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increased Hydration Can Be 
Associated with weight Loss
Simon N. Thornton*

INSERM U_1116, Université de Lorraine, Vandoeuvre les Nancy, France

This mini-review develops the hypothesis that increased hydration leads to body weight 
loss, mainly through a decrease in feeding, and a loss of fat, through increased lipolysis. 
The publications cited come from animal, mainly rodent, studies where manipulations of 
the central and/or the peripheral renin–angiotensin system lead to an increased drinking 
response and a decrease in body weight. This hypothesis derives from a broader asso-
ciation between chronic hypohydration (extracellular dehydration) and raised levels of the 
hormone angiotensin II (AngII) associated with many chronic diseases, such as obesity, 
diabetes, cancer, and cardiovascular disease. Proposed mechanisms to explain these 
effects involve an increase in metabolism due to hydration expanding cell volume. The 
results of these animal studies often can be applied to the humans. Human studies are 
consistent with this hypothesis for weight loss and for reducing the risk factors in the 
development of obesity and type 2 diabetes.
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inTRODUCTiOn

Increased water intake is associated with loss of body weight produced via two mechanisms, 
decreased feeding and increased lipolysis. The obverse also appears to be true. Mild, but chronic, 
hypohydration is correlated with increased body weight and its attendant dysfunctions (1). The 
common denominator likely is angiotensin II (AngII), the principal hormone of body fluid regula-
tion. In what follows, this hypothesis will be tested against the available evidence (2).

AngII acts on two, seven transmembrane domain peptide receptors, AT1 and AT2. Working 
through the AT1 receptor AngII stimulates thirst (the act of seeking out and drinking fluids, mainly 
water), an appetite for sodium, the release of anti-diuretic hormone (ADH or vasopressin) to con-
serve water via the kidneys, and vasoconstriction (conserving perfusion pressure to all organs and 
cells). The principal physiological signal for an increase in plasma AngII is extracellular dehydra-
tion (hypovolemia) (3). The responses listed above enable the rapid return of plasma volume to 
normal levels, thus reducing the signal for AngII generation. This is the physiological response to 
hypovolemia displayed by rodents.

However, chronically elevated AngII appears to be involved in several chronic human diseases 
(2). Antagonists of the renin–angiotensin system (RAS) are prescribed in 85% of cases to treat 
cardiovascular disease (4, 5). The same antagonists are used to treat obesity (6), diabetes (7, 8), 
cancer (9), and Alzheimer’s disease (10). These effects could result if a subsection of the population 
was chronically, but mildly, hypohydrated [e.g., Ref. (11)], i.e., chronically, but mildly, hypovolemic.

These chronic diseases also involve metabolic dysfunctions (12, 13). This has been observed 
for  cardiovascular disease (14, 15), obesity (16), diabetes (17–19), cancer (20), and Alzheimer’s 
disease (21). In other words, chronic hypohydration may be driving the continuous release of AngII 
and the metabolic dysfunction found in the chronic human diseases.

Given that in animals AngII stimulates appropriate drinking responses, why is that some humans 
appear not to respond appropriately to the same AngII signal? The influence of other, perhaps 
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cognitive, factors on appropriate drinking responses has been 
noted in kidney stone formation, where increased water intake is 
recommended as a preventative measure, but compliance is dif-
ficult (22, 23). The authors noted that “not knowing the benefits 
of water drinking,” “not liking the taste,” and “the need to urinate 
frequently” influenced patient’s behavior.

MeTHODS

This mini-review concentrates on angiotensin and metabolic 
function by looking at the effect of central and peripheral 
manipulations of the RAS that increase drinking, reduce food 
intake, decrease body weight, and produce fat loss through 
increased lipolysis. Literature searches used keywords: angio-
tensin, drinking, water intake, body weight loss, obesity, dia-
betes, RAS antagonists, metabolism, hydration, atrial peptides, 
UCP1, insulin resistance, and mitochondria. Research and 
clinical articles are cited where there is an associated increase 
in water intake, a decrease in body weight, a decrease in body 
fat, and/or a decrease in the markers of the risk of developing 
obesity and type 2 diabetes. There is a large literature on the 
RAS and body weight regulation as well as metabolism but 
not all articles measured water intake and thus are not cited.

CenTRAL Angii, DRinKinG, 
AnD weiGHT LOSS

Administration of AngII into the brain of behaving animals 
increases drinking. Rats can consume over 2  h up to 15  ml of 
water in response after a single injection of AngII, depending on 
the dose and the site of injection (24–30). A decrease in feeding 
following drinking stimulated by intracranial AngII was noted 
early on, but this appeared to fade as the drinking response waned 
(31). Furthermore, in rats, chronically administered AngII over 
several days or weeks increased drinking (at least a doubling in 
daily intake), which was associated with a small decrease in food 
intake and a decrease in body weight, mainly through loss of fat 
(32–35). The decrease in body weight following the AngII infu-
sion was greater than that in pair-fed rats.

Several mechanisms not necessarily related to the increased 
drinking have been suggested for this, AngII produces an increase 
in uncoupling protein I (33, 35). Others have suggested an 
increased thermic effect of food, an increased feeding hormone 
effect, or even an increased in stress hormone release (35). Both 
mechanisms imply a change in metabolic activity.

RAS AnTAGOniSTS DRinKinG 
AnD weiGHT LOSS

In other rodent models of obesity, using either angiotensin-
converting enzyme (ACE) inhibitors or AT1-specific antagonists 
increased drinking significantly with an associated decrease in 
food intake and body weight mainly through loss of fat. In some 
cases, the fat loss was specifically linked to increased lipolysis 
(36–41). The drinking responses ranged from a 30% increase to 
up to a doubling of normal intake in both rats and mice. With 

two AT1-specific antagonists, candesartan and losartan, this 
effect is observed in obese, rather than lean, rats (42, 43). Use of 
the renin inhibitor aliskiren in mice on both low-fat and high-fat 
diets demonstrated a significantly increased drinking response 
with a lower body weight gain and loss of body fat over a 43-day 
treatment period (44).

Increased drinking to RAS blockade may appear paradoxical, 
but it could be in response to blockade-induced increased urine 
flow (45, 46) or to peripheral blockade-induced increase in AI 
passing through the blood–brain barrier, converting to AngII in 
the brain, and activating hypothalamic AT1 receptors (47–49). 
It could also be in response to the hypovolemia produced by the 
RAS blockade, but no data were found to support this.

The same RAS inhibitors have been reported to be renoprotec-
tive, reduce obesity, and improve insulin sensitivity in rodents, but 
without recording water intakes (50–53). Similar results occurred 
in one human study (54), yet not in another (55), both without 
recorded fluid intakes. Hypohydration has been shown to lead to 
hyperglycemia (56), which is linked with the major problems of 
obesity and type 2 diabetes.

RAS “KnOCKOUT” MiCe DRinKinG 
AnD weiGHT LOSS

Similar “paradoxical” results are found when the renin gene is 
knocked out, mice drink copiously (2.4  ±  0.1 compared with 
9.2 ± 0.7 ml/day), are hyperactive, thin, have low body fat, and 
do not develop obesity (57). A decrease in body weight and % fat 
with an increase in activity was observed in renin-deficient mice 
on a high-fat diet, but no water intakes were given (58). Similar 
results occur in mice lacking the AT1 receptor (59, 60); however, 
no decrease in body weight was observed, despite a nearly three-
fold increase in drinking in these AT1-receptor KO mice (61). 
Furthermore, angiotensinogen-deficient mice exhibit a decrease 
in body weight and % body fat with an increase in activity. Water 
intakes were not reported in this study (62), but have been noted 
by others (63, 64). Similarly, in ACE gene knockout mice, water 
intake was doubled (from 4.2 ± 0.2 to 9.8 ± 0.5 ml/day), food 
intake was slightly decreased, whereas body weight and body fat 
were significantly decreased (fat by 10%) compared with intact 
controls (65).

Further details on studies on the role of the RAS in food intake 
and metabolic parameters are in the excellent reviews by Mathai 
et al. (37) and by de Kloet et al. (66). In nearly all human and 
animal studies, pharmacological blockade of the RAS decreases 
body weight, food intake, and body fat. Unfortunately, most, if 
not all, studies did not report measurements of water intake. This 
argues for clinical studies on the effects of hydration on body 
weight regulation.

MeCHAniSMS

what Physiological Link exists between 
increased Drinking and Lipolysis?
Work in humans with administration of hypoosmotic solutions 
showed that there was an increase in lipolysis (67–69). The 
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FiGURe 1 | Adipocyte metabolism (hypothesis). In the normally hydrated (euhydrated) adipocyte, triglycerides are formed from glucose and free fatty acid 
uptake, and as well broken down (lipolysis); the rate depending on the needs of the cell for ATP. Glycerol in excess is exported out of the cell. Free fatty acids (ffa) 
are either metabolized or exported (81). As the adipocyte gets more and more dehydrated, formation of triglycerides increases and the ffa are not able to be 
transformed into pyruvate and thence metabolized in the mitochondria. The glycerol transporter, aquaporin 9 (AQP9), increases, bringing in more glycerol to make 
more triglycerides. Glucose uptake is further stimulated by insulin, increasing also triglyceride synthesis. Black circle, cell nucleus; red structure, mitochondria; ffa, 
free fatty acid; aa, amino acid; AQP7 + 9, aquaporin 7 and 9; HSL, hormone-sensitive lipase.
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studies also show an increase in lipolysis with increased drink-
ing indicating and, by inference, an increase in metabolism. 
This produced the hypothesis that increased hydration leads to 
an increase in cell volume and from that to increased insulin 
sensitivity (70–72). Furthermore, the RAS has been linked also 
with mitochondrial dysfunction (73–75), and treatments with 
RAS antagonists improved mitochondrial function (76–80). 
Because the same treatment induces increased water intake, this 
suggests that an increased hydration may enhance mitochondrial 
function and thus metabolism. These mechanisms are illustrated 
in Figures 1 and 2.

Some studies report an increase in activity with increased 
hydration, but the authors did not look at activity alone in the 
overall effects on body weight decrease.

Another plausible mechanism is that increased water intake 
drives thermogenesis (83–87) that would lead also to a decrease 
in weight gain.

Physiologically, increased water intake leads to an increase in 
blood volume with an attendant increase in right atrium pressure. 
This would release atrial natriuretic peptide (ANP), which was 
one of the first identified natriuretic peptides (88). This family 
of cardiac natriuretic peptides activates uncoupling protein 1 
(UCP1) that increases fat metabolism and leads to a loss of body 
weight (89–95). A significant increase in UCP1 was observed in 
renin knockout mice fed a high-fat diet (58), and these animals 
drink copious amounts of water (57). Furthermore, receptors for 

atrial peptides have been demonstrated in brown adipose tissue 
(96, 97).

Physiologically, the presence of AngII is linked almost exclu-
sively to extracellular dehydration (or extracellular thirst). The 
physiological stimuli for thirst are known (3) and can be broken 
down to intracellular and extracellular deficits. Intracellular 
dehydration involves an increase in plasma osmolality (normal 
levels between 295 and 300 mosmol/kg water), leading to activa-
tion of hypothalamic osmoreceptors that stimulate drinking and 
the release of ADH that in turn conserves hydration by increas-
ing renal water reabsorption. This action should return plasma 
osmolality to normal levels, reduce the motivation to drink, and 
stop the release of ADH. Extracellular dehydration, or a decrease 
in blood (plasma) volume (hypovolemia), leads to renin release 
from the kidney, which acts enzymatically on angiotensinogen in 
the blood making angiotensin I (AngI). AngI is transformed by 
ACE into AngII. As mentioned in Section “Introduction,” AngII 
stimulates the seeking out and drinking of fluids (mainly water), 
an appetite for sodium, the release of ADH, and vasoconstric-
tion. These actions should return plasma volume to normal levels 
while reducing blood AngII levels, the motivation to drink, to eat 
salt (mainly sodium), and the release of ADH. Most hypohydra-
tion leads to a mixture of intracellular and extracellular stimuli 
that should stimulate the behavioral acts of drinking and sodium 
intake, as well as the release of ADH, thus allowing correct regula-
tion of body (and cellular) hydration.
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FiGURe 2 | normal cell metabolism (hypothesis). In a normally hydrated (euhydrated) cell, all substrates are taken up by their appropriate transporter 
mechanisms and enzymatically converted to pyruvate, transported into the mitochondria, converted to acetyl-CoA, which then enters the tricarboxylic acid cycle to 
generate ATP (82). As the cell gets more and more dehydrated, the metabolism of free fatty acids (ffa) and amino acids (aa) to pyruvate and/or acetyl-CoA decreases 
producing a dependence on glucose as the main fuel source [as has been reported for obesity (16)]. Furthermore, as the cell decreases in size, the ability of insulin to 
stimulate glucose uptake decreases, leading to insulin resistance. Black circle, cell nucleus; red structure, mitochondria; ffa, free fatty acid; aa, amino acid.
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Although thirst is an effective motivation in most animal stud-
ies, it may not be a sufficient or adequate stimulus for drinking in 
many humans, including the ill, the elderly, and infants (98). The 
increased blood levels of AngII indicate that part of the human 
population may be chronically, but mildly, hypohydrated. As 
suggested earlier, chronic hypohydration is driving continuous 
release of AngII and, by extension, the metabolic dysfunction 
found in cardiovascular disease, obesity, diabetes, cancer, and 
Alzheimer’s disease.

RODenT AnD HUMAn HYDRATiOn

In its homozygous form, the Brattleboro rat figures prominently 
in studies of metabolism. This animal does not produce ADH 
and thus urinates copiously and consequently drinks consider-
ably, up to 200  ml/day. These animals grow more slowly than 
their littermate controls with ADH for the same amount of food 
ingested (99–101). In the Brattleboro rat, this could be due to a 
significantly increased metabolism as observed in neurons when 
measuring fluorine 18-labeled fluorodeoxyglucose uptake with a 
PET scanner (102).

Human studies suggest a similar effect as an increase in water 
intake has been associated with a decrease in body weight in 
obese, overweight, and normal children, and adults (103–111). 
Furthermore, addition of 500 ml of water before eating breakfast 
or a hypocaloric meal reduces energy intake (112) or increases 
weight loss (113). In a recent random controlled trial, there was a 

significant weight loss between a group eating meals with a pre-
meal water load compared with the controls without a pre-meal 
water load (114).

DieTS, DRinKinG, AnD weiGHT LOSS

To take this further, in rodents, a high-protein diet is associ-
ated with weight loss (115, 116) and with increased drinking 
(117,  118). This increased drinking may reflect the increased 
urine output (119, 120) needed to excrete the added urea 
resulting from the additional dietary protein metabolism (121). 
Nevertheless, based on the evidence reviewed above, the weight 
loss observed while on not in a high-protein diet also could be 
a direct result of the increased water intake. Furthermore, an 
increased protein diet is also associated with an increase in size 
and number of functionally normal liver cell mitochondria (122, 
123). This would correlate with an increase in cell size following 
an increase in hydration as mentioned above. Finally, weight loss 
produced using a hypocaloric diet induces a significant (30%) 
increase in water intake in both young (4 months old) and old 
(9 months old) female mice (124).

DiSCUSSiOn AnD COnCLUSiOn

This brief review highlights the considerable evidence that an 
increase in water intake, i.e., increased hydration, leads to loss of 
body weight. In rodent studies, the effect is clear and consistent. 
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At the least, this requires that measurement of water intake 
must be included in an experiment concerning rodents and 
all aspects of body weight regulation, from ingestive behavior 
to metabolic function. An increase in metabolism is one likely 
mechanism for the weight loss effect (125) because this can lead 
to increased mitochondrial function. In adipocytes, ramping up 
mitochondrial activity increases lipolysis. Human studies should 
also address the question of hydration with the increased use 
of RAS antagonists in the treatment of insulin resistance (126). 
Body weight regulation is a complex process, and increased 
water intake should be part of the measures required to reduce 
the overall risk factors.

As mentioned in Section “Introduction,” the effects of 
chronic mild hypohydration extend beyond fostering obesity. 
Extracellular dehydration-induced AngII, and the attendant 
possible mitochondrial dysfunction, may contribute not only 
to obesity and diabetes but also to cardiovascular disease, 
cancer, and Alzheimer’s disease. Furthermore, there could 
be other “symptoms” linking these major health problems to 
hypohydration such as a decrease in brain volume that is also 
associated with Alzheimer’s disease, obesity, and diabetes and 
could be (127). A simple solution for reducing these modern 
chronic diseases would be to increase water intake across the 
general population. Given that hypohydration is a chronic 
circumstance, the effects of increased water intake would likely 

appear as younger groups age, as seen in schools to ameliorate 
childhood obesity (107, 110) and where dehydration is an issue 
at the start of the day (128, 129). Hypohydration occurs in 
France in that water intake is less than the National Nutrition 
Program recommendation of at least 1.5 l/day (130). The precise 
amounts of additional water needed and the relative importance 
of the different possible pathways and mechanisms remain to 
be specified. The implementation of such a policy would then 
require a public health initiative.

A limitation of this mini-review is that it concentrates mainly 
on papers dealing with the hypovolemia (or hypohydration)-
related hormone AngII and the stimulated water intake that 
has effects on body weight, lipolysis, and food intake. There are 
a large number of studies in both animals and humans looking 
at the effects of RAS antagonist treatments for reducing the risk 
of cardiovascular disease, obesity, diabetes, cancer, and even 
Alzheimer’s disease where water intake, or even thirst responses, 
is not reported.
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