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Sympatric sister species are predicted to have greater divergence in reproductive traits than allopatric sister species, especially

if mating system shifts, such as the evolution of self-fertilization, are more likely to originate within the geographic range of

the outcrossing ancestor. We present evidence that supports this expectation—sympatric sister species in the monkeyflower

genus, Mimulus, exhibit greater divergence in flower size than allopatric sister species. Additionally, we find that sympatric sister

species are more likely to have one species with anthers that overtop their stigmas than allopatric sister species, suggesting that

the evolution of automatic self-pollination may contribute to this pattern. Potential mechanisms underlying this pattern include

reinforcement and a stepping stone model of parapatric speciation.

KEY WORDS: Mimulus, reinforcement, self-fertilization, reproductive character, displacement, sister species, geographic range.

The morphological differences between closely related species

and their geographic distributions provide a window into the

process of speciation and divergence. Recently diverged sister

species with no overlap in their geographic ranges suggests al-

lopatric speciation without secondary contact, a process that does

not require divergence in traits conferring reproductive isolation

(Mayr 1942). In contrast, sympatric sister species are predicted

to be divergent in reproductive traits that reduce gene flow be-

tween incipient species (Dobzhansky 1940). Without sufficient

divergence, sympatric species may fuse, go extinct, or suffer from

reduced fitness. Although this prediction is straightforward, test-

ing it requires lineages with robust molecular phylogenies where

we can estimate reproductive character divergence and the degree

of range overlap (e.g., see Coyne and Orr 1989; Lukhtanov et al.

2005; Kay and Schemske 2008; van der Niet et al. 2006; Le Gac

and Giraud 2008; Martin et al. 2010).

The flowering plant genus Mimulus, provides a unique op-

portunity to examine the hypothesis that reproductive traits are

more divergent in sympatric sister species than allopatric sister

species. Mimulus has a worldwide distribution with ∼120 de-

scribed species, the majority of which occur in western North

America (Beardsley et al. 2004). There are large differences

among species in flower size (2–50 mm in length), flower color,

and flower shape (Grant 1924). Principal pollinators vary widely

among species, and include a diversity of bees, hummingbirds, and

hawkmoths (Beardsley et al. 2004; Streisfeld and Kohn 2007). Ad-

ditionally, previous studies have identified floral traits involved in

reproductive isolation for several lineages in this genus (Kiang and

Hamrick 1978; Schemske and Bradshaw 1999; Martin and Willis

2007). Although all Mimulus species are self-compatible, the

rates of self-fertilization vary both within and among species and

increased self-fertilization is negatively correlated with stigma–

anther separation (Ritland and Ritland 1989; Dole 1992). Several

shifts in ploidy level occur throughout the genus, although it seems

unlikely that the evolution of ploidy level drives speciation in this

genus, as only two sister species differ in ploidy level (Beardsley

et al. 2004).

By supplementing previous phylogenetic efforts (Beardsley

et al. 2004; Whittall et al. 2006), we obtained a phylogeny for

the monkeyflower genus Mimulus that contains 114 of the ∼120

described species (95%) and numerous sister species pairs that

is ideal for conducting a large-scale study of floral divergence
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in relation to range overlap among sister species. Although we

cannot examine all reproductive characters in members of a large

genus such as Mimulus, herbarium collections have preserved

floral size traits that are associated with mating system shifts

and prezygotic reproductive isolation (Wendt et al 2002; Fishman

and Stratton 2004; Martin and Willis 2007; Smith and Rausher

2007). Specifically, a reduction in flower size is often associated

with the shift to self-pollination and thus large differences in

flower size may reflect divergent mating systems (Wyatt 1984;

Ritland and Ritland 1989; Goodwillie 1999; Armbruster et al.

2002; Goodwillie et al. 2010). Rather than calculating clade-wide

rates of accumulation of prezygotic and postzygotic isolation in

allopatry versus sympatry (Coyne and Orr 1989; Moyle et al.

2004), we restrict our study to sister species comparisons of traits

involved in prezygotic isolation (for a similar approach see van der

Niet et al. 2006) and therefore avoid having to estimate ancestral

ranges of internal nodes. Additionally, this approach allows us

to directly address our primary hypothesis—that sympatric sister

species display elevated reproductive character divergence.

We begin by asking whether there is a relationship between

range overlap and flower size divergence among sister species

pairs. To control for the possibility that sympatry is associated

with broad morphological divergence rather than being specifi-

cally associated with divergence in reproductive characters, we

also compare vegetative traits in sympatric and allopatric sis-

ter species. Relative age differences of allopatric and sympatric

species pairs, which could potentially confound our results, are

accounted for using a time-calibrated phylogeny. Finally, we ask

whether sympatric and allopatric species pairs differ in their abil-

ity to automatically self-pollinate, which could provide a direct

reproductive isolating mechanism (Wendt et al 2002; Fishman and

Stratton 2004; Martin and Willis 2007; Smith and Rausher 2007).

Materials and Methods
PHYLOGENY RECONSTRUCTION

Bayesian phylogenetic analysis using the nuclear ribosomal ITS

and ETS regions and chloroplast trnL-F region of Beardsley

et al. (2004) were concatenated with chloroplast rpl16 data for

the M. moschatus alliance (Whittall et al. 2006). A locus parti-

tioned analysis using the GTR model for ten million generations

with four independent chains, and temperature set to 0.5 was run

in Mr.Bayes version 3.1.2 (Huelsenbeck and Ronquist 2001). Re-

sults from six independent runs were combined after removing the

first two million generations as burn-in. Section Erythranthe was

characterized by an exceedingly low level of DNA sequence varia-

tion. Therefore, the search was constrained to the well-supported

AFLP topology (Beardsley et al. 2003). The Bayesian consen-

sus tree was converted to an ultrametric tree using the penalized

likelihood algorithm in r8s (Sanderson 1997).

Sister species for the ensuing analysis of floral and vegetative

divergence were identified from this tree except when duplicate

samples per species were not reciprocally monophyletic and when

geographic ranges were uncertain. Limiting our study to recipro-

cally monophyletic sister species allows us to be certain that we

are comparing reproductively isolated taxa that are already good

species.

TRAIT MEASUREMENTS

Morphological measurements of herbarium specimens capture

variation across a species’ geographic range and are positively

correlated with dimensions of fresh flowers (supporting informa-

tion). Seven floral traits that capture flower size (Fig. S1) and

four vegetative traits thought to be involved in habitat affinity (A.

Angert pers. comm.; Table S1) were measured from an average of

20 herbarium specimens per species (±SE = 0.79, range: 3–40)

for 64 species. Raw data are included in supporting information.

This represents all possible sister species pairs that appear in

one or more trees in the Bayesian posterior distribution of trees.

All floral and vegetative measurements were log-transformed to

approximate normality before calculating mean values for each

species. Species trait means were analyzed individually and were

also combined into linear combinations of either floral or vegeta-

tive characters using principle component analysis (PCA) using

JMP version 7 (SAS Institute, NC, 2007). For species’ trait means,

87% and 52% of the total variation was explained by floral PC1

and vegetative PC1, respectively. Floral PC1 had nearly equal

loadings in the same direction for all seven traits (eigenvectors

range from 0.341 to 0.395) suggesting this axis captures overall

floral size. Vegetative PC1 captures both size and shape, as it has

high positive loadings for total leaf area, plant height, and leaves

per unit branch length, and a negative loading for the ratio of leaf

length by width (i.e., leaf shape).

RANGE OVERLAP CALCULATION

Species range areas were estimated from over 20,000 herbarium

records and supplemented with monographic treatments (Grant

1924; Thompson 1993, 2005). Range areas were calculated from

the area inside the polygon(s) that contained all records for a

species using ArcGIS 9.2. For tests requiring a discrete classifi-

cation of range overlap, each species pair was classified as either

sympatric or allopatric based on the presence or absence of over-

lapping polygons.

The spatial scale that we have used to define sympatric sister

species is much broader than the commonly cited criterion of two

populations or species that are within the average dispersal dis-

tance or “within cruising range” (Coyne and Or 2004; Fitzpatrick

et al. 2008). To determine the ability of our range overlap cal-

culation to capture truly sympatric populations, we measured the

minimum distance between any two populations of sister species
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with overlapping polygons. The average minimum distance be-

tween known populations of sympatric sister species is 1.84 km

(±SE = 1.00 km, range = 0–8 km), which is within the foraging

distance of many of the larger bee pollinators (Greenleaf et al.

2007) and within the range of seed dispersal over evolutionary

timescales.

FLORAL DIVERGENCE AND RANGE OVERLAP

Treating range overlap as a discrete trait, we used two-tailed t-tests

to assess whether sympatric and allopatric sister species differ

in their level of trait divergence. To account for phylogenetic

uncertainty, we tested our hypothesis of increased flower size

divergence among sympatric sister species on each of the 606

trees in the Bayesian posterior distribution. For each tree, we

extracted the sister species pairs and their corresponding range

overlap and flower size divergence values (34 unique species pairs

across all trees—Table S2). A two-tailed t-test was used to assess

whether sympatric and allopatric sister pairs differed in their level

of trait divergence for each individual tree. If the percentage of

trees in which sympatric sister species had significantly greater

flower size divergence than allopatric sister species was greater

than 95% (P < 0.05), then the result is robust to phylogenetic

uncertainty.

To avoid the potentially confounding effect of polyploidy, we

excluded sister species that differ in chromosome number from

our analysis; however, inclusion of these taxa does not change our

qualitative results (data not shown).

RELATIVE AGES OF SISTER SPECIES

Relative age differences of allopatric and sympatric species pairs

could potentially confound our results. To examine this possibility,

relative ages of sister species were determined using the branch

lengths connecting each species pair in the ultrametric phylogeny.

Treating range overlap as a discrete trait, we used a two-tailed

t-test to assess whether sympatric and allopatric sister species

differed in their average relative age. To test for an effect of

age on the relationship between range overlap and flower size

divergence, we used an analysis of covariance treating age as the

covariate.

ABILITY TO SELF-POLLINATE

As a proxy for the ability to automatically self-pollinate, species

were classified as to whether they have anthers that overtop the

receptive stigma. The majority of the classifications (26 species)

were made from living plants in the field (three individuals at

three sites in 2008). Classifications for 10 additional species were

made using herbarium specimens and monographic treatments

(Thompson 1993, 2005). A Fisher’s exact test was used to de-

termine whether sympatric sister species are more likely to have

one member species with anthers that overtop the stigma than

allopatric sister species.

Table 1. Trait divergence among sympatric (S) versus al-

lopatric (A) sister species. Two-sample, two-tailed t-tests for eight

sympatric and 10 allopatric species pairs. All traits were log-

transformed to meet assumptions of normality. Comparisons of

the mean divergence are indicated with greater-than and less-

than symbols. Asterisks indicate significance at P < 0.05 after Bon-

ferroni correction for multiple tests conducted on each of seven

floral traits.

Mean T P
divergence value value

Floral traits
Corolla tube length S>A 3.003 0.008
Corolla tube aperture S>A 3.179 0.006∗

Corolla tube width at midpoint S>A 2.531 0.022
Upper corolla lobe length S>A 2.905 0.010
Upper corolla lobe width S>A 3.180 0.006∗

Lower corolla lobe length S>A 2.315 0.034
Lower corolla lobe width S>A 2.639 0.018

Vegetative traits
Main stem length S>A 0.132 0.896
Total leaf area A>S 0.278 0.784
Leaves per unit branch length A>S 1.690 0.110
leaf length by width ratio S>A 0.974 0.345

Results
Sympatric sister species show significantly higher divergence for

all seven individual floral size traits, when compared to allopatric

sister species pairs (Table 1; Fig 1). In a PCA, the first axis,

which captures overall flower size, was five times more divergent

between sympatric sister species than between allopatric sister

species (Fig. 2A; two-sample t-test, two-tailed, t = 2.992, df = 16,

P = 0.009). After accounting for phylogenetic uncertainty, we find

that 94.55% of trees in the posterior distribution have sympatric

sister species with significantly greater flower size divergence

than allopatric sister species pairs. In the remaining 5.45% of

trees, the average divergences trend in the same direction.

In contrast, we find no evidence for increased divergence

in nonreproductive traits in sympatric relative to allopatric sister

species using individual traits (Table 1) and taken collectively in

a PCA (Fig. 2B; two-sample t-test, two-tailed, t = 0.212, df = 16,

P = 0.835). Moreover, after accounting for phylogenetic uncer-

tainty, none of the trees in the posterior distribution have sympatric

sister species with significantly greater vegetative divergence than

allopatric sister species.

If sympatric sister species are older than allopatric sister

species and flower size divergence accumulates proportional to

time, then age differences alone could explain the pattern of in-

creased flower size divergence among sympatric sister species.

Our data do not support this hypothesis. The relative ages of sym-

patric sister species are not significantly different from allopatric
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Figure 1. An ultrametric Bayesian phylogeny for Mimulus and sister species examined. The phylogeny was used to identify sister species

for examining the relationship between flower size divergence and range overlap. Sister species used in the study are indicated in bold

and posterior probabilities for these nodes are indicated below the branches only when <0.95. For each sister species pair, we provide

a scaled floral image and the proportion of range overlap calculated as the ratio of the area of overlap to the area of the smaller of the

two species ranges. The two M. lewisii races were used in the analysis in lieu of lewisii–cardinalis because the M. lewisii races exhibit

reciprocal monophyly (Bearsley et al. 2003) and a decrease in the ability to form hybrids (Vickery and Wullstein 1987). Mimulus cupreus

and M. depressus are allopatric, however, they may occupy the southern and northern extremes of an interbreeding species complex

that includes M. luteus (Cooley and Willis 2009). Our overall results are qualitatively the same whether this pair is included in our study.
1Sister species not included due to uncertain geographic ranges. 2Sister species not included because multiple samples per species were

not reciprocally monophyletic.
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Figure 2. Increased flower size divergence in sympatric Mimu-

lus sister species compared to vegetative divergence. Sympatric

species pairs (N = 8) and allopatric species pairs (N = 10) were

compared for flower size and vegetative divergence. Error bars in-

dicate standard error. (A) Flower size divergence as estimated from

principle component one is significantly greater among sympatric

sister species compared to allopatric sister species (P = 0.001). (B)

Vegetative PC1 does not show a significant difference in diver-

gence between allopatric and sympatric species pairs (P = 0.406).

sister species (two-sample t-test, two-tailed, t = 1.178, df = 16,

P = 0.256). Furthermore, after including time as a covariate in a

test for differences in flower size divergence between sympatric

and allopatric sister species, we find no effect of relative age (F =
0.01, P = 0.919), or any interaction of age and range overlap (F =
0.00, P = 0.985), yet we still find a significant effect of sympatry

versus allopatry on flower size divergence (ANCOVA, F = 11.26,

P = 0.004).

Using stigma–anther separation as a proxy for the ability

to automatic self-pollinate, we found that members of sympatric

sister species pairs are more likely to automatically self-pollinate

than allopatric sister species (Table 2; Fisher’s exact test, two-

tailed, P = 0.023). Among sympatric sister species, the four

species pairs with the largest flower size divergence all contain one

species with anthers overtopping the stigma, whereas none of the

allopatric sister species consistently exhibit this trait (Table S2).

Table 2. A 2 × 2 contingency table reporting the number of

sister species pairs from the Bayesian consensus phylogeny that

are allopatric or sympatric and whether they contain a species with

anthers overlapping the stigma, a trait that is highly correlated

with the ability to automatically self pollinate.

Stigma–anther Stigma–anther
overlap present overlap absent

Sympatric 4 4
Allopatric 0 10

Discussion
In Mimulus, greater flower size divergence exists between cur-

rently sympatric sister species pairs compared with allopatric

sister species. No such pattern was found for vegetative traits,

suggesting an evolutionary force acting uniquely on reproductive

traits. Additionally, we found no overall age difference between

sympatric and allopatric sister species, suggesting that our results

are not an artifact of an increasing probability of range overlap

among older sister species pairs.

Our data primarily detected repeated reductions in flower

size in members of sympatric sister species (Fig. 2), which

likely reflect several independent transitions to selfing, a well-

characterized mating system in Mimulus (Ritland and Ritland

1989; Fenster and Ritland 1994; Sweigart and Willis 2003;

Whittall et al. 2006), and an established mechanism of prezygotic

reproductive isolation (Martin and Willis 2007). Although we do

not have direct measures of automatic self-pollination rates across

all species in this study, one trait that results in self-pollination

in Mimulus is the production of anthers that overtop the stigma

(Ritland and Ritland 1989; Dole 1992). Using stigma–anther over-

lap as a proxy for the ability to automatically self-pollinate we

determined that sympatric sister species are significantly more

likely to contain selfing species than allopatric sister species. This

suggests that the evolution of self-pollination in sympatric sister

pairs may drive the pattern of elevated flower size divergence in

sympatry.

Although there are many compelling explanations for the

origin of self-pollination including the twofold transmission ad-

vantage (Fisher 1941; Nagylaki 1976; Lloyd 1979), reproduc-

tive assurance due to pollinator limitation (Baker 1955; Moeller

and Geber 2005) and avoidance of hybridization with competing

species (Levin 1972; Antonovics 1968; Fishman and Wyatt 1999),

only the latter explicitly addresses the geographic setting in which

the benefits of selfing arise. Increased self-pollination in sym-

patric populations of closely related congeners has been reported

from Phlox, Solanum and Arenaria (Levin 1972; Whalen 1978;

Fishman and Wyatt 1999) and is a pattern consistent with either

reinforcement of speciation (Dobzhansky 1940) or reproductive
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character displacement between nonhybridizing populations

(Brown and Wilson 1956). Under reinforcement, fertile hybrids

are produced but only at a cost. For example, partial hybrid incom-

patibility or adaptations to novel soil or habitat types in one lineage

result in hybrids that are poorly adapted to either parental habitat

(van der Niet et al. 2006), both of which remain largely unknown

for Mimulus sister species. Alternatively, reproductive character

displacement may occur between nonhybridizing populations. For

instance, when two co-flowering plant species share pollinators,

selection to reduce competition for pollinator services or to reduce

the frequency of heterospecific matings that result in inviable or

sterile hybrids may cause selection for increased selfing as was

detected in the genus Arenaria (Fishman and Wyatt 1999).

An alternative to direct selection against heterospecific mat-

ings may occur in heterogeneous landscapes where discrete habi-

tat patches are distributed in a mosaic resulting in populations

that have restricted gene exchange. For instance, if an outcrossing

species dispersed into a discrete habitat favoring a rapid life cycle

or pollinator-independent reproduction, then the shift to selfing

and associated changes in floral morphology could rapidly spread

through the population. Over time, the new, predominantly self-

ing, lineage may disperse into similar discrete habitat patches

most likely increasing range overlap with the outcrossing sister

species. This is akin to the stepping-stone model of parapatric

speciation as outlined by Coyne and Orr (2004, p. 112; also see

Kay et al. 2011, p. 81–82) and may be particularly relevant in

geographically complex landscapes harboring steep ecological

gradients such as Western North America, the center of diversity

for Mimulus (Grant 1924).

Although we are unable to discriminate among these hy-

potheses at present, the repeated instances of sympatric selfer-

outcrosser sister species nonetheless raise intriguing questions

concerning the geography and ecological circumstances surround-

ing the origin of self-pollination in Mimulus. Future studies of

microhabitat differences among selfing and outcrossing sister

species and the costs of heterospecific mating and hybrid for-

mation will shed light on the potential mechanism driving this

pattern in Mimulus.
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