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Correlations in spontaneous brain activity provide powerful ac-
cess to large-scale organizational principles of the CNS. However,
making inferences about cognitive processes requires a detailed
understanding of the link between these couplings and the
structural integrity of the CNS. We studied the impact of multiple
sclerosis, which leads to the severe disintegration of the central
white matter, on functional connectivity patterns in spontaneous
cortical activity. Using a data driven approach based on the
strength of a salient pattern of cognitive pathology, we identified
distinct networks that exhibit increases in functional connectivity
despite the presence of strong and diffuse reductions of the central
white-matter integrity. The default mode network emerged as a
core target of these connectivity modulations, showing enhanced
functional coupling in bilateral inferior parietal cortex, posterior
cingulate, and medial prefrontal cortex. These findings imply
a complex and diverging relation of anatomical and functional
connectivity in early multiple sclerosis and, thus, add an impor-
tant observation for understanding how cognitive abilities and
CNS integrity may be reflected in the intrinsic covariance of
functional signals.
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Understanding how disease processes affect functional inter-
actions in the CNS is a core challenge of neuroscience re-

search. fMRI connectivity has become an important tool for
revealing large-scale network interactions by analyzing correla-
tions in intrinsic fluctuations of the BOLD signal (1). This method
is sensitive to plastic as well as developmental changes of the
functional architecture (2–5), and has successfully linked specific
cognitive syndromes to the pathology of distinct functional sys-
tems (e.g., spatial neglect after stroke, different forms of
dementias, and healthy aging) (6–8). The structural wiring of the
brain plays an essential role in shaping the spatial patterns of
functional interactions (9, 10). However, the activity correlations
are not fully determined by the anatomical connections and, thus,
provide complementary information about network organization
(11). Especially in the context of neurological damage, the func-
tional covariance structure may document pathological effects
well beyond focal damage, indicating the complex changes of
interactions that occur in distributed networks (12–14). Com-
monly, the coupling strength of spontaneous brain activity is
thought to be a direct proxy for the functioning of brain networks,
with stronger interactions also reflecting a stronger computa-
tional capacity (15, 16).
In this study we have investigated how cognitive pathology due

to neurological damage in multiple sclerosis (MS) is reflected
in changes of structural and functional connectivity. Compared
with other CNS pathologies, MS stands out due to the prominent
involvement of the central white matter. During the disease
process, the immune system exerts inflammatory insults to neu-
ronal myelination and axonal integrity (17). These processes
may lead to the loss of functional cofluctuations (18), especially
in late and severe stages of the disease (19), reminiscent of a

scenario of complete disconnection as in the extreme case of
corpus callosotomy (20). Surprisingly, however, recent studies
also report increased functional connectivity in earlier stages of
the disease (21–23). This raises the question of how cognitive
impairment that occurs as an early and prominent consequence
of MS (24) may relate to changes of functional connectivity. A
challenging aspect of the cognitive decline is the weak associa-
tion between specific lesion parameters, such as the location of
T2-visible plaques and circumscribed cognitive abilities (25, 26).
It is becoming increasingly clear that subtle, nonfocal white
matter damage (as assessed by, e.g., diffusion-weighted imaging)
plays a crucial role in determining the presence and extent of
cognitive impairment (27–30). Thus, the manner in which the
disease affects cognition is likely not a collection of random and
focal disturbances, but has widespread structural and functional
consequences as an important pathological element (31).
In a group of early stage patients, we found the cognitive pa-

thology to exhibit a salient multivariate pattern, a general factor.
Further, we found this pattern of impairment to be related to the
widespread integrity of the central white matter. Finally, by means
of a data driven approach, we identified the default mode network
to be central to strong modulations of functional connectivity by
the severity of the cognitive pathology. Strikingly, the reduction
in cognitive ability and widespread anatomical connectivity was
associated with increased functional connectivity. These results
reveal a dissociation of changes in functional and anatomical
connectivity in relation to cognitive ability and add an important
empirical observation for understanding how fMRI connectivity
may index the integrity of cortical circuits. Our findings hold
significant implications for resting state investigations of brain
diseases as well as theoretical and modeling studies of large-scale
cortical dynamics.

Results
Cognitive Efficiency. To assess the presence and structure of cog-
nitive impairment, we quantified the performance of 16 patients
in the early stages of MS (Table S1) and individually matched
controls in a set of neuropsychological tests. All tests were stan-
dard tools used in clinical and research settings and together
probed a broad range of different sensory, cognitive, and output
modalities. Fig. 1A summarizes the test results for all patients,
sorted such that the patient with the worst performance appears
at the top and the test accumulating the most negative perfor-
mance appears to the left. Three important features of the overall
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pattern of cognitive pathology in the sample emerged. First, the
cognitive impairment exhibited a considerable variability, with
some patients showing only mild deficits and other patients being
more severely affected. Second, some tests were particularly
sensitive in uncovering negative performance early, suggesting
that they tap into functions, which are especially prone to the
disease process. And third, with increasing severity of the pa-
thology, the impairment appeared to broaden across tests, suc-
cessively spanning a wider range of tested modalities. Thus,
instead of multiple, more-specific patterns of impairment, the
patients mainly differed in the general bandwidth of cognitive
processes, leading to the emergence of a general factor of cog-
nitive pathology. To quantify and further analyze this pattern, we
applied principal component analysis (PCA) to the behavioral
performance of patients and healthy controls.
The first principal component of the test battery explained

>50% of the total behavioral variance observed; it was the only
pattern discernible from Gaussian noise (P < 10−16), and robust
to overfitting effects (Fig. S1 B and C). Importantly, all weights
of the component had the same sign, again indicating the main
feature of a general factor, i.e., the positive correlation of test
performance across subjects. To give an idea of how each of the
tests contributed to the component, Fig. 1B shows the test names
scaled by the first component’s eigenvector (loadings). The tests
with a high impact (trail making, paced auditory serial addition
test, and verbal fluency) had an emphasis on executive functions,
speed of processing, and cognitive flexibility, and presumably
require the dynamic integration of information in large-scale
networks (32). The level of this general factor, hereafter referred
to as cognitive efficiency, separated the patient and control
group (Fig. 1C). The patient group showed a significant decrease
in cognitive efficiency (difference from zero: t test, P = 9.63 ×
10−4; group difference: paired t test, P = 9.24 × 10−4). The
healthy control group did not differ from the norm level of
cognitive efficiency (t test, P = 0.101). A classification into

patients and controls based on cognitive efficiency yielded a
sensitivity of up to 81% while maintaining full specificity (Fig.
S1D). Fatigue or depression could be excluded to confound the
results, as none of the patients was found to show symptoms of
depression (Table S1). and the level of cognitive efficiency was
unrelated to any metric of the Modified Fatigue Impact Scale
(33) (Fig. S1E).
Taken together, we find cognitive impairment to be a prevail-

ing feature in early stages of MS. The impairment exhibited
a salient pattern across patients in the form of a general factor,
suggestive of widespread network dysfunctions. In the following
we investigated how this behavioral decline manifested itself in
structural and functional changes of the CNS.

Structural Damage. To evaluate the structural damage that
underlies the observed behavioral impairment, we quantified the
relation of cognitive efficiency to several anatomical parameters.
For each participant we obtained estimates of the volume of the
peripheral gray matter and ventricular cerebrospinal fluid from
the structural scans. The volumes of these structures are sensitive
markers of atrophy processes. Additionally, we derived maps of
fractional anisotropy and mean diffusivity from the diffusion-
weighted imaging data. These diffusion parameters indicate the
integrity of highly organized tissue, such as the white matter, and
allow for an assessment of even subtle disturbances. The stron-
gest association was found within the diffusion parameters.
Cognitive efficiency strongly correlated with a distributed pattern
of fractional anisotropy (Fig. 2A) in the corpus callosum and
immediately surrounding structures (see Fig. S2 for mean dif-
fusivity). The atrophy markers did show a considerably weaker
relation (Fig. 2B). Indeed, the diffusion tensor parameters kept
significant predictive power on the level of cognitive efficiency,
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Fig. 1. Cognitive pathology is dominated by a general factor of cognitive
functioning. (A) Neuropsychological test results for all patients (see Fig. S1
for the combined patient and control data set). The color code indicates
deviations from the age and education norm in SDs. Both axes have been
sorted by the percentage of overall negative performance, as shown in the
margins. (B) Test name sizes scaled by the loadings of the first principal
component for the combined patient and control dataset (spatial position-
ing is arbitrary). This component explained 56.9% of the overall variance in
test performance and is referred to as cognitive efficiency in all subsequent
analyses. (C) Component scores of the first principal component for all study
participants. Group means are indicated by the colored bars at the ordinate.
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Fig. 2. The loss of cognitive efficiency relates to widespread structural
damage. (A) Group-level correlation of cognitive efficiency with voxel-wise
fractional anisotropy. The analysis was performed within a standard-space
white matter mask shown as a black underlay. Correlations are shown as
corresponding z-scores and have been thresholded at P = 0.05, FDR cor-
rected. No negative correlations passing this threshold were observed. (B)
The relation of cognitive efficiency to three anatomical parameters: (Top)
mean fractional anisotropy within a corpus callosum mask, (Middle) volume
of the peripheral gray matter normalized for individual head size, and
(Bottom) normalized volume of the ventricular cerebrospinal fluid. Patients
are shown as red dots; healthy controls are shown as blue dots.
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even when removing the most extreme patients from the analysis
or performing the analysis only within the patient group (Fig.
S2). These results suggest the level of cognitive efficiency to
strongly relate to structural damage as reflected in a broadly
distributed pattern of reduced white matter integrity.

Functional Connectivity Modulations. We studied the changes in
functional connectivity that are related to cognitive efficiency
with a data-driven procedure (Fig. 3A and Materials and Meth-
ods). First, we derived measures of connectivity based on the
covariation of BOLD time series between ∼40,000 voxels that
span the cortex for each participant. Then, we quantified the
behavioral modulation of functional connectivity by correlating
the strength of each connection with cognitive efficiency across
participants. We used random permutation statistics to identify
voxels that had a modulation in connectivity (see Fig. 3A, Fig. S3,
and SI Materials and Methods for a detailed description of the
method). This procedure identified distributed sets of voxels
[n = 447, P < 0.05, false discovery rate (FDR) corrected] that
exhibited significant modulation (Fig. 3B). The largest clusters of
behavioral modulation localized to bilateral inferior parietal
cortices as well as to midline structures in the posterior cingulate
and medial frontal cortex (Table S2). Importantly, the procedure
did not make any assumptions about specific functional networks
or whether connectivity increases or decreases contribute to the
modulation. In other words, these regions changed their connec-
tivity, but the spatial patterns of these connectivity changes, as well
as the direction in which the connectivity was changed (increase or
decrease), remained unresolved by this first analysis step.
The spatial patterns underlying the behavioral modulation can

be revealed from the individual modulation profiles of each of
the identified voxels. The modulation profile contains the global
increases and decreases of connectivity with cognitive efficiency.
First, we analyzed whether the 447 modulation profiles exhibited
similarity across voxels. Indeed, the similarity matrix revealed
a strong dominance by one underlying pattern (Fig. 4A). Two
groups of voxels emerged that were characterized by a highly

similar modulation profile within the group and an inverted
pattern between the groups. We then derived the underlying
dominant spatial pattern of modulation as the first principal
component of the modulation profiles (Fig. 4B). This dominant
spatial pattern explained 40.4% of the total modulation variance
and comprised two functional networks: (i) the default mode
network (DMN; negative values) and (ii) areas implicated in
the deployment of attention and cognitive control, hereafter
referred to as the control network (CN; positive values) (34).
The networks’ opposite sign indicated that the major connec-
tivity modulation was a concurrent increase of connectivity to
one network and a decrease of connectivity to the other. We then
further analyzed the strength with which each of the 447 voxels
expressed this dominant pattern of modulation (Fig. 4C). Ren-
dering the loadings of the dominant modulation pattern on the
cortical surface again revealed the two groups of voxels, which
exhibited the pattern in an inverted way. The larger group was
located in the bilateral parietal cortices, posterior cingulate
cortex, and medial prefrontal cortex. These structures spatially
overlapped with core parts of the DMN. The positive loadings
of these regions showed them to exhibit the modulation pattern
as depicted in Fig. 4B. Connectivity was shifted toward the DMN
in cognitively less-efficient participants (anticorrelation), whereas
it was shifted toward the CN in cognitively efficient participants
(positive correlation). The smaller cluster exhibited the same
pattern of modulation, but connectivity was shifted in the opposite
way between the networks (negative loadings). These structures,
spatially corresponding to parts of the CN, showed a connectivity
shift toward the CN in cognitively less-efficient participants, and
a connectivity shift toward the DMN in cognitively efficient par-
ticipants. Thus, the spatially distributed modulations of functional
connectivity involved two major functional networks, the DMN
and CN. The nature of the modulations was a shift of connec-
tivity toward the spatially corresponding network in cognitively
less-efficient participants and, at the same time, away from the
other network.
An increase in BOLD time-course correlations (connectivity)

could reflect a change from moderately positive to highly positive
correlation values in the patients, but also a change from strong
anticorrelation toward less anticorrelation. The important dif-
ference between these scenarios cannot be revealed from the
modulation alone. In a last step, we thus went back to the first
level of analysis and mapped the actual range of connectivity that
was underlying the modulations. To this end we constructed a
connectivity graph between the two groups of identified regions
(Fig. 4C) and the two networks of the dominant spatial modu-
lation pattern (Fig. 4B and SI Materials and Methods). We then
derived the average within- and across-network connectivity. The
within-network connectivity increased toward more positive
correlation values in the patients (Fig. 4 D and E). For both
groups the average within-network connectivity was significantly
positive (DMN: patient group, t test, P = 8.5 × 10−5, control
group, t test, P = 7 × 10−7; CN: patient group, t test, P = 2.6 ×
10−6, control group, t test, P < 1 × 10−7), with the patient group
showing a higher connectivity (DMN: paired t test, P = 0.035;
CN: paired t test, P = 0.022). The finding that the control group
exhibited positive connectivity suggested that the identified regions
were loosely associated with the networks in the healthy condition
and became integrated more strongly in the patient group.
The two networks involved in these modulations have pre-

viously been shown to exhibit an intrinsically anticorrelated re-
lationship during rest (35) as well as in task situations (36). In
agreement with these findings, for both networks the increased
connectivity was accompanied by a more marked anticorrelation
with the other network. The average across-network correlations
were negative for both groups (Fig. 4F; patient group t test, P =
0.0017, control group t test, P = 7 × 10−4), with the patients
exhibiting stronger anticorrelations (paired t test, P = 0.037).
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Note that the statistics shown in Fig. 4 D–F are not independent
from the procedure, which identified the effect. The existence of
group differences in the connectivity data underscores the ro-
bustness of the effect but had to be expected from the nature of
the behavioral parameter. The focus of analysis here was the
range of actual connectivity that is spanned by the modulations.
To control whether the two most extreme cases in the patient
group could have driven these results alone, we performed
control analyses without them (Fig. S4C). Both the association of
connectivity with behavior as well as the group differences were
present when omitting these patients. Additional control analy-
ses regarding the preprocessing of the fMRI data and head
movement levels are detailed in SI Materials and Methods.
Taken together, the pathological loss of cognitive efficiency

was associated with a gain of functional connectivity among core
parts of the default mode network as well as a control network.
These effects distinguished the groups and got stronger as the
cognitive impairment and thus structural damage worsened.

Discussion
We have investigated the relation of a salient, pathological
pattern in behavior to the covariance structure of spontaneous
brain activity in patients with early stage MS. At the heart of our
observations lies the divergent role of anatomical and functional
connectivity measures in indexing the level of cognitive ability.
Functional connectivity within two networks increased in the
face of a concomitant reduction of anatomical connectivity and
a decline in cognitive efficiency. This finding seemingly contra-
dicts the predominant view of how functional connectivity in-
dexes the integrity of the underlying circuits. A gain in shared
variance of the BOLD fluctuations is often interpreted as a gain
in functional interactions between the brain regions. Conversely,
a pathological loss of function is thought to be reflected in a loss
of cofluctuations in dedicated brain systems. This view has been
supported by numerous studies across diverse neurological con-
ditions, such as stroke (6, 37), traumatic brain injury (38), Alz-
heimer’s disease (39), vegetative state and coma (40), callosotomy
(20), and the decline in healthy aging (8), raising the question of
what may be different in the case of MS.
Several of our observations suggest that a main distinct feature

of the pathology may be the diffuse and distributed impact MS

has on white matter integrity and CNS networks. First, the be-
havioral parameter, which was used to identify the connectivity
modulations, exhibited a notable multivariate structure. The
appearance of a general factor suggests a loss of resources,
which are required to support a sufficient bandwidth of cognitive
processes, conjointly affecting otherwise more distinct cognitive
domains (Fig. S1F). Second, we find the strongest association
between the level of cognitive efficiency and structural measures
in a spatially widespread pattern of white matter integrity. And
third, the increased connectivity was present in networks implied
in different cognitive functions, such as cognitive control of ex-
ternal (41, 42) and internal information (34, 36, 43–45). These
networks are commonly recruited across a wide variety of cog-
nitive tasks, and require the coordinated flow of information
across a wide expanse of cortex, supported by long-range fiber
tracts. Thus, all aspects of our analyses coherently point to a dif-
fuse and widespread impact of the disease on CNS functioning.
With these considerations in mind, there may be two major

lines of argument for assigning physiological significance to the
increased functional connectivity. First, cortical plasticity pro-
cesses may be central to our results. A well-replicated finding in
task activation studies is that patients in various stages of the
disease will show an enhanced recruitment of task-relevant areas
(46–49). These effects specifically involve an extension of the
activation patterns to additional and functionally related brain
areas. Such results are commonly interpreted as indicating an
increased neural effort in cortical computation due to the pres-
ence of structural damage. Our observations could thus reflect
the traces of these repetitive and increased coactivations, with
the functional connectivity tracking the statistical history of
coactivation in cortical circuits. A number of recent studies in
healthy subjects have documented the strengthening of func-
tional connectivity with training-induced improvement in func-
tions in multiple domains, including the motor (2), visual (3), and
mnemonic system (4). Thus, increased functional connectivity
could provide a compensatory mechanism that, through Hebbian
plasticity, limits the consequences of neurological damage and
helps to maintain a viable level of computational capacity.
However, this putative compensatory function does not agree
well with the negative relationship between functional connec-
tivity and cognitive abilities as reported here. Enhanced plasticity
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might, in principle, also be maladaptive and directly contribute
to the worsening of cognitive functions.
An alternative explanation would be that the reduction in

white matter integrity may have led to a loss of diversity in large-
scale cortical dynamics. The finding of widespread structural
disturbances suggests that the pathological process may have
strongly reduced the anatomical basis for functional interactions
in a diffuse manner. Instead of specific connectivity being lost
completely, the identified regions of modulation might hereby
have lost flexibility in their functional interactions. With pro-
gressing severity, the regions would be unable to gear up to more
variable states and thus more frequently participate in prevalent
global patterns of activity (DMN, CN), which would result in
stronger apparent connectivity on long time-scales resulting from
the more rigid and less-differentiated patterns of functional
connectivity. Such a loss-of-diversity account also fits well with
reduced cognitive efficiency as the major neuropsychological
consequence, suggesting that less-diverse patterns of functional
connectivity may be a correlate of the reduced bandwidth of
cognitive processes. These arguments share conceptual similarity
with the process of dedifferentiation during aging, in which
cognitive representations such as receptive fields get gradually
less specific and more broadly tuned (50, 51). Increased func-
tional connectivity reflecting a loss of diversity in interactions
may indeed be a phenomenon common to pathologies in which
a diffuse reduction, but not the absence, of anatomical connec-
tivity is a prevalent feature. Recent converging lines of theoret-
ical work further support this view. Here the functional dynamics
are seen as an exploration of possible states upon a static
structural scaffold (52). The hypothesis of a loss of possible
interactions within this scaffold naturally reconciles the seem-
ingly divergent role of anatomical and functional connectivity in
indexing the level of cognitive ability. However, given the avail-
able data, these considerations so far remain hypothetical. Our
observations call for theoretical studies addressing the effects
of gradual and diffuse, instead of complete and focal, ablations
in the cortical connectivity regime on the organization of the
unfolding functional dynamics.
Overall, our findings show an association of increased func-

tional connectivity in distinct systems with decreased cognitive
ability in MS. These observations were made without assump-
tions regarding specific brain systems and by means of a careful
consideration of the prevailing cognitive impairment. The func-
tional connectivity analysis was entirely data driven and based on
the hypothesis that the behavioral parameter derived from the
neuropsychological testing is informative about individual CNS
integrity. Our approach took advantage of the strong patholog-
ical variability in the patient data, which may render mean-based
approaches such as group comparisons insensitive, and thus
represents a valuable procedure in revealing pathophysiological
principles in functional imaging data. Our findings extend recent
observations, which have been made using independent com-
ponent analysis, of spontaneous brain activity in MS. These
studies have reported on increased synchronization measures of
network patterns in different stages of the disease (21–23), but
the exact relation to individual behavioral status had remained
unclear. Changes of functional networks and their large-scale

dynamics may provide a key level of description for under-
standing how MS affects the CNS. Future studies will be needed
to characterize the stage of white matter disintegration that
marks the transition from increased functional connectivity to
reductions in coupling and the eventual complete absence of
cofluctuations (18–23). Our findings suggest that incorporating
subtle estimates of the individual behavioral state in addition to
contrasts between clinically defined groups is an important ele-
ment when investigating the impact of MS on brain networks.

Materials and Methods
A detailed description of the applied methods is given in SI Materials and
Methods. In the following we give a brief account of our procedures.

Study Design. Sixteen early stage MS patients and 16 healthy controls
matched for age, sex, and education participated in the experiments (SI
Materials and Methods and Table S1). Each participant completed three
experimental stages within 1–4 successive days: (i) neuropsychological ex-
amination with a battery of self-evaluation and cognitive measures; (ii) 20-
min recording of magnetencephalography (275-channel CTF MEG System)
during silent fixation; and (iii) MRI session, with a recording of ∼20 min
BOLD signal during silent fixation and high-resolution anatomical as well as
diffusion-weighted images. The local ethics committee approved the study,
and each study participant gave informed consent before taking part in the
experiments. All experiments were conducted according to the Declaration
of Helsinki.

Data Analysis. The analysis of the behavioral data was performed on 10
cognitive measures, which were extracted from themore demanding parts of
the tests. The raw scores were normalized with the appropriate normative
data of a healthy population, matching the individual participants in age and
education. The behavioral parameter “cognitive efficiency” was then esti-
mated as the first principal component of the resulting performance matrix
containing all normalized test results of all participants. The analysis of the
structural damage was done using FSL (http://www.fmrib.ox.ac.uk/fsl/) (53).
The diffusion tensor parameters were estimated with the diffusion-
weighted imaging tools as documented in the initial steps of TBSS (http://
www.fmrib.ox.ac.uk/fsl/tbss/index.html) (54). Statistical analyses were per-
formed within a standard-space white matter mask (FMRIB58_FA skeleton
thresholded at 0.2), shown as a black underlay in Fig. 2A and Fig. S2A. The
tissue volumes (normalized for individual head size) were calculated using
SIENAX (55). The global modulation of functional connectivity by the level of
cognitive efficiency was calculated after standard preprocessing procedures
of the functional data. In short, for each voxel, the behavioral modulation of
functional connectivity was calculated as the number of significant (P = 0.01,
uncorrected) group-level correlations that occurred between its global
connectivity pattern and the level of cognitive efficiency. For assessing the
statistical significance of the modulations, the procedure was repeated 100×
while randomly permuting the behavioral parameter. A normal distribution
was fitted to these resamples to derive an empirical distribution for the null
hypothesis of no connectivity modulation with cognitive efficiency. This
distribution was used to derive z-scores (subtraction of mean and division by
the SD) and P values. We corrected for multiple statistical testing by con-
trolling for the FDR (56).
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