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Abstract

Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) kill some key insect pests, but evolution of
resistance by pests can reduce their efficacy. The main approach for delaying pest adaptation to Bt crops uses non-Bt host
plants as ‘‘refuges’’ to increase survival of susceptible pests. To delay evolution of pest resistance to transgenic cotton
producing Bt toxin Cry1Ac, the United States and some other countries have required refuges of non-Bt cotton, while
farmers in China have relied on ‘‘natural’’ refuges of non-Bt host plants other than cotton. The ‘‘natural’’ refuge strategy
focuses on cotton bollworm (Helicoverpa armigera), the primary target of Bt cotton in China that attacks many crops, but it
does not apply to another major pest, pink bollworm (Pectinophora gossypiella), which feeds almost entirely on cotton in
China. Here we report data showing field-evolved resistance to Cry1Ac by pink bollworm in the Yangtze River Valley of
China. Laboratory bioassay data from 51 field-derived strains show that the susceptibility to Cry1Ac was significantly lower
during 2008 to 2010 than 2005 to 2007. The percentage of field populations yielding one or more survivors at a diagnostic
concentration of Cry1Ac increased from 0% in 2005–2007 to 56% in 2008–2010. However, the median survival at the
diagnostic concentration was only 1.6% from 2008 to 2010 and failure of Bt cotton to control pink bollworm has not been
reported in China. The early detection of resistance reported here may promote proactive countermeasures, such as a
switch to transgenic cotton producing toxins distinct from Cry1A toxins, increased planting of non-Bt cotton, and
integration of other management tactics together with Bt cotton.
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Introduction

Transgenic crops that produce Bacillus thuringiensis (Bt) toxins kill

some major insect pests [1]. Transgenic Bt cotton and Bt corn

were commercialized in 1996 and grew on more than 58 million

hectares worldwide in 2010 [2]. Benefits of these Bt crops can

include reduced use of conventional insecticides, regional pest

suppression, increased yield, and increased profit [3–7]. The main

threat to the long-term efficacy of Bt toxins is evolution of

resistance by pests, which entails a genetically based decrease in

the susceptibility of pest populations [8–11].

Many insects have been selected for resistance to Bt toxins in the

laboratory, and some populations of at least eight species of crop

pests have evolved some degree of resistance either to Bt sprays

outside of the laboratory or to Bt crops in the field [12–19].

Although even small decreases in susceptibility can provide the

initial evidence of field-evolved resistance, the extent to which such

resistance reduces the efficacy of Bt toxins depends on many

factors, including the frequency, magnitude, and spatial distribu-

tion of resistance [10]. The primary goal of resistance monitoring

is to detect field-evolved resistance before control failures occur, so

that proactive countermeasures can limit the negative conse-

quences of resistance [10,20,21].

The predominant strategy for delaying evolution of pest

resistance to Bt crops boosts survival of susceptible insects with

‘‘refuges’’ of host plants that do not produce Bt toxins [8,9,20,21].

Ideally, most of the rare resistant insects emerging from Bt crops

will mate with the relatively abundant susceptible insects from

nearby refuges. If the dose of Bt toxin ingested by larvae is high

enough to kill all or nearly all of the hybrid progeny produced by

matings between susceptible and resistant insects, refuges are

expected to be especially effective for delaying resistance [9,20,21].

Retrospective evaluations of global resistance monitoring data

suggest that refuges have delayed pest resistance to Bt crops,

especially when the plants have met the ‘‘high dose’’ criterion and

refuges have been abundant [10,11,21]. In particular, theoretical
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and empirical analyses imply that refuges have delayed resistance

in pink bollworm (Pectinophora gossypiella), one of the world’s most

destructive pests of cotton [21–23]. Pink bollworm resistance to Bt

cotton has been reported in the field in India, where farmer

compliance with the refuge strategy has been low [17,24]. By

contrast, compliance with the refuge strategy is considered a

primary reason that pink bollworm susceptibility to Bt cotton did

not decrease in the field in Arizona, USA from 1997 to 2005

[21,22,25].

In the United States and some other countries, farmers have been

required to plant refuges of non-Bt cotton near first-generation Bt

cotton that produced Bt toxin Cry1Ac [10,20]. In the United States

and Australia, Bt cotton producing only Cry1Ac is no longer grown

and has been replaced largely by Bt cotton that produces two toxins,

primarily Cry1Ac and Cry2Ab [10,26]. Unlike the situation in the

United States and Australia, refuges of non-Bt cotton have not been

required in China and Bt cotton producing Cry1Ac has not been

replaced by two-toxin cotton [27,28].

In China, Bt cotton producing Cry1Ac was commercialized in

1997 and has been useful against its primary target, the cotton

bollworm (Helicoverpa armigera), a serious pest of many crops

[4,27,28]. The lack of a requirement for non-Bt cotton refuges in

China is based on the idea that the abundant non-Bt host plants of

H. armigera other than cotton provide sufficient ‘‘natural’’ refuges

to delay resistance in this pest [27–29]. Initial evidence of field-

evolved resistance of H. armigera to Cry1Ac has been detected in

China, but field control problems associated with this resistance

have not been reported [19,30,31].

Although pink bollworm is not the primary pest targeted by Bt

cotton throughout China, it is a major pest in the Yangtze River

Valley of China, where millions of resource-poor farmers plant more

than a million hectares of cotton each year, and Bt cotton was

introduced in 2000 [32]. Because the pink bollworm feeds almost

exclusively on cotton in this region, the ‘‘natural’’ refuge concept

does not apply, raising the risk of resistance [27]. In addition,

although inherent susceptibility to Cry1Ac is greater for pink

bollworm than for H. armigera, the concentration of Cry1Ac in Bt

cotton varies over time, allowing survival of susceptible larvae of both

pests during some of the growing season in China [27,33,34]. Unlike

the situation in Arizona, where Bt cotton that produced Cry1Ac had

virtually 100% efficacy against susceptible pink bollworm larvae

[35], field data on larvae exiting from bolls indicate 1 to 11% survival

of susceptible pink bollworm on Bt cotton in the Yangtze River

Valley during October 2001 and 2002 [33]. Thus, a high dose of

Cry1Ac is not maintained against pink bollworm in this region,

which further increases the risk of resistance [9,20,21,27].

Here we report data from the Yangtze River Valley on adoption

of Bt cotton for 11 years (2000–2010) and resistance monitoring of

pink bollworm for six years (2005–2010). These data show that Bt

cotton use increased steadily in this region and susceptibility of

pink bollworm to Cry1Ac decreased significantly in 2008–2010

compared with 2005–2007.

Results

Planting of Bt Cotton
The percentage of cotton planted with Bt cotton in six provinces

of the Yangtze River Valley increased from 9% in 2000 to 52% in

2004, 84% in 2006, 92% in 2008, and 94% in 2009 and 2010

(Fig. 1 and Table S1).

Resistance to Cry1Ac
Susceptibility to Cry1Ac of pink bollworm from the Yangtze

River Valley was significantly lower in 2008 to 2010 compared

with 2005 to 2007, based on both the concentration killing 50% of

larvae (LC50) and survival at a diagnostic concentration (9 mg

Cry1Ac per ml diet) (Tables 1 and 2, Figs. 2 and 3). The mean

LC50 (in mg Cry1Ac per ml diet) for Cry1Ac was twice as high in

2008–2010 (0.47) as in 2005–2007 (0.24) (t-test, df = 49, t = 3.0,

P = 0.005).

The percentage of populations with one or more larvae

surviving at the diagnostic concentration increased from 0%

(n = 24 populations) during 2005–2007 to 56% (15 of 27

populations) during 2008–2010 (Fisher’s exact test, P,0.0001).

In addition, the median percentage survival at the diagnostic

concentration increased from 0% in 2005–2007 to 1.6% in 2008–

2010 (Mann-Whitney U-test, U = 504, P,0.001). We found

survivors at the diagnostic concentration in three consecutive

years (2008–2010) in the Tianmen population from Hubei

province and in two consecutive years (2009–2010) in the Pengze

population from Jiangxi province and in the Anqing population

from Anhui province (Table 2). Survival at the diagnostic

concentration and the LC50 value were positively correlated

across all bioassays (Spearman’s rs = 0.50, df = 55, P,0.0001).

The simplest explanation for the observed increases over time in

LC50 values and survival at the diagnostic concentration is that the

frequency of resistance to Cry1Ac increased in the field

populations of pink bollworm tested. An alternative hypothesis is

that conditions in the laboratory changed over time in a way that

increased survival in bioassays. For example, this could have

happened if the Cry1Ac used in bioassays was less potent in 2008–

2010 than in 2005–2007. However, this alternative hypothesis is

not supported by the data for the susceptible lab strain QJ-S,

which show no significant increase from 2005–2007 to 2008–2010

in either LC50 (0.09 for 2005–2007 versus 0.12 for 2008–2010; t-

test, df = 4, t = 1.8, P = 0.14) or survival at the diagnostic

concentration (0% in all years).

Nonetheless, because of the numerically higher LC50 for QJ-S

in 2008–2010 relative to 2005–2007, we also used the conservative

approach of comparing resistance ratios over time. This approach

accounts for any increases in the LC50 of QJ-S over time, because

we calculated resistance ratios as the LC50 value of a field

population divided by the LC50 value for QJ-S tested in the same

year. The resistance ratio of field populations was significantly

higher during 2008–2010 (4.1) compared with 2005–2007 (2.5) (t-

test, t = 2.2, df = 49, P = 0.03). In addition, the maximum

resistance ratio was only 4.9 during 2005–2007 (2007: Anqing),

whereas three populations tested during 2008–2010 had resistance

ratios .10 (2009: Qianjiang = 14.6 and Tianmen = 10.5; 2010:

Jianli = 10.3; Tables 1 and 2). Thus, analysis of LC50 values,

survival at a diagnostic concentration, and resistance ratios

support the conclusion of field-evolved resistance to Cry1Ac by

pink bollworm in the Yangtze River Valley.

Although susceptibility to Cry1Ac was lower in 2008–2010 than

in 2005–2007, susceptibility to Cry1Ac did not decrease from

2009 to 2010. The mean LC50 value was slightly lower in 2010

(0.47) than in 2009 (0.56), but this difference was not significant (t-

test, df = 17, t = 0.44, P = 0.67) (Fig. 3). The percentage of field

populations with one or more survivors at the diagnostic

concentration was nearly identical in 2009 (62%) and 2010

(64%) (Fisher’s exact test, P = 1.0) (Fig. 4). Therefore, resistance to

Cry1Ac did not increase from 2009 to 2010, despite Bt cotton

accounting for 94% of the cotton planted in the Yangtze River

Valley in both years (Table S1).

Survival on Bt Cotton Bolls
Larval survival on Bt cotton bolls was significantly higher for the

lab-selected resistant strain YZP06-R (1.5%) than for the

Pink Bollworm Resistance to Bt Toxin Cry1Ac
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Figure 1. Percentage of all cotton hectares accounted for by Bt cotton in the Yangtze River Valley, 2000–2010.
doi:10.1371/journal.pone.0029975.g001

Table 1. Responses to Bt toxin Cry1Ac of pink bollworm larvae from the Yangtze River Valley from 2005 to 2007.

Year Population Map ref.a Slope LC50 95% fiducial limits Survival (%)c

mg /ml Lower Upper RRb

2005 Qianjiang 5 1.6 0.20 0.05 0.39 2.2 0.0

Tianmen 6 1.6 0.28 0.19 0.38 3.1 0.0

Wuhan 7 1.5 0.19 0.05 0.37 2.1 0.0

Huanggang 8 1.9 0.22 0.09 0.37 2.4 0.0

QJ-S 1.2 0.09 0.04 0.17 1.0 0.0

2006 Jianyang 1 2.7 0.29 0.22 0.35 2.6 0.0

Suizhou 2 2.0 0.12 0.08 0.15 1.1 0.0

Jingzhou 3 1.7 0.26 0.20 0.33 2.4 0.0

Qianjiang 5 1.6 0.27 0.11 0.47 2.5 0.0

Tianmen 6 0.7 0.23 0.11 0.39 2.1 0.0

Wuhan 7 2.5 0.27 0.21 0.33 2.5 0.0

Huanggang 8 1.5 0.27 0.11 0.48 2.4 0.0

Changde 10 2.3 0.20 0.06 0.32 1.8 0.0

Anxiang 11 1.3 0.25 0.17 0.33 2.3 0.0

Pengze 13 2.5 0.26 0.05 0.42 2.3 0.0

Anqing 14 1.5 0.38 0.27 0.51 3.5 0.0

Nanjing 15 2.4 0.21 0.07 0.34 1.9 0.0

Jurong 16 2.0 0.20 0.03 0.35 1.8 0.0

QJ-S 1.1 0.11 0.06 0.16 1.0 0.0

2007 Jianyang 1 1.6 0.20 0.16 0.25 2.9 0.0

Qianjiang 5 1.6 0.21 0.09 0.36 3.1 0.0

Wuhan 7 0.8 0.26 0.16 0.51 3.7 0.0

Huanggang 8 1.7 0.12 0.09 0.15 1.7 0.0

Anxiang 11 1.1 0.16 0.12 0.22 2.3 0.0

Anqing 14 1.1 0.35 0.17 2.01 4.9 0.0

Jurong 16 1.6 0.25 0.19 0.31 3.6 0.0

QJ-S 1.1 0.07 0.05 0.09 1.0 0.0

aSee Fig. 2 for locations indicated by map reference numbers.
bRR (Resistance ratio) = LC50 of strain/LC50 of the susceptible lab strain QJ-S.
cAdjusted survival at a diagnostic concentration of Cry1Ac (see Methods).
doi:10.1371/journal.pone.0029975.t001
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susceptible lab strain QJ-S (0.0%) (t-test, t = 3.2, df = 4, P = 0.032,

Table 3). On non-Bt cotton bolls, however, larval survival did not

differ significantly between the resistant strain (56.2%) and the

susceptible strain (48.8%) (t-test, t = 1.6, df = 4, P = 0.19, Table 3).

We also calculated relative survival as larval survival on Bt cotton

divided by larval survival on non-Bt cotton, which was significantly

higher for the resistant strain (2.8%) than for the susceptible strain

(0.0%) (t-test, t = 3.0, df = 4, P = 0.039). The number of entry holes

per boll did not differ significantly between strains for Bt bolls,

non-Bt bolls, or all bolls pooled (t-tests, P.0.07 in each case).

Results from diet bioassays performed simultaneously with the

boll bioassays showed that the LC50 value (mg Cry1Ac per ml diet

with 95% fiducial limits) was 7.25 (5.6–11) for the resistant strain

and 0.11 (0.07–0.14) for the susceptible strain, which yields a

resistance ratio of 66. Survival at the diagnostic concentration was

40% for the resistant strain and 0% for the susceptible strain

(n = 72 larvae for each strain).

Discussion

The results reported here show significantly decreased pink

bollworm susceptibility to Bt toxin Cry1Ac in the Yangtze River

Valley of China during 2008 to 2010 compared with 2005 to

2007, based on LC50 values, survival at a diagnostic concentration,

and resistance ratios (Tables 1 and 2, Figs. 3 and 4). The first

evidence of pink bollworm resistance to Bt cotton was detected in

2008 (Table 2, Figs. 3 and 4), eight years after Bt cotton was

introduced in the Yangtze River Valley. However, non-Bt cotton

accounted for more than 37% of the total cotton planted in this

region until 2006, when the non-Bt cotton percentage dropped to

16% (Table S1). Thus, the first evidence of field-evolved resistance

to Cry1Ac in the region was detected only two years after Bt

cotton exceeded 80% of the total area of cotton planted.

Although the results here show significant decreases in pink

bollworm susceptibility to Cry1Ac, data showing failure of Bt

Table 2. Responses to Bt toxin Cry1Ac of pink bollworm larvae from the Yangtze River Valley from 2008 to 2010.

Year Population Map ref.a Slope LC50 95% fiducial limits Survival (%)c

mg /ml Lower Upper RRb

2008 Jianyang 1 1.4 0.25 0.19 0.32 2.5 0.0

Qianjiang 5 1.5 0.33 0.18 0.50 3.3 0.0

Tianmen 6 1.1 0.21 0.04 0.44 2.1 1.6

Wuhan 7 1.3 0.42 0.20 0.72 4.2 1.8

Huanggang 8 1.6 0.39 0.31 0.49 3.9 0.0

Changde 10 1.5 0.92 0.67 1.21 9.1 3.6

Anxiang 11 1.9 0.38 0.19 0.62 3.8 0.0

Anqing 14 1.3 0.26 0.19 0.33 2.6 0.0

QJ-S 3.0 0.10 0.06 0.14 1.0 0.0

2009 Jianyang 1 0.9 0.28 0.15 0.44 2.4 5.4

Qianjiang 5 1.2 1.73 0.43 8.35 14.6 3.6

Tianmen 6 1.2 1.24 0.04 9.82 10.5 1.8

Huanggang 8 1.5 0.12 0.07 0.17 1.0 0.0

Changde 10 1.7 0.17 0.00 0.44 1.4 0.0

Anxiang 11 1.6 0.54 0.38 0.71 4.6 0.0

Pengze 13 0.8 0.12 0.04 0.21 1.0 8.6

Anqing 14 1.1 0.26 0.00 0.70 2.2 1.6

QJ-S 1.4 0.12 0.06 0.19 1.0 0.0

2010 Jianyang 1 1.4 0.33 0.25 0.41 2.6 0.0

Jianli 4 1.5 1.30 0.88 1.84 10.3 4.1

Qianjiang 5 2.3 0.17 0.08 0.26 1.4 0.0

Tianmen 6 1.2 0.29 0.22 0.37 2.3 1.8

Huanggang 8 1.1 0.38 0.26 0.52 3.0 1.6

Taoyuan 9 1.0 0.27 0.10 0.52 2.1 0.0

Changde 10 1.8 0.52 0.40 0.65 4.1 0.0

Anxiang 11 1.7 0.33 0.17 0.53 2.6 1.1

Yueyang 12 1.6 0.53 0.38 0.70 4.2 3.3

Pengze 13 1.4 0.44 0.34 0.55 3.4 5.4

Anqing 14 1.6 0.56 0.44 0.71 4.5 5.6

QJ-S 2.0 0.13 0.12 0.18 1.0 0.0

aSee Fig. 2 for locations indicated by map reference numbers.
bRR (Resistance ratio) = LC50 of strain/LC50 of the susceptible lab strain QJ-S.
cAdjusted survival at a diagnostic concentration of Cry1Ac (see Methods).
doi:10.1371/journal.pone.0029975.t002

Pink Bollworm Resistance to Bt Toxin Cry1Ac

PLoS ONE | www.plosone.org 4 January 2012 | Volume 7 | Issue 1 | e29975



cotton producing Cry1Ac to control pink bollworm have not been

reported from the Yangtze River Valley. However, our results do

show that survival on bolls of Bt cotton was significantly higher for

a lab-selected resistant strain derived from the Yangtze River

Valley in 2006 (YZP06-R) than for a susceptible strain (Table 3).

For this resistant strain, larval survival on Bt cotton bolls relative to

non-Bt cotton bolls was only 2.8% (Table 3), but this could

underestimate the potential for increased survival on Bt cotton in

the field for two reasons. First, the bolls tested in our bioassays

were collected from GK19 Bt cotton plants in the field during

August, when this type of cotton is highly effective against pink

bollworm [33]. Mean survival in the field on GK19 was only 1.3%

(range = 0 to 2.6%) in August 2001 and 2002, compared with

11% (range = 10 to 11%) in October 2001 and 2002 [33].

Moreover, the YZP06-R strain had only 40% survival at a

diagnostic concentration of Cry1Ac, which implies that 60% of the

larvae tested from this strain had little or no resistance to Cry1Ac.

We expect that at the end of the season, survival on Bt cotton bolls

for a field population with a higher frequency of resistance would

be higher than the survival we observed for the YZP06-R strain on

Bt cotton bolls collected from the field in August.

The finding that survival of pink bollworm larvae on Bt cotton

in the Yangtze River Valley was as high as 11% during October

2001 and 2002 [33], six and seven years before field-evolved

resistance was first detected in 2008, implies that Bt cotton did not

kill all or nearly all susceptible larvae. Thus, we infer that even

small decreases in susceptibility to Cry1Ac could reduce the

efficacy of Bt cotton in the field. Based on the field data described

above and our bioassay results, we hypothesize that the magnitude

of resistance documented here reduces the efficacy of Cry1Ac-

producing Bt cotton against pink bollworm in the field, at least

during some part of the growing season. On the other hand, the

median percentage survival at a diagnostic concentration of

Cry1Ac was only 1.6% for 2008 to 2010 (Table 2), which indicates

that the frequency of resistance was too low to cause major field

control problems during those three years.

Comparison of pink bollworm resistance to Bt cotton producing

Cry1Ac across China, India, and the United States suggests that

the refuge strategy has helped to delay resistance. The two key

conditions favoring the effectiveness of the refuge strategy are

sufficient refuges of non-Bt host plants and a toxin concentration

in Bt plants that is high enough to kill all or nearly all hybrid

progeny, which is the so-called ‘‘high dose’’ criterion [9–11,21]. In

China and India, these two key conditions have not been met, and

pink bollworm has evolved resistance to Cry1Ac. In China, non-Bt

cotton refuges have not been required. In India, farmers

apparently have not complied with the refuge requirement [24].

In both China and India, Bt cotton producing Cry1Ac has not met

the ‘‘high dose’’ standard against pink bollworm. Field data from

these two countries show substantial survival of susceptible pink

bollworm larvae on approved varieties of Bt cotton that produce

Cry1Ac [33,35,36], which implies a failure to meet the high dose

Figure 2. Pink bollworm resistance monitoring field sites in the Yangtze River Valley.
doi:10.1371/journal.pone.0029975.g002
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criterion. In China, most Bt cotton planted has been a type called

GK19 that was developed by the Biotechnology Research Institute

of the Chinese Academy of Agricultural Sciences and contains a

chimeric cry1Ac/cry1Ab gene [34]. In field trials in the Yangtze

River Valley, the mean number of pink bollworm larvae per 100

bolls in October 2001 and 2002 was about five times higher for

GK19 (10.6) than for BG1560 (2.2), a type of Bt cotton from

Monsanto that contains a cry1Ac gene [33]. In Arizona, however,

both key conditions of the refuge strategy were met, and pink

bollworm susceptibility to Cry1Ac did not decrease, despite a

relatively high initial frequency of resistance [7,22,37,38].

In India, pink bollworm resistance to Cry1Ac was detected first

in a single field population sampled in 2008 from the state of

Gujarat that had a resistance ratio of 42 to 47 in lab diet bioassays

[17] similar to the diet bioassays used here. In response to this

finding, no major changes in resistance management were

implemented, and unusually high pink bollworm abundance

occurred on Bt cotton producing Cry1Ac in four districts of

Gujarat during 2009 [39]. By contrast, the highest Cry1Ac

resistance ratio for pink bollworm in China was only 14.6

(Qianjiang 2009, Table 2) and resistance to Cry1Ac did not

increase in the Yangtze River Valley from 2009 to 2010.

Nonetheless, the significantly increased resistance detected in

2008 to 2010 compared with 2005 to 2007 suggests that

countermeasures should be considered now. The events in India

and the resistance monitoring data reported here provide a

warning that may be early enough to spur proactive measures to

limit any negative consequences of pink bollworm resistance to

Cry1Ac in China.

One option to counter resistance is to switch to Bt cotton that

produces Cry2Ab and Cry1Ac, which is effective against pink

bollworm with high levels of lab-selected resistance to Cry1Ac

[40]. This option is one of the most feasible, because such two-

toxin Bt cotton is already approved for small-scale trials in China.

This option would also be useful for countering H. armigera

resistance to Cry1Ac [19]. However, for long-term sustainable

control, cotton with two or more toxins other than Cry1Ac would

be better for countering resistance to Cry1Ac [19,41]. A second

option is to increase planting of non-Bt cotton. A third approach is

to integrate other control tactics with Bt cotton for management of

pink bollworm. For example, sterile moth releases and other

tactics have been used in combination with Bt cotton to suppress

pink bollworm in the United States [7]. This approach has been

implemented in Arizona since 2006 and pink bollworm has

remained susceptible to Cry1Ac, even when the percentage of

cotton planted with Bt cotton exceeded 96% statewide [7]. The

success of this strategy in Arizona suggests that it could be

considered, at least as a supplemental measure, for managing pink

bollworm resistance to Bt cotton in China.

Materials and Methods

Area Planted to Bt Cotton and Non-Bt Cotton
For each year from 2000 to 2010, we obtained for each of six

provinces of the Yangtze River Valley (Sichuan, Hubei, Hunan,

Jiangxi, Anhui and Jiangsu) the area planted to cotton from the

China Agriculture Yearbook [32] and the area planted to Bt

cotton from the Ministry of Agriculture of China. For each year,

we calculated the percentage of cotton planted with Bt cotton as

the area planted with Bt cotton divided by the total area planted to

cotton, multiplied by 100%.

Insect Rearing
We reared larvae on wheat germ diet [42,43] at 30uC, 60% RH

and 24 h light. The adults of each field strain were placed in cages

(50 by 50 by 50 cm) and provided with 5% honey solution. The

top of each cage was covered with white gauze for oviposition. Egg

gauzes were harvested daily during the entire oviposition period

and placed in plastic bags until egg hatching.

Insect Strains
To monitor susceptibility of field populations, we collected 50 to

300 P. gossypiella larvae per site at 4 to 13 sites per year from cotton

fields in the Yangtze River Valley during July to November 2005

to 2010 (Fig. 2). The resistance monitoring was limited to Hubei

Province in 2005 and expanded to the entire Yangtze River Valley

in 2006–2010. The collection sites varied among years because

Figure 3. Concentration of Bt toxin Cry1Ac killing 50% of pink bollworm larvae (LC50). Field strains were collected from the resistance
monitoring sites in the Yangtze River Valley during 2005–2010. The bars represent the standard error of the mean LC50 for the field-derived strains
tested in a given year (n = 4 to 13 strains per year). QJ-S is a susceptible lab strain that was tested each year as an internal standard.
doi:10.1371/journal.pone.0029975.g003
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pink bollworm abundance varied and we could conduct bioassays

only in cases where the collection from a site yielded enough

individuals to initiate a field-derived strain.

In China, farmers pick cotton by hand from their small farms.

Cotton companies buy the harvested raw cotton from farmers near

their fields. When raw cotton accumulates at purchasing sites, the

high temperature inside cotton bolls causes pink bollworm larvae

to exit from the bolls. Therefore, it is much easier to collect larvae

from purchasing sites than directly from cotton fields. For 50 of the

51 collections from field sites used to start strains for bioassays, we

obtained larvae from purchasing sites. The bolls at each of these

50 sites were a mixture of Bt and non-Bt cotton that reflected the

proportions of Bt and non-Bt cotton harvested at each site. Thus,

the larvae collected were representative of the populations at each

site. In the exceptional case, we obtained larvae from non-Bt

cotton bolls from the Wuhan site in 2005. No permits were

required because all collections were made in China under the

auspices of the Chinese Academy of Agricultural Sciences. We

mass-reared the field-collected larvae from each site separately on

diet in the laboratory and tested their F1 progeny using diet

bioassays as described below. We tested 51 strains that were

derived from the field during 2005 to 2010.

As an internal control, we also tested a susceptible strain (QJ-S)

each year in conjunction with diet bioassays of the 51 field-derived

strains (see below). The QJ-S strain was started with insects

collected from Qianjiang, Hubei, China in 2004 and reared in the

laboratory without exposure to toxins. In addition, the QJ-S strain

was used as an internal control in diet and boll bioassays with a

lab-selected resistant strain (YZP06-R) (see below).

Diet Bioassays
Susceptibility to Cry1Ac was determined using diet incorpora-

tion bioassays with MVPII (Dow AgroSciences, Indianapolis,

USA), which is a formulation containing protoxin that is similar to

Cry1Ac [42,43]. We added sterilized distilled water to produce a

stock dilution of MVPII. The stock dilution was added to liquid

wheat germ diet in amounts necessary to create final concentra-

tions of 0 (control), 0.05, 0.1, 0.25, 0.5, 1, 2.5, 5 and 9 mg Cry1Ac

per ml solution in 2005; and 0, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2 and 9 mg

Cry1Ac per ml from 2006 to 2010. Diet was made in 1 liter

batches of each concentration, cooled, shredded into pieces (ca. 2

by 1 by 1 cm) and dispensed into 24-well culture plates (Haimeng

Shengbang Laboratory Equipment Co., China)with 3 g diet per

well. Neonates were placed individually in each well. For testing of

Figure 4. Percentage of pink bollworm field populations with survivors at the diagnostic concentration (9 mg Cry1Ac per ml diet).
The number of field populations tested in the Yangtze River Valley was 4 in 2005, 13 in 2006, 7 in 2007, 8 in 2008, 8 in 2009, and 11 in 2010 (see
Tables 1 and 2).
doi:10.1371/journal.pone.0029975.g004

Table 3. Survival on bolls of Bt and non-Bt cotton of pink bollworm larvae from a susceptible strain (QJ-S) and a lab-selected
resistant strain (YZP06-R).

Strain Cotton type Number of bolls Entry holes per boll Survival (%) a Relative survival (%)b

YZP06-R Bt 150 3.3 (0.5) 2.1 (0.5) 2.8 (0.9)

QJ-S Bt 150 4.3 (0.4) 0.0 (0.0) 0.0 (0.0)

YZP06-R Non-Bt 150 3.1 (0.3) 56.2 (1.4)

QJ-S Non-Bt 150 3.6 (0.3) 48.8 (4.5)

Values are means with their standard errors in parentheses.
aLarvae surviving per boll divided by entry holes per boll multiplied by 100%.
bSurvival on Bt cotton divided by survival on non-Bt cotton.
doi:10.1371/journal.pone.0029975.t003
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the 51 field-derived strains and concomitant tests of QJ-S, we

assigned larvae to replicates consisting of three or four bioassay

trays per replicate for each concentration (96 larvae per

concentration in 2005, 2006, 2007 and 2010; 72 larvae per

concentration in 2008 and 2009). Bioassay trays were placed in a

growth chamber and incubated in darkness at 2961uC. After 21

days, live fourth instars and pupae were scored as survivors

[42,43]. Based on bioassays done during 2004, we estimated that

the LC99 of the susceptible QJ-S strain was 8.4 mg Cry1Ac per ml

diet (LC50 = 0.17, with 95% fiducial limits of 0.13 and 0.22; slope

of 1.37 and SE = 0.12). Here we used a diagnostic concentration

of 9 mg Cry1Ac per ml diet, which is equivalent to the LC99.86 of

the QJ-S strain in 2004 and is similar to the 10 mg Cry1Ac per ml

diet used as a diagnostic concentration for pink bollworm from

Arizona [37].

Laboratory Selection for Resistance
We created the lab-selected, resistant YZP06-R strain as follows:

We started with larvae collected in 2006 from four sites in the

Yangtze River Valley (Qianjiang, Wuhan, Tianmen and Huang-

gang). The F1 progeny derived from these four sites were tested

with diet bioassays and all 93 survivors at 0.4, 0.8 and 1.6 mg

Cry1Ac per ml of diet were pooled to generate YZP06-R. After

this pooling, the F1 progeny of YZP06-R were reared without

exposure to Cry1Ac. The F2-F6 progeny were reared on diet with

1 mg of Cry1A per ml of diet and the F7-F10 progeny were reared

on diet with 2 mg of Cry1Ac per ml of diet.

To determine responses to Cry1Ac, larvae from QJ-S and the

F11 generation of YZP06-R were tested with diet bioassays in

August 2009, using the procedures described above. Each strain

was tested against seven concentrations of Cry1Ac including a

control with no toxin added to diet, with 24 larvae tested at each

concentration in each of three replicates. The total sample size for

each strain was 504 larvae.

Boll Bioassays
We tested the susceptible QJ-S strain and the F11 generation of

the resistant YZP06-R strain in laboratory bioassays with bolls

collected from the field in 2009 from Bt and non-Bt cotton plants.

We collected bolls from fields of Bt cotton (GK19) and non-Bt

cotton (Simian3) in Wuhan, Hubei province. The Bt toxin

produced by GK19 is encoded by a chimeric cry1Ac/cry1Ab gene

[34]. On 15 August 2009, we tagged white flowers on cotton

plants. From 1700 to 1900 h on 25 August 2009, we collected 600

bolls (approximately 2 cm in diameter) from the locations of the

tagged flowers. We collected a total of 600 bolls; 6 bolls per plant

from 50 Bt cotton plants and 50 non-Bt cotton plants. Bolls were

placed in cylindrical polyethylene containers (11 cm in diameter

by 8 cm high) with 5 bolls per container and transported for about

one hour to the lab.

We started the boll bioassays the following morning (0800 to

1000 h) by using a fine brush to transfer 10 neonates to each of the

five bolls in each container. In the lab, both before and during boll

bioassays, the containers were held in chambers at 29uC, 14L:10D,

and 50–70% humidity. Three days after infestation, we counted the

entry holes in each boll with the aid of microscopes. Fourteen days

after infestation, all bolls were checked for emergence holes.

Twenty-one days after infestation, we dissected all bolls and counted

the live larvae. The number of survivors was calculated as the

number of emergence holes plus live larvae inside bolls. For each

insect strain in each replicate, we used 50 bolls of Bt cotton and 50

bolls of non-Bt cotton. We replicated the boll bioassays three times,

testing a total of 6000 neonates, 1500 per strain on Bt cotton and

1500 per strain on non-Bt cotton.

Data Analysis
We analyzed diet bioassay data with probit regression using

POLO [44] to determine LC50 values and their 95% fiducial

limits, and slopes of the concentration- mortality lines. We

calculated the resistance ratio as the LC50 for a strain divided by

the LC50 for the susceptible QJ-S strain tested in the same year. All

values reported for survival at the diagnostic concentration of 9 mg

Cry1Ac per ml diet were adjusted for control mortality. These

values were calculated as survival at this concentration divided by

survival on control diet, which is equivalent to correcting for

control mortality with Abbott’s method and calculating adjusted

survival as 100% minus adjusted mortality [37].

In the early stages of resistance evolution, stochastic factors can

affect the frequency of resistance and the results of resistance

monitoring, particularly with relatively small sample sizes over

short time intervals when the frequency of resistance is close to the

limit of detection. To minimize such effects, we focused primarily

on comparisons between 2005–2007 and 2008–2010, which

increased the time interval and the sample size for comparisons.

We used Fisher’s exact test to determine if the proportion of

populations with one or more survivors at the diagnostic

concentration differed between 2005–2007 and 2008–2010. We

used the Mann-Whitney U-test to determine if percentage survival

at the diagnostic concentration differed between 2005–2007 and

2008–2010. We used Spearman’s rank correlation to test the

association between LC50 and survival at the diagnostic concen-

tration. Because the sampling method for the strain derived from

Wuhan during 2005 differed from the method used for all other

samples, we performed all statistical tests with and without the

Wuhan 2005 data. The results with and without data from Wuhan

2005 were virtually identical and we report statistical analyses with

the Wuhan 2005 data included.

For the boll bioassays, we calculated larval survival in each of

the three replicates as the number of survivors divided by the

number of entry holes [45]. We also calculated relative survival for

each of the three replicates as larval survival on Bt cotton divided

by larval survival on non-Bt cotton. We used t-tests to determine if

significant differences occurred between the resistant strain

(YZP06-R) and the susceptible strain (QJ-S) in larval survival on

Bt cotton, larval survival on non-Bt cotton, and relative survival, as

well as entry holes per boll on Bt cotton, non-Bt cotton, and all

bolls pooled.

Supporting Information
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