealed a marked 

depletion of  K+ that, in many samples, was nearly undetectable (Figure 9). Importantly, this fall in K+ 

content was partially reduced by apical ouabain. In contrast to K+, Na+ concentration was not signifi-

cantly altered by IL-4 treatment (Figure 9).

Discussion
The epithelium covering the airways is an important defense barrier against potentially dangerous 

microbial agents delivered by inhaled air. In this respect, the physical and chemical properties of  ASL 

(thickness, viscosity, small solutes, and macromolecules content) are finely controlled by the underlying 

epithelium and by submucosal glands. Throughout the years, the pH and bicarbonate concentration of  

ASL have increasingly emerged as important factors in CF lung disease (3, 6–8, 17, 18, 25). A defect in 

bicarbonate secretion in CF airway epithelia was already described in 1992 (2). A low ASL pH value 

was later reported for CF epithelia (11). More recently, several studies have demonstrated that defective 

secretion of  bicarbonate, due to CFTR lack of  function, impairs innate defense mechanisms in multiple 

ways (3, 6, 7). On the other hand, a recent study has shown no intrinsic difference in ASL pH between 

normal individuals and CF patients in vivo (9).

Figure 3. Expression of ATP12A protein in cultured 

bronchial epithelia. (A) Representative images 
showing detection of ATP12A (green), MUC5AC (red), 
and acetylated tubulin (magenta) by immunofluo-
rescence. Images, taken with a confocal microscope, 
are xy and xz scans of non-CF (top) and CF (bottom) 
bronchial epithelial cells treated or not for 72 hours 
with bacterial supernatant or IL-4 (10 ng/ml). The 
xz images also report staining of nuclei with DAPI 
(blue). Scale bar: 20 μm and 10 μm for xy and xz 
images, respectively. (B) Detection of ATP12A 
protein by Western blot in lysates from non-CF 
(left) and CF (right) bronchial epithelial cells under 
control condition or after 72 hours of treatment 
with bacterial supernatant (SN) or IL-4. GAPDH 
was also revealed as control. The full uncut images 
of these experiments are shown in the Supple-
mental Material (supplemental material available 
online with this article; https://doi.org/10.1172/jci.
insight.123616DS1). (C) Dot plot showing the den-
sitometric analysis of Western blot (n = 4 for each 
condition). Data are normalized for GAPDH expres-
sion. *P < 0.05, ***P < 0.001 vs. control.
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In addition to CFTR, other channels and transporters are also involved in the secretion of  bicarbonate 

and/or the control of  ASL pH. We recently investigated the gene expression changes and functional conse-

quences elicited by IL-4, a cytokine that induces goblet cell hyperplasia and mucus hypersecretion (5). Our 

analysis revealed the increased expression and/or function of  several membrane proteins involved in the 

transport of  chloride and bicarbonate, including CFTR, TMEM16A, pendrin, and SCL12A2 (5, 16). Sur-

prisingly, this analysis also evidenced the upregulation of  ATP12A, which represents the nongastric form 

of  the K+/H+-ATPase. Evidence for proton secretion coupled to K+ absorption in the apical membrane of  

airway epithelial cells was previously reported in 2 studies (11, 26). More recently, it has been demonstrated 

that ATP12A protein is indeed responsible for proton secretion in human airways and, in the absence of  

CFTR-dependent bicarbonate transport, is a major cause of  ASL acidification in CF (3, 27).

In the present study, we first investigated the expression of ATP12A in human airways. Interestingly, we 

found clear evidence of enhanced ATP12A levels in CF bronchi of patients with terminal disease and chronic 

infection, a characteristic that has not been reported before. In particular, ATP12A was found in nonciliated 

MUC5AC+ cells, in agreement with previous findings indicating its prevalent expression in goblet cells (5). The 

enhanced signal detected in CF airways could result from the combination of a higher number of goblet cells 

and an increased intrinsic expression within such cells. Enhanced ATP12A expression may not be directly asso-

ciated to CFTR lack of function but rather seems a consequence of bacterial infection and, possibly, inflamma-

tion. Indeed, we saw no major differences in expression and function between CF and non-CF epithelia kept in 

vitro under sterile conditions. Instead, we observed induction of ATP12A expression when cells were exposed 

Figure 4. Expression of β subunits in cultured bronchial epithelial cells. (A) Representative xy and xz confocal images 
showing immunostaining for di�erent candidate β subunits (ATP4B, ATP1B1, ATP1B2, ATP1B3; green signal) and cilia 
(acetylated tubulin; red signal) in cultured bronchial epithelial cells treated with and without IL-4 for 72 hours. Scale 
bar: 40 μm and 10 μm for xy and xz images, respectively. IL-4 strongly increases the expression of the Na+/K+-ATPase β1 
subunit (ATP1B1) in the apical membrane of epithelial cells. Data are representative of 3 separate preparations on non-
CF cells and 2 preparations on CF cells. Images for ATP1B1 were obtained with the ab2873 antibody. Identical results 
were obtained with the SpETb1 antibody (not shown). (B) Immunofluorescence detection of Na+/K+-ATPase α- and β1 
subunit (ATP1A1 and ATP1B1, respectively) in bronchial epithelial cells treated with IL-4. Scale bar: 10 μm.

https://doi.org/10.1172/jci.insight.123616
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to bacterial components. It is possible that ATP12A expression is similarly induced by bacterial components in 

vivo and further promoted by proinflammatory stimuli mimicking the effect of IL-4 in vitro. Another interesting 

finding in our study of bronchial samples is the expression of ATP12A in the apical membrane of submucosal 

gland cells. This finding suggests that ATP12A also controls the composition and pH of gland secretions.

Our findings have an important implication. If  ATP12A-mediated acidification reduces the antimicro-

bial activity on mucosal surface, as stated by Shah et al. (3, 27), then the upregulation that we have observed 

in ex vivo samples could imply a detrimental response that further worsens CF lung pathology. Therefore, 

we hypothesize that ATP12A should be a therapeutic target in CF and, more specifically, in chronically 

infected patients and during infection exacerbations.

A second aspect of  ATP12A considered in our study was the identification of  factors affecting its traf-

ficking to the plasma membrane. Actually, there are different results regarding the identity of  the subunit 

that is required by ATP12A to reach the cell surface. The different proteins proposed so far include ATP4B, 

ATP1B1, ATP1B2, and ATP1B3 (10, 21–24). Our results indicate that ATP1B1 is the partner of  ATP12A. 

First, ATP1B1 was found to colocalize with ATP12A in the apical membrane of  bronchial epithelial cells 

in vivo and in vitro, particularly in cultured cells treated with IL-4. Second, cotransfection with ATP1B1 is 

required to move ATP12A from intracellular compartments to the cell surface. ATP1B1 is normally the β 
subunit of  the Na+/K+-ATPase. Indeed, our results show, that, as expected, ATP1B1 localizes at the baso-

lateral membrane. However, under conditions of  ATP12A upregulation (i.e., CF cells in vivo or cells treated 

with IL-4 in vitro), a significant fraction of  ATP1B1 is moved to the apical membrane. It can be hypoth-

esized that ATP12A competes with the Na+/K+-ATPase for the common β subunit. In agreement with 

this hypothesis, we found that ATP1B1 is apically localized in the colon of  normal mice but is displaced to 

Figure 5. ATP12A-ATP1B1 colocalization in bronchial epithelial cells. (A) Representative xy and xz confocal images showing immunodetection of ATP12A 
and ATP1B1 in cultured bronchial epithelial cells under control condition (top) or after treatment with IL-4 for 72 hours (bottom). Scale bar: 20 μm and 10 
μm for xy and xz images, respectively. Images were collected from 3 separate preparations on non-CF cells and 2 preparations on CF cells. (B) Representa-
tive images taken by confocal xz scans (top) and Elyra superresolution xy scans (bottom) from cultured bronchial epithelial cells treated with IL-4. Images 
show colocalization of ATP12A and ATP1B1 in the apical membrane (apical plane) but not in the basolateral compartment (basal plane). Scale bar: 5 μm. (C) 
Representative images showing colocalization of ATP12A and ATP1B1 in CF bronchial samples. Scale bar: 10 μm.

https://doi.org/10.1172/jci.insight.123616
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lateral membranes in ATP12A-KO animals. Future experiments will need to conclusively assess if  there is a 

direct competition between the respective α subunits of  the 2 pumps for ATP1B1 and to identify the protein 

domains that are involved in these interactions.

We also measured pH of  the apical fluid in vitro to estimate the activity of  ATP12A. Compared with a 

previous study by our group (5), we have now considerably shortened the time of  fluid application on the 

apical surface (3 hours instead of  48 hours). In addition, we have also included CF epithelia in our experi-

ments. Our results raise several points for consideration. First, we detected a difference in pH between CF 

and non-CF epithelia under untreated (no IL-4) conditions. The lower pH in CF epithelia, in agreement 

with previous studies (3, 11, 25, 27), can be explained as the combined result of  the loss of  CFTR-depen-

dent bicarbonate secretion and the proton pumping carried out by ATP12A. In agreement with this expla-

nation, removal of  bicarbonate acidified the apical fluid in non-CF epithelia. Importantly, apical ouabain 

minimized the difference in pH between CF and non-CF epithelia. Therefore, our findings demonstrate 

that ATP12A function is an important factor in the regulation of  pH on the apical surface of  airway epi-

thelia. However, a recent study has shown no difference in pH between CF and non-CF in vivo and in vitro 

(9). The reason for these discrepant results is unclear. They may be due to different experimental method-

ologies but may also be attributed to the type of  patients used for the study. Importantly, Schultz et al. have 

involved patients younger than 6 years of  age (i.e., at an early stage of  the disease; ref. 9). Instead, our study 

has been done on bronchial epithelial cells obtained from lung transplants (i.e., from adults and, in case of  

CF patients, from individuals at an advanced stage of  the disease). It will be important to assess in future 

studies if  pH regulation and ATP12A expression are affected by these factors.

The second point to be considered regards the effect of  IL-4. As discussed above, in a previous study, 

we kept the apical fluid on the cells for 48 hours (5). After collection of  the fluid, we found that the pH and 

the bicarbonate concentration were markedly increased by IL-4 treatment. For the present study, we have 

applied the fluid for only 3 hours. Despite the shortened time, our results confirm our previous findings: 

Figure 6. ATP12A-ATP1B1 proximity. (A) Representative images from proximity ligation assay (PLA) performed on cultured bronchial epithelial cells 
treated with and without IL-4 for 72 hours. Evidence of proximity (distance < 40 nm) between ATP12A and ATP1B1 is indicated by the appearance of red 
dots. Nuclei are counterstained with DAPI (blue). Scale bar: 10 μm. No positive PLA reaction (i.e., red dots) was observed for ATP12A and ATP4B or in 
negative control (i.e., without primary antibodies, no Abs). The dot plot reports the quantification of PLA signal, measured as dots per cell; ***P < 0.001 
vs. no Abs; ###P < 0.001 vs. untreated (n = 6 for each condition). (B) Representative confocal images showing immunodetection of ATP12A and ATP1B1 in 
CFBE41o- cells transfected with ATP12A alone (left) or in combination with ATP1B1 (right). Scale bar: 10 μm.
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epithelia treated with IL-4 markedly increase the pH on the apical surface. This effect, which was also sim-

ilarly observed in CF epithelia, is dependent on enhanced bicarbonate transport. Indeed, removal of  bicar-

bonate in the basolateral solution resulted in marked acidification, an effect that was blocked by ouabain, 

an inhibitor of  ATP12A. The similar pH values observed in CF and non-CF epithelia after IL-4 treatment 

(despite the difference observed in untreated conditions) suggest that the cytokine markedly enhances 

the contribution of  CFTR-independent over CFTR-dependent bicarbonate transport mechanisms. This 

finding may have important implications. An upregulation of  CFTR-independent mechanisms, induced 

by cytokines or other soluble mediators in vivo and possibly related to age and extent/type of  inflamma-

tion, could increase ASL pH despite the concomitant upregulation of  ATP12A. The complexity of  such 

mechanisms can explain the conflicting results reported for ASL pH. In this respect, an in vivo study 

found a difference between CF and non-CF infants (28). However, this difference was not present when 

older individuals were examined (28). It should be also noted that, in another study, treatment of  cultured 

airway epithelial cells with IL-13 resulted in acidification and not alkalinization of  apical fluid, as in our 

experiments (29). IL-4 and IL-13 are both Th2 cytokines that cause goblet cell hyperplasia with similar 

mechanisms. However, subtle differences in their effect on expression and function of  channels and trans-

porters (e.g., ATP12A, non-CFTR bicarbonate transporters) could explain the different effect on ASL pH.

We obtained interesting results by using ouabain on epithelia treated with IL-4. In the absence of  

bicarbonate, ouabain produced the expected increase in pH. However, with bicarbonate, ouabain was 

essentially ineffective. Such results could suggest that ATP12A, despite the increased expression, is not 

active in the presence of  bicarbonate. In this respect, we also measured K+ concentration in the apical fluid 

as another readout of  ATP12A function. We found a marked depletion of  apical K+ in cells treated with 

IL-4 and kept in bicarbonate. These results indicate that ATP12A is indeed active under these conditions. 

In agreement with this interpretation, we found that K+ absorption is sensitive to ouabain. There is an 

intriguing hypothesis to explain the lack of  pH change when using ouabain on cells treated with IL-4 and 

kept with bicarbonate. It is possible that, under these conditions, K+ is, in part, exchanged with Na+ and 

not with H+. Actually, previous in vitro studies have postulated that ATP12A may also work as an apical 

Na+/K+ pump (30, 31), a result recently confirmed in vivo and contributing to renal salt excretion (32). We 

wondered whether the K+ depletion observed in our experiments is consistent with the affinity of  ATP12A 

for this cation. It has been reported that human and rat ATP12A have a relatively high affinity, with a K
1/2

 

(i.e., the K+ concentration required to have 50% of  transporter activity) of  0.7–1.0 mM (33, 34). Therefore, 

the pump is expected to be active at low concentrations of  extracellular K+, although at a reduced rate.

Figure 7. Expression of ATP12A and ATP1B1 in mice. Images show histological sections of murine colon with immunodetec-
tion of Atp12a and the α1 subunit of Na+/K+-ATPase (Atp1a1) (top) or Atp1b1 alone (bottom) in WT (A and C) or Atp12a-KO (B 
and D) animals. Arrows show expression of Atp1b1 in the apical membrane of WT animals. Scale bars: 20 μm for panels A 
and B; 10 μm for panels C and D. The images are representative of results obtained from 3 WT and 3 Atp12a-KO mice.
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In conclusion, our studies have produced important findings related to ATP12A. The upregulation in the 

airways of CF patients and, possibly, in other individuals with bacterial infections of the airways can be a 

pathogenic factor. It will be important in future studies to assess if  ATP12A upregulation is an early feature of  

CF or is a characteristic that emerges at a more advanced stage of the disease. Another finding is the discovery 

of ATP1B1 as the partner required by ATP12A for trafficking to the plasma membrane. This finding also has 

important practical implications because it will allow generation of cell models expressing both proteins for 

functional and pharmacological studies. We also obtained results showing that ATP12A indeed contributes to 

the regulation of pH and/or K+ concentration in the ASL. The net effect on pH may be affected by the con-

comitant activity of CFTR-independent bicarbonate transport systems. Regarding K+, it should be noted that 

this cation has an important role in the signaling within bacteria communities. Waves of potassium released 

by bacteria enable long-range electrical communication in bacterial biofilms (35). Therefore, the marked deple-

tion of ASL K+ produced by ATP12A deserves particular attention to understand if  it is a byproduct of proton 

pumping or a key function in the airway epithelium.

Methods
Immunofluorescence of  human bronchial samples. Tissue samples were obtained from 22 patients under-

going lung transplant (15 CF and 7 non-CF). Samples were fixed in 10% neutral buffered formalin  

(05-01005Q, Bio-Optica), embedded in paraffin and sectioned at 7 μm. For immunofluorescence detection 

of  ATP12A protein, sections were deparaffinized and subjected to antigen retrieval with 10 mM citrate 

buffer (pH 6) heated to 95°C in a microwave for 5 minutes. Samples were then cooled to room temperature  

Figure 8. Apical fluid pH measurement. (A) Dot plot (single values and median) showing apical fluid pH measured in cultured CF and non-CF bronchial 
epithelia treated with/without IL-4 for 72 hours (***P < 0.001; data collected from 6 CF and 6 non-CF bronchial cell preparations; n = 15–18 separate epithe-
lia for each condition). (B and C) Dot plots (single values and median) showing apical fluid pH measured in non-CF (B) and CF (C) bronchial epithelia treated 
with/without IL-4 for 72 hours. Before pH measurement, cells were incubated for 3 hours with a basolateral medium containing HCO

3
– or HEPES and with 

75 μl of a modified PBS solution on the apical side. Where indicated, this solution also contained 200 μM ouabain (**P < 0.01, ***P < 0.001; data collected 
from 4 Îseparate CF and non-CF bronchial cell preparations). (D) The data reported in B and C are replotted to directly compare side-by-side CF and non-CF 
data for each condition. The dashed line in each panel indicates the initial pH of the saline solution.
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and permeabilized with Triton X-100 0.3% in PBS for 5 minutes. After washing, cells were blocked 

with 1% BSA in PBS for 2 hours, and then incubated overnight at 4°C with primary antibodies diluted 

in PBS containing 1% BSA. The following antibodies and dilutions were used: rabbit anti-ATP12A 

(HPA039526, MilliporeSigma) at 1:400; mouse IgG1 anti-MUC5AC (MA5-12178, Thermo Fisher Sci-

entific) at 1:200; mouse IgG2B anti–acetylated tubulin (7451, MilliporeSigma) at 1:300; and mouse 

IgG2A anti-ATP1B1 (ab2873, Abcam) at 1:1,000.

Following incubation with primary antibodies, tissues were rinsed 3 times in PBS and incubated with 

a solution of  secondary goat anti–rabbit Alexa Fluor 488, goat anti–mouse IgG1 Alexa Fluor 546, and 

goat anti–mouse IgG2B Alexa Fluor 633 antibodies (Thermo Fisher Scientific) diluted at 1:200 in PBS 

containing 1% BSA for 1 hour in the dark. After further 3 washes in PBS, slides were mounted with Fluo-

roshield with DAPI (MilliporeSigma) to stain cell nuclei.

Confocal microscopy was performed using a laser scanning confocal microscope TCS SPE (Leica 

Microsystems). Image analysis was performed using Leica and ImageJ (NIH) software.

Cell culture. The procedures for isolation and culture of  human bronchial epithelial cells were described 

in detail in a previous study (16). Briefly, mainstem human bronchi, derived from CF and non-CF individu-

als undergoing lung transplant, were dissected, washed, and incubated overnight at 4°C in protease XIV 

solution. Epithelial cells were then detached mechanically, dissociated by trypsinization, and cultured in 

flasks in a serum-free medium (LHC basal medium/RPMI 1640, Thermo Fisher Scientific) supplemented 

with various hormones and supplements; hormones and supplements as specified in ref. 16. With respect to 

the previous study, this culture medium also contained BMP antagonist (DMH-1; Tocris), TGFβ antagonist 

(A 83-01; Tocris), and ROCK1 inhibitor (Y-27632; Tocris), a cocktail of  compounds that allows expansion 

of  basal stem cells (36). After 4–5 passages, cells were seeded at high density (500,000/cm2) on Snapwell 

3801 (Corning Costar) porous inserts. After 24 hours from seeding, the medium was switched to DMEM/

F12 (1:1) plus 2% New Zealand FBS (Thermo Fisher Scientific), hormones, and supplements (16) to repro-

gram the cells and induce mucociliary differentiation. The medium was replaced daily on both sides of  

permeable supports up to 7 days (liquid-liquid culture; LLC). Subsequently, the apical medium was totally 

removed and the cells received nutrients only from the basolateral side (air-liquid culture; ALC). This con-

dition favored a further differentiation of  the epithelium. Cells were maintained under ALC for 2 weeks.

Cells were obtained from 3 non-CF subjects (HBE9, HBE10, HBE11) and 3 CF subjects (CFBE17, 

CFBE18, CFBE19: patients with F508del/F508del genotype). For CF cells, the LHC basal medium/

RPMI 1640 medium also contained, in the first 4 days, additional antibiotics to eradicate bacterial con-

tamination. For this purpose, the mixture of  antibiotics (usually colistin, piperacillin, and tazobactam) and 

dosage were designed on the basis of  the antibiogram of  bacteria isolated from the most recent expectorate 

of  the patient.

Where indicated, well-differentiated bronchial epithelial cells were treated with or without IL-4 (10 ng/

ml in the basolateral medium; MilliporeSigma) or bacterial supernatant (diluted 1:8 into PBS; 200 μl added 

to the apical side) for 72 hours (37).

Figure 9. Ouabain-sensitive K+ absorption. Dot plots (single values and median) report the K+ (A) and Na+ (B) 
concentration in the apical fluid collected from epithelia treated with/without IL-4 for 72 hours (data collected from 
2 separate preparations of non-CF cells). Where indicated, the fluid contained ouabain. The horizontal dashed lines 
indicate the original concentration of the cation in the fluid.
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Preparation of  bacterial supernatants. P. aeruginosa (PA), strain ATCC27853, was used for the preparation. 

Bacteria were grown in LB broth (Difco) at 37°C with shaking at 250 rpm for 24 hours (to OD
600

 ~ 5). 

Bacterial cultures were centrifuged at 5,000 g for 10 minutes, and the supernatants were sterile filtered with 

low-protein binding 0.22 μm cellulose acetate filters (Corning) and stored at –80°C until use.

Immunofluorescence of  cultured bronchial epithelial cells. Primary human bronchial epithelial cells differen-

tiated on Snapwell permeable supports were fixed by adding 200 μl of  10% neutral buffered formalin (05-

01005Q, Bio-Optica) to the apical side for 5 minutes at room temperature. After 3 washings in PBS, cells 

were processed for antigen retrieval with 10 mM citrate buffer (pH 6) heated to 95°C in a microwave for 5 

minutes. Samples were then cooled to room temperature, permeabilized with Triton X-100 0.3% in PBS for 

5 minutes, blocked with 1% BSA in PBS for 2 hours, and then incubated overnight at 4°C with 200 μl of  pri-

mary antibodies diluted in PBS containing 1% BSA. The following primary antibodies and dilutions were 

used: rabbit anti-ATP12A (HPA039526, MilliporeSigma) at 1:400; mouse IgG1 anti-MUC5AC (MA5-

12178, Thermo Fisher Scientific) at 1:200; mouse IgG2B anti–acetylated tubulin (7451, MilliporeSigma) 

at 1:300; mouse anti-ATP4B (ab2866, Abcam) at 1:1000; mouse IgG2A anti-ATP1B1 (ab2873, Abcam) at 

1:1,000; rabbit anti-ATP1B1 (SpETb1) and rabbit anti-ATP1B2 (SpETb2) at 1:1,000 (antibodies generated 

and used as described in ref. 19); rabbit anti-ATP1B3 (ab137055, Abcam) at 1:100; mouse anti-ATP1A1 

(05-369, Millipore) at 1:1,000.

Following incubation with primary antibody, cells were rinsed 3 times in PBS and incubated with 200 

μl of  a solution of  secondary Alexa Fluor–conjugated antibodies (Invitrogen) diluted 1:200 in PBS contain-

ing 1% BSA for 1 hour in the dark. After further 3 washes in PBS, the porous membrane carrying the cells 

was cut from the plastic support of  the Snapwell, placed on microscope slides, and mounted with Fluoro-

shield with DAPI (MilliporeSigma) to stain cell nuclei.

Image acquisition was performed using a laser scanning confocal microscope TCS SPE (Leica Micro-

systems) and a LSM 880 Elyra Superresolution microscope (Zeiss). Image analysis was performed using 

Leica, Zeiss, and ImageJ software.

Western blot. Cells were lysed in RIPA 1× buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1% Tri-

ton X-100, 0.5% sodium deoxycholate, 0.1% SDS) containing Complete Protease Inhibitor Cocktail 

(Roche Diagnostics). Protein concentration in lysates was quantified using the DC Protein Assay kit 

(Bio-Rad). Lysates (20 μg of  total) were separated onto Criterion TGX precast Gels 4–15% (Bio-Rad) 

and transferred to PVDF membrane (Bio-Rad) for Western blotting with Trans-Blot Turbo system (Bio-

Rad). ATP12A protein was immunodetected by rabbit anti-ATP12A (HPA039526, MilliporeSigma) at 

1:4,000, followed by anti–rabbit HRP (Dako) 1:50,000 secondary antibody.

Membranes were also stripped with the Restore Western Blot Stripping buffer (Thermo Fisher Scien-

tific) and incubated with the mouse monoclonal anti-GAPDH antibody clone 6C5 (Santa Cruz Biotechnol-

ogy Inc.) 1:10,000, followed by anti–mouse HRP–conjugated secondary antibody (Dako; 1:50,000). All 

antibodies were dissolved in 5% skimmed milk in TBS-T. Protein bands were visualized using the Super 

Signal West Femto Substrate (Thermo Fisher Scientific). Direct recording of  the chemiluminescence was 

performed using the Alliance MINI HD9 AUTO Western Blot Imaging System (Biocompare).

Proximity ligation assay. Cultured bronchial cells treated with or without IL-4 (10 ng/ml) were fixed, sub-

jected to antigen retrieval, and permeabilized as described for immunofluorescence experiments. ATP12A-

ATP1B1 interaction, revealed as red fluorescent dots, was detected using the Duolink PLA kit (DUO92008, 

DUO82049, DUO92004, DUO92002; MilliporeSigma), according to the manufacturer’s instructions. The 

following couples of  primary antibodies were used: rabbit anti-ATP12A (HPA039526, MilliporeSigma), 

mouse anti-ATP1B1 (ab2873, Abcam), rabbit anti-ATP12A (HPA039526, MilliporeSigma), and mouse anti-

ATP4B (ab2866, Abcam). After incubation with PLA probes, ligation, and amplification steps, the porous 

membrane carrying the cells was cut from the plastic support of  the Snapwell, placed on microscope slides, 

and mounted with Fluoroshield with DAPI (MilliporeSigma) to stain cell nuclei.

Image acquisition was performed using an Olympus fluorescence microscope equipped with Lamda 

DG4 illuminator (Sutter Instruments) and Prime sCMOS camera (Photometrics). PLA dot quantification 

was performed with ImageJ software.

Transfection. CFBE41o- cells were cultured in minimal essential medium (MEM; Thermo Fisher Sci-

entific) supplemented with 10% FCS (MilliporeSigma), 2 mM L-glutamine, 100 U/ml penicillin, and 100 

μg/ml streptomycin. For immunofluorescence detection of  ATP12A protein trafficking to the plasma 

membrane, CFBE41o- cells were seeded in a μ-Chamber 12 well (Ibidi) at a density of  25,000 cells/well. 
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After 24 hours, cells were transfected with plasmids carrying the coding sequence for human ATP12A and 

ATP1B1. For each well, 0.2 μg of  plasmid DNA and 0.5 μl of  Lipofectamine 2000 (Thermo Fisher Scientif-

ic) were first premixed in 50 μl of  Opti-MEM (Thermo Fisher Scientific) to generate transfection complexes 

(60 minutes at room temperature) and were then added to the cells. After 24 hours, the complexes were 

removed by replacing with fresh culture medium. After a further 24 hours, cells were fixed and processed 

for immunofluorescence experiments as described for primary cultures.

Image acquisition and analysis were performed using a laser scanning confocal microscope TCS SPE 

(Leica Microsystems) and ImageJ software, respectively.

Apical fluid pH and K+ measurements. Differentiated bronchial epithelia under ALC conditions were treat-

ed for 72 hours with or without IL-4 (10 ng/ml). At the end of  the treatment, cells were incubated (37°C, 

5% CO
2
 atmosphere) with bicarbonate- or HEPES (25 mM)-buffered medium on the basolateral side and 

75 μl of  a modified PBS solution with low buffer capacity on the apical side. The modified PBS solution 

had the following composition: 145 mM NaCl, 2.7 mM KCl, 0.81 mM Na
2
HPO

4
, 0.15 mM KH

2
PO

4
,  

1 mM CaCl
2
, 0.5 mM MgCl

2
, pH 7.35. Where indicated, the modified PBS solution also contained ouabain 

(200 μM, O3125; MilliporeSigma). After 3 hours, the apical fluid was recovered in a single step (i.e., with-

out repeated pipetting), and pH was measured with a microelettrode (PHR-146S, Lazar Research Labora-

tories) under ambient air. Similarly, after recovery, the K+ concentration of  the apical fluid was determined 

by flame photometry (IL943, Instruments Laboratory).

Mouse models. Experiments were performed on C57Bl6 WT and KO mice for the HKA2α (ATP12A) 

subunit gene (38). All the animals were kept at CEF (Centre d’Explorations Fonctionnelles of  CRC, Agree-

ment no. A75-06-12). Anesthetized mice (10 mg/kg xylazine and 100 mg/kg ketamine) were perfused with 

4% paraformaldehyde in the aorta, and the colons were removed and frozen in OCT. Slices (5 μm thick) 

were then processed for immunofluorescence microscopy using a home-made polyclonal anti-ATP12A 

antibody (1:200) and/or a monoclonal anti-ATP1A1 (α1 subunit of  the Na,K-ATPase, 1:1,000) and/or the 

anti-ATP1B1 (SpETb1, 1:1,000).

Statistics. Data are presented as representative images, as dot plots with medians, or as graphs with 

mean ± SEM. Statistical significance of  differences among groups of  data was verified by 1-way ANOVA 

followed by the Tukey post-hoc test. For data not passing the normality test, a nonparametric ANOVA was 

used. A P value lower than 0.05 was considered significant.

Study approval. All procedures related to the use of  human epithelial cells were carried out in accor-

dance with approved guidelines. In particular, the protocols to isolate, culture, store, and study bronchial 

epithelial cells from patients undergoing lung transplant was approved by the local ethical committee under 

the supervision of  the Italian Ministry of  Health. Written informed consent was obtained from all patients 

using a form that was also approved by the same ethical committee. All experiments were conducted in 

accordance with the institutional guidelines and the recommendations for the care and use of  laboratory 

animals put forward by the Directive 2010/63/EU on the protection of  animals used for scientific purposes.
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