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Increased expression of RXRa in dementia: an
early harbinger for the cholesterol
dyshomeostasis?
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Abstract

Background: Cholesterol content of cerebral membranes is tightly regulated by elaborate mechanisms that

balance the level of cholesterol synthesis, uptake and efflux. Among the conventional regulatory elements, a recent

research focus has been nuclear receptors, a superfamily of ligand-activated transcription factors providing an

indispensable regulatory framework in controlling cholesterol metabolism pathway genes. The mechanism of

transcriptional regulation by nuclear receptors such as LXRs involves formation of heterodimers with RXRs. LXR/RXR

functions as a sensor of cellular cholesterol concentration and mediates cholesterol efflux by inducing the

transcription of key cholesterol shuffling vehicles namely, ATP-binding cassette transporter A1 (ABCA1) and ApoE.

Results: In the absence of quantitative data from humans, the relevance of expression of nuclear receptors and

their involvement in cerebral cholesterol homeostasis has remained elusive. In this work, new evidence is provided

from direct analysis of human postmortem brain gene and protein expression suggesting that RXRa, a key

regulator of cholesterol metabolism is differentially expressed in individuals with dementia. Importantly, RXRa

expression showed strong association with ABCA1 and ApoE gene expression, particularly in AD vulnerable regions.

Conclusions: These findings suggest that LXR/RXR-induced upregulation of ABCA1 and ApoE levels may be the

molecular determinants of cholesterol dyshomeostasis and of the accompanying dementia observed in AD.

Introduction
Differential control of gene expression is an important

means by which cells respond to physiological and

environmental stimuli. Nuclear receptors comprise a

superfamily of ligand regulated, DNA-binding transcrip-

tion factors that can both activate and repress gene

expression [1]. The liver X receptors (LXRs) are type II

nuclear receptors, initially identified as orphan nuclear

receptors, because their natural ligands were not known

[2,3]. LXRs have been deorphanized or adopted follow-

ing the discovery of oxysterols (hydroxylated derivatives

of cholesterol) as their endogenous ligands [3,4]. Two

LXR isoforms are known, namely LXRa and LXRb with

distinct tissue distributions [5]. LXRa expression is rela-

tively restricted to tissues involved in lipid metabolism,

such as liver and intestine [6,7], whereas LXRb is

ubiquitously expressed. Both LXR isoforms are

expressed in the brain [5]. LXRb expression, in particu-

lar is 2-5 fold higher in the brain than in liver [8].

The mechanisms of transcriptional regulation by LXRs

involve formation of heterodimers with retinoid X

receptor (RXR). RXR is another deorphanized nuclear

receptor, activated by 9-cis-retinoic acid (a vitamin A

derivative) [9]. Upon heterodimerization, LXR/RXR bind

to specific DNA sequences called LXR-responsive ele-

ments (LXREs) in the target genes [10]. In the absence

of a ligand, LXRs bound to cognate LXREs, are in com-

plex with corepressors such as silencing mediator of

retinoic acid and thyroid hormone receptor (SMRT)

[11] and nuclear receptor corepressor (N-CoR) [12],

consequently, the transcription of target genes is

repressed. Receptor ligation induces conformational

changes in the ligand binding domain which mechanisti-

cally facilitates the release of corepressors and the

recruitment of coactivators and histone acetyltransferase

(HAT), the enzyme that acetylates lysine amino acids on
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histone proteins by transferring an acetyl group from

acetyl CoA and is generally associated with transcrip-

tional activation [13,14] (Figure 1). Interestingly, LXR/

RXR receptors exhibit the “phantom ligand effect,” the

ability of ligand-induced allosteric signal transmission by

nuclear receptors to activate the unliganded heterodi-

meric partners [15]. These heterodimers are also

referred to as permissive because the complex can be

activated by ligands of either partner. These unique fea-

tures allow multiple ligand-mediated pathways to be

integrated into a transcriptional response.

Studies over the last decade have established LXRs as

master regulators of lipid metabolism. LXR mediates activa-

tion of target genes such as sterol responsive element bind-

ing protein 1c (SREBP1c), a master transcription factor that

controls the entire fatty acid biosynthetic pathway [16],

lipid transporters including members of the superfamily of

ATP-binding cassette (ABC) transporters such as ABCA1

[17-19], apolipoproteins (ApoE, ApoD) [20,21] and lipopro-

tein modifying enzymes (cholesteryl ester transfer protein

(CETP) and phospholipid transfer protein (PLTP) [22,23].

In addition, primary astrocyte cultures treated with syn-

thetic LXR ligands exhibit increased cholesterol efflux and

elevated expression of LXR target genes including ABCA1

and ApoE [8,24,25]. LXRa/b knockout mice show a variety

of CNS defects including lipid accumulation, astrocyte pro-

liferation and disorganized myelin sheaths [26,27].

The expression of RXRs has been observed by immu-

nohistochemistry and in situ hybridization in mouse

brain [28-30]. There are three isoforms of RXRs: RXRa,

RXRb, RXRg. RXRa and b are most prevalent in the

neocortex and hippocampus while RXRg expression is

restricted to the neocortex [31].

Analysis of data from a large-scale microarray study of

postmortem brain specimens obtained from multiple

brain regions of elderly patients with varying severity of

dementia [32] indicated significant changes in RXR gene

expression [33,34]. Observed changes in gene expression

were isoform-specific with more robust Alzheimer’s dis-

ease (AD)-associated changes observed in RXRa levels. In

particular, the dysregulated expression was most obvious

in AD vulnerable regions such as inferior temporal gyrus

(area 20) and superior temporal gyrus (area 22) and in the

hippocampus, but not in primary visual cortex (area 17)

which is relatively spared from age related or AD-asso-

ciated neurodegeneration [35-40]. In addition, changes in

LXR/RXR target genes, ABCA1 and ApoE in AD brains as

a function of the increasing severity of dementia and neu-

rofibrillary pathology were also observed [33,34,41]. The

significance of these results is twofold. First, expression

levels of nuclear receptors and their target genes have not

been previously reported in a single cohort of clinically,

neuropsychologically and neuropathologically well-charac-

terized AD and control individuals with minimal mRNA

variability, known medical history and absence of pro-

tracted agonal state. Second, ABCA1 and ApoE are not

only LXR/RXR target genes but also the major determi-

nants of net cholesterol flux. These novel findings pro-

vided an impetus to study LXR/RXR gene and protein

expression using more quantitative technique. To this end,

we analyzed LXRb and RXRa mRNA expression in the

hippocampus and inferior temporal gyrus (area 20) of a

large series of cases at different stages of dementia and AD

associated neuropathology by quantitative PCR. Because

mRNA and protein levels can diverge significantly through

post-transcriptional regulation, Western blotting was used

to quantify protein levels in the hippocampus of a subset

of the postmortem brain specimens used in PCR analyses.

Results
qPCR analysis of RXRa expression in area 20

In order to perform post-assay analyses based on a clini-

cal index of disease severity, the subjects were classified

with respect to the clinical dementia rating (CDR) score

Figure 1 Schematic diagram of LXR/RXR activation mechanism (adapted from the references cited above). In the absence of a ligand,

LXR/RXR heterodimers are bound to the LXREs in the promoter region of target genes and in complex with corepressors (SMRT or NCoR).

Ligand binding (e.g., oxysterols) induces a dissociation of corepressors and recruitment of coactivators and the target gene expression is

induced.
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at the time of death (Table 1). Comparison of indivi-

duals with and without dementia {i.e., CDR 0 vs. CDR

0.5-5) showed higher levels of RXRa gene expression in

individuals with dementia (F1,84 = 15.48, p < 0.0005; Fig-

ure 2). Comparisons of individuals with and without

AD-associated neuropathology also showed more RXRa

gene expression as a function of increasing neuritic pla-

que (NP) density (F1,84 = 3.36, p = 0.035) but not Braak

neuropathological stages (F1,84 = 1.42, p = 0.237; Figure

2). These results suggest that RXRa expression is dysre-

gulated in the earliest quantified stage of dementia and

AD-associated neuropathology. The partial correlations

of RXRa mRNA expression demonstrated significant

associations with CDR (r = 0.301, df = 84, p = 0.005).

However, the linear association of RXRa mRNA levels

with either Braak neuropathological stages (r = 0.193, df

= 84, p = 0.076) or NP density (r = 0.132, df = 84, p =

0.225) was not significant, indicating that RXRa levels

are elevated at the earliest stages of dementia and

remain near maximally elevated throughout the course

of dementia. In ANCOVAs controlling for age and RNA

integrity number (RIN), CDR (F5,80 = 3.62, p = 0.005)

and NP density (F4,81 = 3.55, p = 0.010) showed

significant associations with RXRa mRNA expression.

Whereas, the association of Braak neuropathological

stages with RXRa gene expression was not significant

(F6,79 = 0.85, p = 0.536). Figure 3 presents the estimated

means and SEM from the ANCOVAs, adjusting for the

covariates.

qPCR analysis of LXRb expression in area 20

Gene expression analysis in controls and individuals

with dementia (CDR ≥ 0.5) or AD-associated neuro-

pathology showed higher levels of LXRb gene expression

(F1,84 = 3.14, p = 0.040) only in individuals with varying

dementia severity (Figure 2). The partial correlation ana-

lysis showed that after controlling for age and PMI,

LXRb mRNA expression was not significantly associated

with CDR (r = 0.045, df = 84, p = 0.684), Braak neuro-

pathological stages (r = 0.007, df = 84, p = 0.951) or NP

density criteria (r = 0.032, df = 84, p = 0.771). There

was a significant increase in LXRb gene expression with

the earliest signs of dementia (CDR 0.5), however, in

ANCOVAs the association of CDR (F5,80 = 1.30, p =

0.274) with LXRb gene expression was not significant.

Similarly, the association of Braak neuropathological

score (F6,79 = 0.30, p = 0.938) or NP density (F4,81 =

1.83, p = 0.132) with LXRb gene expression was not sig-

nificant. Figure 3 presents the estimated means and

SEM from the ANCOVAs, adjusting for the covariates.

qPCR analysis of RXRa expression in hippocampus

Comparisons of controls and cases presenting with vary-

ing degree of dementia or AD-associated neuropathol-

ogy showed higher levels of RXRa gene expression

associated with increases in CDR (F1,69 = 6.14, p =

0.008) but not with Braak neuropathological staging

(F1,69 = 0.15, p = 0.703) or NP density (F1,69 = 0.52, p =

0.474; Figure 4). RXRa mRNA expression demonstrated

significant linear associations with CDR (r = 0.251, df =

69, p = 0.035) but not with Braak neuropathological

stages (r = 0.127, df = 69, p = 0.290) or NP density (r =

0.021, df = 69, p = 0.861). In ANCOVAs controlling for

age and pH, when CDR (F5,65 = 1.83, p = 0.119), Braak

neuropathological stages (F6,64 = 0.59, p = 0.740) and

NP density (F3,67 = 0.53, p = 0.667) were treated as cate-

gories, the associations were not significant. Figure 5

presents the estimated means and SEM from the

ANCOVAs, adjusting for the covariates. Overall,

changes in RXRa gene expression aligned significantly

with clinical measure of the disease compared to the

neuropathological parameters.

qPCR analysis of LXRb expression in the hippocampus

Gene expression analysis in controls and cases with

dementia or AD-associated neuropathology did not

reveal significant difference in LXRb gene expression

Table 1 Group classifications for gene expression

analyses

Gene Expression Analysis

Number of
individuals

CDR Groups Dementia Severity Hippocampus Area
20

0 No dementia 18 18

0.5 Questionable dementia 13 13

1 Mild dementia 9 8

2 Moderate dementia 9 13

3 Severe dementia 12 18

4-5 Very severe/terminal
dementia

12 18

Braak Groups Braak stages

0 None 7 9

I Mild transentorhinal 8 9

II Severe transentorhinal 15 16

III Limbic 10 12

IV Limbic/Hippocampal CA1 8 8

V Isocortical 12 15

VI Isocortical/Primary sensory
areas

13 19

NP Density
Groups

Plaques (number/mm2)

0 0 24 26

1 1-5 10 13

2 6-10 20 23

3 11-20 14* 14

4 21 and more 5* 12
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(Figure 4). Similarly, the partial correlations of LXRb

mRNA expression did not show association with CDR (r

= 0.025, df = 70, p = 0.835), Braak neuropathological

stages (r = 0.029, df = 70, p = 0.809) or NP density (r =

0.116, df = 70, p = 0.334). In ANCOVAs controlling for

age, when CDR (F5,66 = 0.48 p = 0.794), Braak neuro-

pathological stages (F6,65 = 0.94, p = 0.472) and NP den-

sity (F3,68 = 1.27, p = 0.290) were analyzed as categories,

the lack of associations were similarly evident. Figure 5

presents the estimated means and SEM from the

ANCOVAs, adjusting for the covariates.

RXRa protein expression

Western blot analysis revealed robust RXRa protein

expression in tissue homogenates from the hippocampus

(Figure 6A). RXRa protein expression was highly

Figure 2 RXRa (Black bars) and LXRb mRNA (white bars) expression in individuals with and without dementia or AD-associated

neuropathology in area 20. Mean values ± SEM are shown. *, p < 0.05; ****, p < 0.0001. Number within the parentheses indicates the

individuals within each group.

Figure 3 Normalized RXRa (Black bars) and LXRb mRNA (white bars) expression in area 20 plotted against CDR scores, Braak

neuropathological stages and NP density. ANCOVA was used to compare gene expression in individuals with varying degree of dementia

(CDR 0.5-5) and AD associated neuropathology (Braak stage I-VI, NP density 2-5) relative to the control group. Mean values ± SEM are shown. *,

p < 0.05; **, p < 0.01. Number within the parentheses indicates the individuals within each disease severity group.
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correlated (r = 0.616, df = 29, p < 0.0005) with mRNA

levels of RXRa. These findings suggest coordinated tran-

scriptional and translational modulation of RXRa during

the course of AD. Partial correlation analysis of RXRa

protein expression showed strong associations with CDR

(r = 0.525, df = 29, p = 0.002) but not with Braak scores

(r = 0.266, df = 29, p = 0.147) or NP density (r = 0.077,

df = 29, p = 0.681). Even after controlling for Braak

score and NP density, RXRa protein expression was sig-

nificantly correlated with CDR (r = 0.500, df = 27, p =

0.006). As was the case for gene expression, in ANCO-

VAs for protein expression, there was significant

Figure 4 RXRa (Black bars) and LXRb mRNA (white bars) expression in individuals with and without dementia or AD-associated

neuropathology in hippocampus. Mean values ± SEM are shown. **, p < 0.01. Number within the parentheses indicates the individuals within

each group.

Figure 5 Normalized RXRa (Black bars) and LXRb mRNA (white bars) expression in hippocampus plotted against CDR scores, Braak

neuropathological stages and NP density groups. ANCOVA was used to compare gene expression in individuals with varying degree of

dementia (CDR 0.5-5) and AD-associated neuropathology (Braak stage I-VI, NP density 2-5) relative to the control group. Mean values ± SEM are

shown. *, p < 0.05; **, p < 0.01. Number within the parentheses indicates the individuals within control groups and each of the disease severity

group.
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association with CDR (F3,27 = 3.65, p = 0.025; Figure

6B), but not with Braak scores (F3,27 = 0.874, p = 0.467)

or NP density (F1,29 = 0.172, p = 0.681). Significantly

more RXRa protein expression was observed in cases

with dementia (CDR ≥ 0.5) relative to controls (CDR =

0) (F1,29 = 8.27, p = 0.007).

Association with ABCA1, ApoE, and LRP gene expression

The association of ABCA1, ApoE and LRP, the major

determinants of net cholesterol flux, with RXRa mRNA

expression was determined using partial correlation ana-

lysis. RXRa mRNA expression indicated strong associa-

tion with mRNA levels of ABCA1 (r = 0.531, df = 83, p

< 0.0001; Figure 7A), ApoE (r = 0.622, df = 84, p <

0.0001; Figure 7B) and LRP in area 20 (r = 0.888, df =

84, p < 0.0001; Figure 8A). RXRa gene expression in the

hippocampus also showed strong associations with

ABCA1 (r = 0.436, df = 69 p < 0.0005), ApoE (r =

0.446, df = 69 p < 0.0001) and LRP gene expression (r =

0.697, df = 69 p < 0.0001; Figure 8B).

Discussion
This study explored the expression profile of the master

regulators of lipid metabolism in two of the most vul-

nerable regions of the AD brain. The primary finding

was that RXRa levels increased at the very earliest stage

of dementia and remained elevated, in general, through-

out the course of the disease. In addition, these eleva-

tions in gene and protein expression were more strongly

associated with the development of AD-associated

Figure 6 Western blot analysis of RXRa in the hippocampus of cognitively intact controls and subjects with varying severity of

dementia. A, Representative immunoblots of RXRa protein expression are shown. Total tissue homogenates were separated by reducing SDS-

PAGE and probed with rabbit anti-RXRa and mouse anti-VCP antibodies. Tissue lysate from each subjects were loaded in triplicate and pooled

tissue lysate (first 4 lanes) were run in quadruplicates. B, Protein quantification was done by assessing the ratio of RXRa and VCP signal. Mean

values ± SEM are shown. *, p < 0.05; **, p < 0.01. Number within the parentheses indicates the individuals within each group.
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dementia than with the measures of mature neuropatho-

logic lesions of AD. In order to identify earliest tran-

scriptional changes during the course of AD

progression, study individuals were grouped based on

dementia severity (CDR score) at the time of death, pro-

gression of NFT pathology and the severity of NP

pathology. This strategy allowed us to correlate expres-

sion of nuclear receptors to cognitive and pathological

indices of AD, with an emphasis on individuals present-

ing earliest signs of AD. These approaches revealed a

previously unrecognized transcriptional dysregulation of

RXRa in AD. Specifically, alteration in gene expression

in both regions was strongly correlated with cognitive

impairment. Additionally, we observed highly coordi-

nated upregulation of RXRa protein in AD hippocam-

pus. Along with the identification of altered RXRa

expression, this study highlights closely correlated

expression of RXRa with the downstream target genes

that have been previously implicated in AD pathogenesis

including ApoE and ABCA1. One parsimonious inter-

pretation of these findings is that changes in the expres-

sion of RXR become evident before the advent of the

neuropathological hallmarks of AD and raise the possi-

bility that the upregulation of RXR may be responsible

for the changes in subsequent progressive cholesterol

dyshomeostasis and AD neuropathology. However,

because of the postmortem nature of the current study,

the results of this study do not address directly whether

the elevated levels of LXR/RXR in dementia are causal,

secondary or bystander. It is also important to note that

although we interpret transcriptional changes as a func-

tion of the severity of dementia or neuropathology to

represent disease progression, the cross-sectional nature

of this postmortem study, like all postmortem studies,

permits only the inference of progression rather than its

direct measurement. In addition, the reported results

are based on assays of brain tissue homogenates, and

therefore cannot inform on the cellular localization of

the dysregulated gene expression or the laminar identity

of the affected cells.

Although the pathogenesis of AD is not fully under-

stood much direct and circumstantial evidence suggests

that many of the genes and pathways involved in choles-

terol and/or lipoprotein metabolism in brain are also

intimately involved in the pathogenesis of AD. Most

notable are ApoE, the principal cholesterol carrier pro-

tein in the CNS, and ABCA1, a protein that modulates

the efflux of cellular cholesterol and phospholipids to

lipid-deficient apolipoprotein acceptors such as ApoE

[42-44]. Interestingly, we have observed significant

Figure 7 Association between RXRa and target gene expression in area 20. A. RXRa gene expression is strongly associated with ABCA1

gene expression (r = 0.531, df = 83, p < 0.0001). B. RXRa gene expression is strongly associated with ApoE gene expression (r = 0.622, df = 84, p

< 0.0001).
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increase in ABCA1 expression in the same cohort and

tissues specimens as those described here [33,34,41].

Although, in the hippocampus, significant increase in

RXRa mRNA level was observed in individuals with

moderate to severe dementia, significant increase in

RXRa protein expression was evident in individuals at

an earlier stage of cognitive decline. Consequently, even

small changes in RXRa mRNA expression potentially

result in relatively large changes in RXRa protein.

Because RXRa expression is strongly correlated with

transcriptional changes in both ABCA1 and ApoE, it is

conceivable that the variance in RXRa, which is not

enough for strong association with CDR to be detected,

could nevertheless induce expression of the target genes

to the extent that significant correlations with earliest

cognitive and neuropathological markers are obvious.

These results are particularly intriguing in light of the

fact that both ABCA1 and ApoE are under transcrip-

tional regulation of the RXR/LXR signaling pathway.

Together, these findings suggest that RXR/LXR-

mediated alterations in ApoE and ABCA1 levels can

modulate cholesterol metabolism and consequently the

risk for AD.

In AD, cholesterol dyshomeostasis has been associated

with the processing of amyloid precursor protein (APP)

to generate neurotoxic Ab [45]. Given the critical role

played by LXR/RXR in the regulation of cellular choles-

terol homeostasis, and their expression in multiple brain

types (albeit with significant cell type and brain region

expression differences), numerous studies have focused

on the ability of LXR/RXRs to regulate amyloidogenic

processing of APP. However, contradictory results have

been reported on Ab metabolism following treatment of

cultured cells with LXR agonists [24,46,47]. The reason

for the discrepancies may be related to differences

between the expression of APP under physiologic condi-

tions vs. its expression in mutant cells, and the extent to

which membrane cholesterol transport was modified

under the different in vitro conditions. In vivo studies

using a synthetic LXR agonist, TO-901317, were more

definitive in suggesting decreased Ab deposition in the

brains of APP transgenic mice [48,49]. Interestingly,

TO-901317 has been shown to inhibit g-secretase inde-

pendent of LXR/RXR activation [50]. In addition, TO-

901317 is also a farnesoid X receptor and pregnane X

receptor agonist [51,52]. This raises concerns about the

specificity of TO-901317 and the interpretation of stu-

dies using TO-901317 mediated LXR/RXR activation.

Finally, LXR/RXR-mediated cholesterol homeostasis is

differentially regulated in mice and humans. These

Figure 8 Association between RXRa and LRP gene expression. A. RXRa gene expression is strongly associated with LRP gene expression in

area 20 (r = 0.89, df = 84, p < 0.0001). B. RXRa gene expression is strongly associated with LRP gene expression in hippocampus (r = 0.70 df =

69, p < 0.0001).
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differences are accentuated in studies attributing benefi-

cial outcomes to LXR/RXR-mediated transcriptional

regulation. In mice but not in primates, hepatic choles-

terol 7a-hydroxylase is upregulated by LXR [4,53,54].

Mice do not express CETP. Direct induction of CETP in

human cell lines and two CETP-containing animal mod-

els, Syrian hamsters and long-tailed macaque monkeys,

is accompanied by a significant increase in LDL choles-

terol levels that was not previously observed in mice

[23,55,56]. These findings emphasize the need to exer-

cise caution when extrapolating results from animal stu-

dies to humans, especially when significant species-

specific differences have been identified in the underly-

ing biological processes. It is noteworthy that in the cur-

rent systematic analysis, LXR/RXR expression levels

were not associated with elevations in NP counts. It

may be plausible that change in RXRa expression may

influence soluble toxic forms or fractions of Ab, yet it

does not correlate with NP density because RXRa has a

monotonic pattern of expression, whereas NPs continue

to increase in density.

LXRs are activated by endogenous oxysterols, the

most potent of which include 24, 25-epoxycholesterol,

24-OH, and 27-hydroxycholesterol. The role of 24-OH

(also known as cerbrosterol) is particularly intriguing

because it is primarily produced in the brain by neuron

specific CYP46 [57] and its level is increased in plasma

and CSF during early stages of AD [58,59]. 24-OH has

been shown to activate LXRs and dramatically elevate

ABCA1 expression in both neurons and astrocytes

[8,25,60]. Therefore increased expression of ABCA1 and

ApoE in incipient AD might be a reflection of 24-OH

mediated increased LXR/RXR activation. Paradoxically,

24-OH level is reduced in late stages of AD [61], sug-

gesting that sustained increases in the expression of

LXR/RXR target genes in relatively late stages is modu-

lated by other factors.

LXRb heterodimer with RXRa is the only nuclear

receptor complex known to date that can be activated

in the absence of a ligand, via a mechanism termed

“dimerization-induced activation” [62-64]. In this model

of LXR transactivation, the interaction of RXR with LXR

can allosterically activate LXR by inducing a conforma-

tional change in its ligand-binding domain. The relative

expression levels of both receptors are therefore likely

to regulate signaling via LXRb and RXRa in a highly

complex fashion. Indeed, in transient transfection stu-

dies LXR/RXR activation is only observed upon RXRa

cotransfection [3,65,66], which results in a higher num-

ber of LXRb/RXRa heterodimers for which coregulators

would have to compete. Because the activated LXRb/

RXRa heterodimer also exhibits dual ligand permissive-

ness and synergism [62,67], its net transcriptional poten-

tial depends on the occurrence of dimerization-induced

activation and ligand availability. Consistent with this

idea, the overexpression of RXRa reported here could

allosterically activate LXRb and consequently increase

target gene expression, in addition to that induced by

24-OH. Recently, LRP has been shown to participate in

ABCA1 expression by relieving LXR/RXR repression

(via cPLA2 activation) [68]. Strong association of LRP

gene expression with that of LXR and RXR suggests

that LRP modulates not only LXR/RXR activation but

also their transcription. Alternatively, LRP may be an

LXR/RXR target gene.

Conclusions
Based on previous studies where a drastic reduction in

cholesterol level decreased Ab production [69-71] and

owing to their ability to induce expression of genes

mediating cholesterol efflux, LXR/RXR heterodimers

have emerged as potential targets for AD therapeutics

[72]. However, there are obvious contradicting reports

of increased Ab generation upon lowering brain choles-

terol level [73,74]. More importantly, the hippocampus

of AD cases presents a moderate, yet significant, reduc-

tion in membrane cholesterol [75]. These latter findings

are consistent with increased expression of RXRa

reported here. Taken together, increased expression of

RXRa and concomitant activation of LXR/RXR can

modulate ABCA1 and ApoE gene expression. Increased

levels of ABCA1 and ApoE may be the molecular deter-

minants of cholesterol dyshomeostasis and accompany-

ing dementia observed in AD.

Materials and methods
Study Cohort

The cohort included in this study was part of a larger

clinical and neuropsychological investigation of early

AD. These individuals were extensively evaluated for

their cognitive function. Their cognitive status during

the 6 months proximal to death was used to define the

absence, presence and extent of dementia at the time of

death, as previously described [76-78]. Cases were

selected from a pool of over 600 donors with either no

discernable neuropathology or only those neuropatholo-

gical lesions associated with AD alone (e.g., exclusion of

cases with vascular lesions, Lewy body inclusions, nor-

mal pressure hydrocephalus). Because postmortem inter-

vals (PMI) [79,80] and tissue pH (a proxy measure for

agonal state) [81,82] are important issues for consistency

and reproducibility of quantitative gene and protein

expression studies, brain samples were included from

cases who met the following criteria only: postmortem

delay of less than 24 hours, brain tissue pH of 6.3 or

greater no perimortem coma longer than 6 hrs, no evi-

dence of seizures in the 3 months preceding death. Con-

trols were derived from persons who, on extensive
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medical record review and/or neuropsychological exami-

nation and caregiver interview, showed no evidence of

neurological or neuropsychiatric diseases, died of natural

causes (myocardial infarction, various non-brain non-

hepatic cancers, and congestive heart failure) and had

no discernable neuropathology [83]. None of the sub-

jects had a history of licit or illicit drug abuse (tobacco

use excepted). All diagnostic and cognitive assessment

procedures were approved by the Mount Sinai Medical

Center (New York, NY)/J. J. Peters Veterans Administra-

tion Medical Center (Bronx, NY) Institutional Review

Boards, and postmortem consent for autopsy and

research use of tissue was obtained from the next of kin

or a legally authorized official.

Classification of Subjects into Dementia Severity Groups

In order to perform post-assay analyses based on a

clinical index of disease and dementia everity, the sub-

jects were classified with respect to the CDR score at

the time of death [84-87] (Table 1). CDR is a scale

that objectively stages dementia severity from 0-5 with

0 representing no dementia, 0.5 representing question-

able dementia or mild cognitive impairment and 1-5

representing gradations of dementia severity from mild

to terminal. The assessments, on which these classifi-

cations were based, were performed blind to clinical or

neuropathological disease diagnosis. Table 2 describes

the sample size, sex, age at the time of death, pH and

PMI of the study cohort when grouped on the basis of

CDR.

Neuropathological Assessment

The neuropathological assessment procedures used have

been previously described in detail [76,78]. Neuropatho-

logical assessments were performed on the right hemi-

sphere and consisted of microscopic assessment of

paraffin embedded blocks from multiple brain regions

using hematoxylin and eosin, modified Bielschowski,

modified thioflavin S, and anti-amyloid, anti-tau tau

when necessary. All neuropathology data regarding the

extent and distribution of neuropathologic lesions were

collected blind to the subject’s dementia status. Speci-

mens for this study were dissected from the frozen,

never-thawed, left hemisphere, using previously

described procedures [88].

For pathologic staging of AD neurofibrillary tangle

density was assessed using the Consortium to Establish

a Registry for Alzheimer’s Disease (CERAD) [89,90]

criteria, NFTs were evaluated using the criteria by

Braak and Braak [91] (Table 1). Neuritic plaques (NPs)

were identified as the dystrophic neurites arranged

radially and forming a discrete spherical lesion about

30 mm in diameter with amyloid cores. NP groups in

Table 1 reflect a composite score of NPs counts in 5

cortical regions. The composite measure of cortical NP

density was used to reflect better the general level of

disease severity and to match more closely to the glo-

bal assessment of cognitive function measured by the

CDR.

RNA Isolation

Total RNA was isolated from 50 mg of microdissected

pulverized frozen brain samples from inferior temporal

gyrus and the hippocampus with the guanidinium iso-

thiocyanate method [92] using ToTALLY RNA kits

(Ambion, Austin, TX) according to the manufacturer’s

protocol as described previously [93]. The quality of the

isolated total RNA for each case was assessed using a

combination of 260 nm/280 nm ratio obtained spectro-

photometrically (Beckman Instruments, Fullerton, CA)

and by Bioanalyzer 2100 (Agilent Technologies, Palo

Alto, CA) before proceeding with cDNA synthesis. Only

specimens with an RIN ≥ 5.5 were included in the

analyses.

Table 2 Demographic details of study cohort stratified with respect to CDR (Clinical Dementia Rating) groups

Characteristics Area CDR 0 CDR 0.5 CDR 1 CDR 2 CDR 3 CDR4-5

Total subjects* Hipp 18 13 9 9 12 12

Area 20 18 13 8 13 18 18

Gender (men/women) Hipp 7/11 6/7 3/6 0/9 3/9 3/9

Area 20 6/12 7/6 3/5 1/12 7/11 8/10

Age (years) Hipp 75.2 ± 3.5 85.4 ± 2.7 83.4 ± 3.4 87.9 ± 2.0 88.8 ± 1.7 85.0 ± 1.9

Area 20 77.0 ± 3.9 85.5 ± 2.8 85.6 ± 3.8 87.6 ± 2.0 86.2 ± 8.5 84.2 ± 2.5

Brain pH Hipp 6.43 ± 0.04 6.43 ± 0.07 6.31 ± 0.1 6.38 ± 0.09 6.34 ± 0.05 6.39 ± 0.07

Area 20 6.42 ± 0.05 6.42 ± 0.07 6.35 ± 0.11 6.39 ± 0.08 6.43 ± 0.05 6.36 ± 0.05

RNA integrity number (RIN) Hipp 6.6 ± 0.1 6.2 ± 0.1 6.2 ± 0.2 6.2 ± 0.2 6.1 ± 0.1 6.2 ± 0.1

Area 20 6.9 ± 0.1 6.9 ± 0.1 6.7 ± 0.2 6.3 ± 0.2 6.9 ± 0.2 6.3 ± 0.1

Postmortem interval (minutes) Hipp 713 ± 137 393 ± 85 264 ± 39 336 ± 66 276 ± 40 332 ± 80

Area 20 574 ± 109 381 ± 91 325 ± 52 358 ± 64 244 ± 29 310 ± 73
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Reverse Transcriptase Reaction

cDNA synthesis was performed with iScript cDNA

Synthesis kit (BioRad Laboratories, Hercules, CA) which

uses both random and poly-dT priming for the reverse

transcription (RT) reaction. Total RNA (1 μg) was

employed for each 20 μl reaction. The resulting cDNA

was diluted 25 times for qPCR.

qPCR

LXRb and RXRa mRNA expression was measured by

quantitative polymerase chain reaction (qPCR) using an

ABI Prism 7700 Sequence Detector (Applied Biosystems,

Foster City, CA) and gene-specific fluorogenic TaqMan®

probes (Applied Biosystems). Each 20 μl PCR reaction

contained 5 μl of the relevant cDNA, 20X TaqMan®

assay (used at a final concentration of 0.5X), and 10 μl

of TaqMan® Universal PCR Reaction Mix which con-

tains ROX as a passive internal reference (Applied Bio-

systems). The thermal cycling program consisted of 2

min at 50°C, 10 min at 95°C, followed by 40 cycles of 15

s at 95°C and 1 min at 60°C. The reactions were quanti-

fied by selecting the amplification cycle when the PCR

product of interest was first detected (threshold cycle,

Ct). Tests of primers and probes sensitivity and assay

linearity were conducted for all real-time PCR assays by

amplification of mRNA in 10-fold serial dilutions of

pooled as previously described [94]. Each reaction was

performed in triplicate and the average Ct value was

used in all analyses.

The relative gene expression level was calculated using

the Relative Standard Curve Method (see Guide to Per-

forming Relative Quantitation of Gene Expression Using

Real-time Quantitative PCR, Applied Biosystems). Stan-

dard curves were generated for target assay and for each

endogenous control assay by the association between

the Ct values and different quantities (5 serial dilution

steps) of a “calibrator” cDNA. The “calibrator” was pre-

pared by mixing small quantities of all experimental

samples. Expression values of the target and the control

genes were extrapolated from their respective standard

curves. Relative expression of target genes was com-

puted as the ratio of the target mRNA levels to the geo-

metric mean of the four endogenous controls: b-

glucuronidase (GUSB), cyclophilin A (PP1A), b2-micro-

globulin (b2M), and ribosomal protein, large, P0

(RPLP0) which were picked for their stability using geN-

orm [95,96]. Samples with Ct values > 33 were consid-

ered outside the range of sensitivity of the assay and

were not included in the analyses.

Protein Quantitation

Protein expression studies were carried out to determine

whether different levels of RXRa gene expression were

reflected in the expression level of RXRa protein.

Because of the inherently lower reproducibility and

higher variability characteristic of Westerns in postmor-

tem tissue relative to qPCR, we restricted RXRa protein

analyses to cases with most robust changes in gene

expression. Therefore, a subset of the hippocampal sam-

ples (N = 30) studied for mRNA expression was ana-

lyzed by Western blotting to reflect broad variations in

gene expression. As fewer protein analyses were per-

formed than gene analyses, adjacent categories for all

three indices of disease severity (see below) for gene

expression analyses were combined to achieve suffi-

ciently large sample sizes for comparisons (Table 3).

Tissue Lysate Preparation

Total tissue lysates were prepared from frozen hippo-

campal specimens from sister aliquots of the same brain

samples as those used for qPCR analysis as described

previously [41]. Total protein concentration of the lysate

was determined using a CBQCA Quantitation Kit

(Molecular Probes, Eugene, OR) with fluorescence mea-

sured on a SpectraMAX Gemini XS spectrofluorometer

(Molecular Devices, Sunnyvale, CA).

Western Blot Analysis

For gel electrophoresis, 10 μg of total protein was mixed

with loading buffer and loaded onto pre-cast 10-20%

Tris-glycine gels (Bio-Rad Laboratories, Hercules, CA),

and run at 150 V for 1 hr. Each gel was loaded with

three experimental samples in triplicate and “standard

tissue homogenate” (the mix of small aliquots of tissue

from all samples), run in quadruplicates. Separated pro-

teins were transferred to polyvinylidene difluoride

Table 3 Group classifications for protein expression

analysis

Protein Expression Analysis in the hippocampus

CDR Groups Dementia Severity Number of
individuals

0 No dementia 8

0.5 Questionable dementia 6

1-2 Mild/moderate dementia 6

3-5 Severe dementia/terminal
dementia

10

Braak Groups Braak stages

0-I None/Mild transentorhinal 8

II Severe transentorhinal 8

III-1V Limbic/Hippocampal CA1 7

V-VI Isocortical/Primary sensory
areas

7

NP Density
Groups

Plaques (number/mm2)

1 0 12

2-5 1 and more 18
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membranes at 100 V for 1 hour and probed with anti-

RXRa antibody (Abcam, Cambridge, MA) diluted

1:5,000 in 3% non-fat dry milk in TBS overnight at 4°C

with gentle shaking. To ensure equal protein loading

between individual samples, membranes were also incu-

bated with an anti-valosin containing protein (VCP)

antibody. VCP, a 97 kDa protein, has been previously

validated as reliable internal standard [97]. Following 1

hour incubation with the fluorescently-labeled secondary

antibodies, blots were scanned and quantified using the

Odyssey IR imaging system (LI-COR Biosciences, Lin-

coln, NE). RXRa signal was first normalized to the cor-

responding average signal for the standard tissue

homogenate and then for the VCP band from the same

sample. The linearity of the dose responses for the anti-

bodies used was established in preliminary experiments.

Statistical Analyses

We performed a logarithmic transformation of LXRb

and RXRa gene expression to eliminate heterogeneity,

and used the transformed gene expression values for all

subsequent statistical analyses. A preliminary analysis

assessed linear associations with gender, pH, PMI and

RIN to evaluate their use as covariates. In addition, age,

the most significant risk factor for dementia and a criti-

cal determinant of the extent of AD associated neuro-

pathology, was used as a covariate in all analyses

regardless of its association with the dependent variable.

We determined the linear association LXRb and RXRa

gene expression with CDR, Braak stages and NP density

by partial correlation analyses, controlling for potential

covariates if preliminary analyses showed significant cor-

relation with the expression level of the gene under ana-

lysis. Because the associations of each of these

interrelated scales with gene expression is at least partly

mediated through the associations with the other two

scales, additional partial correlation analyses assessed

each scale controlling also for the other two scales.

In order to determine non-linear association of CDR

Braak stages, and NP density with LXRb and RXRa gene

expression, each of these disease severity indices was

classified as a categorical variable. ANCOVA was per-

formed for each categorical variable controlling for age

and any other potential covariates. Another ANCOVA

for each categorical variable controlled also for other

two variables as scales, similar to the partial correlation

analyses.

Analyses for protein expression were the same as for

gene expression. All analyses were performed with SPSS

17.0 (SPSS, Chicago, IL).
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