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Martin Samuelsson2, and Sophie Erhardt*,1
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Background: The kynurenic acid (KYNA) hypothesis for
schizophrenia is partly based on studies showing increased
brain levels of KYNA in patients. KYNA is an endogenous
metabolite of tryptophan (TRP) produced in astrocytes and
antagonizesN-methyl-D-aspartate anda7* nicotinic recep-
tors. Methods: The formation of KYNA is determined by
the availability of substrate, and hence, we analyzed KYNA
and its precursors, kynurenine (KYN) and TRP, in the ce-
rebrospinal fluid (CSF) of patients with schizophrenia.
CSF from male patients with schizophrenia on olanzapine
treatment (n5 16) was compared with healthy male volun-
teers (n 5 29). Results: KYN and KYNA concentrations
were higher in patients with schizophrenia (60.7 ± 4.37nM
and 2.03 ± 0.23nM, respectively) compared with healthy vol-
unteers (28.6 ± 1.44nM and 1.36 ± 0.08nM, respectively),
whereas TRP did not differ between the groups. In all sub-
jects, KYN positively correlated to KYNA.Conclusion:Our
results demonstrate increased levels of CSF KYN and
KYNA in patients with schizophrenia and further support
the hypothesis that KYNA is involved in the pathophysiology
of schizophrenia.
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Introduction

The kynurenic acid (KYNA) hypothesis of schizophrenia
is based on findings that patients with schizophrenia have
elevated levels of KYNA in the cerebrospinal fluid
(CSF)1,2 and in the postmortem prefrontal cortex.3

KYNA is an endogenous tryptophan (TRP) metabolite
(figure 1) synthesized in and released by astrocytes in
the brain. In millimolar concentrations, it blocks the

a-amino-3-hydroxy-5-methyl-isoxazole-4-propionate and
kainate receptors, but in lower, micromolar concentra-
tions, it blocks the glycine site of the N-methyl-D-aspartate
receptor (NMDAR)4 as well as the cholinergic a7* nic-
otinic receptor (a7nAChR).5

The exceptional receptor-binding profile of KYNA is
particularly interesting given that hypoglutamatergia,
possibly induced by NMDAR hypofunction, is a promi-
nent theory as part of the pathophysiology of schizophre-
nia.6 In addition, the importance of an intact a7nAChR
signaling in cognitive functions has during the last decade
been suggested in numerous studies.7 In further support
of the KYNA hypothesis of schizophrenia, animal stud-
ies show that pharmacologically elevated levels of brain
KYNA impair contextual learning and working
memory8–10 and disrupt prepulse inhibition,11 a behav-
ioral model measuring sensory motor gating. Interest-
ingly, these domains are affected in patients with
schizophrenia.12–15

The concentration of KYNA found in rodent or hu-
man brain and CSF or rodent extracellular fluid is below
that required to affect either the N-methyl-D-aspartate/
glycine site (half maximal inhibitory concentration
[IC50] = 8–15lM)4 or the a7nAChR (IC50 = 7lM).5

Thus, the physiological role of KYNA as a modulator
of neural transmission has been questioned ever since
it was first discovered in the brain.16,17 However, a variety
of animal studies have clearly confirmed a physiological
role of KYNA in neural transmission.18–23 This discrep-
ancy might be related to the production and release of
KYNA by astrocytes, closely connected to the synapse
and known to adjoin glutamatergic boutons.24 Such an
appropriate location puts newly synthesized KYNA in
an excellent position to interact with the receptors.
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This interaction has been confirmed by studies showing
a tonically modulatory role of endogenous KYNA on
midbrain dopamine firing. Thus, pharmacologically ele-
vated levels of KYNA increase midbrain dopamine
firing,25–31 whereas lowered levels of KYNA dampen
the activity of these neurons.28,29 Pharmacologically al-
tered levels of KYNA have also been shown to influence
brain dopaminergic, cholinergic, and glutamatergic ter-
minal efflux18,19,23,32 as well as the pharmacological re-
sponse to several drugs, eg, nicotine, clozapine, and
amphetamine.27,29,31,33,34 Furthermore, several studies
during the last years also suggest a critical role of
KYNA in cognitive functions.8–11,21 Interestingly, mice
with a targeted deletion of kynurenine aminotransferase
II resulting in low levels of endogenous KYNA display
increased performance in cognitive tests.35

Brain levels of KYNA heavily depend on the availabil-
ity of its immediate precursor, kynurenine (KYN).18

Thus, the aim of the present study was not only to con-
firm elevated CSF KYNA levels in schizophrenia inves-
tigating well-controlled outpatients and age-matched
healthy volunteers but also, in these cohorts, to analyze
CSF levels of TRP and KYN.

Methods

Patients and Healthy Volunteers

TRP, KYN, and KYNA concentrations were measured
in CSF from Diagnostic and Statistical Manual of Mental
Disorders, Fourth Edition (DSM-IV) verified male
patients with schizophrenia (n = 16, age 36.8 6 7.9 y
[mean 6 SD], range 23–49 y). Diagnosis was based on
clinical interviews by an experienced psychiatrist. All

patients were stable, chronically ill outpatients, and all
had been prescribed antipsychotic drugs for a minimum
of 6 months. Symptom severity was rated with Brief Psy-
chiatric Rating scale (BPRS)36 and global assessment of
functioning (GAF).37 At the time of lumbar puncture, all
patients were prescribed and taking the antipsychotic
drug olanzapine as the only antipsychotic treatment.
Patients had been medicated with olanzapine between
0.1 and 10 years (median 2 y) and received the same
dose (2.5–25 mg/d) for at least 14 days before lumbar
puncture. CSF concentrations of TRP, KYN, and
KYNA from patients were compared with those of
healthy male volunteers (n = 29, age 25.4 6 7.3 y
[mean 6 SD], range 18–51 y).

All controls were in good physical health and mainly
recruited among medical students, hospital staff mem-
bers, and their relatives from the same community and
with a similar socioeconomic background. Controls
and patients were subjected to a medical checkup includ-
ing routine laboratory tests and a physical examination
and were all free from any form of substance abuse.
All controls were medication free for at least 1 month
prior to lumbar puncture, although smoking and coffee
were allowed. All controls were also subjected to a semi-
structured interview using the Structured Clinical Inter-
view of DSM-IV Axis I disorders (SCID-I),38 completed
the SCID-II questionnaire for personality disorders,39

and considered to be eligible for the study. None of
them had a family history of major psychosis or suicide
in first or second-degree relatives, and they were all
found to be free from current signs of psychiatric mor-
bidity or difficulties in social adjustment at the time of
sampling.

Fig. 1. Kynurenic acid, kynurenine, and tryptophan in cerebrospinal fluid (CSF) of healthy male volunteers and male patients with
schizophrenia. Each point represents the concentration in a single CSF sample and the horizontal line the mean for each group. Statistics:
**P < .01, ***P < .001 (Mann-Whitney U test).
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Lumbar punctures of patients with schizophrenia and
healthy controls were performed under the same condi-
tions, by the same physicians, after a minimum of 8 h in
fasting state. There were no restrictions concerning pos-
ture or rest during the preceding 8 h. At about 8 AM, a dis-
posable needle (BD Whitacre Needle 0.7 3 90 mm) was
inserted at the lumbar vertebrae 4–5 level with the subject
in the right decubitus position. Intraspinal pressure was
measured using a disposable spinal fluid manometer
(Optidynamic, Mediplast) before and after the collection
of two 6-ml CSF fractions. The CSF was allowed to drip
into a plastic test tube. The 6-ml fractions of CSF were
protected from light and centrifuged at 3500 rpm for 10
min within 30 min after the puncture. Each 6-ml sample
was divided into 2 plastic tubes and stored at �70�C for
2–4 years until analyzed. CSF from the second fraction
(7–12 ml) was used for analysis throughout the present
study. Data from a subset of the control samples (23)
have previously been published,40 whereas those from
patients with schizophrenia have not been published
previously.

Policy and Ethics

The work described in the present study was carried out
in accordance with ‘‘The code of ethics of the world med-
ical association’’ (Declaration of Helsinki) for experi-
ments including humans: http://www.wma.net/e/policy/
b3.htm. The study was approved by the Ethics Commit-
tee of the Medical Faculty of Linköping University, Swe-
den, the Swedish Medical Products Agency, and the
Swedish Data Inspection Board. All patients and healthy
volunteers received verbal and written information and
gave their written informed consent.

Analysis of KYNA

The analysis of KYNA was performed utilizing an iso-
cratic reversed-phase high-performance liquid chroma-
tography (HPLC) system as previously described.41

Fifty-microliter samples were manually injected, and
some samples were analyzed in duplicates, and the inter-
individual variation was less than 5%.

Analysis of KYN and TRP

To analyze KYN and TRP, samples were thawed in 4�C
and 50 ll manually injected immediately (Rheodyne,
Cotati, California) into a HPLC system. Separation
of KYN and TRP was achieved by reversed-phase liquid
chromatography using a 20mM NaH2PO4 buffer (not
pH adjusted) with 5.0% acetonitrile. The mobile phase
was delivered by an HPLC pump (Bischoff Chromatog-
raphy, Leonberg, Germany) through a ReproSil-Pur
C18 column (4 3 150 mm, Dr Maisch GmbH, Ammer-
buch, Germany) at a rate of 0.5 ml/min. Following sep-
aration, the analysate was first passed through a guard
cell with an oxidizing potential of 50 mV. Samples were

then quantified by sequential oxidation and reduction in
a high-sensitivity analytical cell (ESA 5011; ESA Inc,
Chelmsford, Massachusetts) controlled by a potentio-
stat (Coulochem III; ESA Inc) with an applied potential
of 600 mV for detection of KYN and TRP. The signals
from the detector were transferred to a computer for
analysis (Datalys Azur, Grenoble, France). The reten-
tion time of KYN was approximately 8–9 min and ap-
proximately 15–16 min for TRP. The sensitivity of the
system was verified by analysis of standard mixtures of
KYN, with concentrations from 5 to 100nM, and TRP,
with concentrations from 0.5 to 5lM, resulting in a lin-
ear standard plot.

Statistical Analysis

KYNA, KYN, and TRP values are given as mean 6 stan-
dard error of the mean. Differences regarding CSF con-
centrations were established using Kruskal-Wallis
analysis of variance followed by Mann-Whitney U test.
Linear regression analysis was performed to study the re-
lation between age and CSF KYNA levels, CSF KYN
levels, or CSF TRP levels. The association between
CSF KYNA levels, CSF KYN levels, and CSF TRP lev-
els, respectively, and with prescribed dose of olanzapine,
smoking status, and total BPRS and GAF scores were
analyzed using Spearman rank correlation. Significance
was assumed for all comparisons with P < .05.

Results

Demographics from patients with schizophrenia are sum-
marized in table 1. CSF KYNA levels in male patients
with schizophrenia (2.03 6 0.23nM, n = 16, P < .01)
were found to be elevated compared with CSF KYNA
levels in healthy male volunteers (1.36 6 0.08nM, n =
29). Additionally, patients with schizophrenia displayed
a 2-fold increase in CSF KYN levels (60.7 6 4.37nM, n =
16, P < .001) compared with CSF KYN levels in healthy
volunteers (28.6 6 1.44nM, n = 29). Concentrations of
CSF TRP revealed no significant difference between
patients with schizophrenia (1.73 6 0.05lM, n = 16)
and healthy volunteers (1.80 6 0.06lM, n = 29). Data
from patients with schizophrenia and healthy volunteers
are summarized in figure 1.

When all subjects were included, a positive correlation
was found between the CSF levels of KYNA and KYN
(P < .05, Spearman’s r = 0.360, n = 45, figure 2). This
correlation was not present in either patients or healthy
controls when analyzed separately. No correlation was
found between CSF TRP and KYNA or KYN levels.
Further, no correlations were found between CSF con-
centrations (KYNA, KYN, or TRP) and BPRS and
GAF scores, age, prescribed dose of olanzapine, or smok-
ing status.
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Discussion

Present results show that CSF KYNA concentrations are
elevated in male patients with schizophrenia. These
results are in line with previous studies showing increased
CSF KYNA concentrations in first episode, drug naive
patients, or patients receiving various antipsychotic treat-
ments1,2 and thus provide further support of a role of
KYNA in the pathophysiology of schizophrenia. In
the present study, we have extended the analysis to in-
clude also TRP and KYN. Hence, in line with the previ-
ously observed increase in CSF KYNA levels in
schizophrenia, we found elevated levels also of its imme-

diate precursor KYN. CSF TRP was, however, not al-
tered. In the present study, we did not find any
correlation between CSF KYN or KYNA and psychiat-
ric symptom scores (BPRS and GAF). However, our rel-
atively small cohort included well-controlled and stable
patients, making such an assessment difficult.

Although the levels of CSF KYNA found in the pres-
ent study are relatively low (cf, Introduction), its concen-
tration at critical sites of action, ie, within the synapses,
should be sufficient to interact with glutamatergic/cholin-
ergic receptors as demonstrated in animal studies (cf, In-
troduction). Interestingly, both NMDAR and a7nAChR
hypofunction is suggested to be widely implicated in the
pathophysiology of psychiatric disorders, and besides el-
evated levels of KYNA in patients with schizophrenia,1–3

also suicide attempters with major depressive disorder42

as well as patients with bipolar disorder40 display ele-
vated CSF KYNA levels. It is thus tempting to speculate
that cognitive dysfunctions, a common denominator in
symptomatology of these diseases, are related to elevated
brain KYNA levels, as also indicated from animal studies
(cf, Introduction).

In the present study, all patients were treated with
olanzapine, providing a homogenous, well-controlled co-
hort. Clearly, treatment with antipsychotic drugs should
be taken into consideration as a confounding factor when
evaluating biological aberrations in brain of patients with
schizophrenia. However, previous animal studies have
shown that treatment with antipsychotic drugs rather re-
duce endogenous concentrations of KYNA while KYN
levels are unaffected.3,43 Furthermore, recent unpub-
lished data from our laboratory show that chronic treat-
ment with olanzapine does not affect rat brain KYNA.
Additionally, the concentration of KYNA tended to

Fig. 2. Correlation between cerebrospinal fluid (CSF) kynurenine
and CSF kynurenic acid (n5 45) in all subjects. Statistics: P< .05,
Spearman’s r 5 0.360.

Table 1. Demographics of Male Patients With Schizophrenia

Patient KYNA (nM) KYN (nM) TRP (lM) BPRS GAF Age (y)
Olanzapine
dose (mg) Smoking

SZ 1 1.57 52.27 1.96 29 63 27 2.5 N
SZ 2 3.27 37.55 1.48 25 68 41 7.5 N
SZ 3 2.29 66.51 1.68 33 62 49 25 Y
SZ 4 2.12 96.31 1.79 29 68 34 10 N
SZ 5 1.87 41.23 1.55 32 53 23 10 N
SZ 6 1.75 54.81 1.62 33 58 34 10 N
SZ 7 4.08 68.81 1.67 33 49 48 20 N
SZ 8 1.53 43.41 1.65 36 48 30 10 Y
SZ 9 2.87 60.17 1.87 46 52 38 12.5 N
SZ 10 1.89 74.22 1.74 46 45 43 20 N
SZ 11 0.67 49.38 2.33 36 65 42 15 N
SZ 12 0.98 51.91 1.72 35 48 33 10 Y
SZ 13 1.86 99.27 1.59 27 65 29 2.5 N
SZ 14 1.42 58.82 1.61 30 58 46 10 N
SZ 15 3.19 57.88 1.74 38 49 31 20 Y
SZ 16 1.19 58.36 1.69 31 61 38 7.5 N

Note: BPRS, Brief Psychiatric Rating scale; GAF, global assessment of functioning; KYN, kynurenine; KYNA, kynurenic acid; N, no;
TRP, tryptophan; Y, yes.
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be decreased in the postmortem brain of patients with
schizophrenia on antipsychotic treatment compared
with patients without treatment.44 Thus, the presently
shown elevation of CSF KYN and KYNA in male
patients with schizophrenia is in all probability not re-
lated to the olanzapine treatment.

While TRP levels were not changed in patients with
schizophrenia, KYN, the immediate precursor of
KYNA, was markedly elevated in the CSF. This is in
line with previous postmortem studies,44,45 further sup-
porting an induction of the KYN pathway in schizophre-
nia. The elevated CSF KYN levels may arise from an
increased synthesis of KYN from TRP or a decreased
synthesis of 3-hydroxykynurenine from KYN (see figure
1). An increased synthesis of KYN might result from an
induction of indoleamine 2,3-dioxygenase (IDO) and/or
tryptophan 2,3-dioxygenase (TDO), enzymes responsible
for the rate-limiting step of the KYN pathway. Notably,
these enzymes are induced during infections or immune
activation,46–48 and numerous studies suggest that
KYNA is a biological marker of neuroinflammation.49,50

Supporting an activation of the brain immune system in
schizophrenia, it was recently found that the CSF concen-
tration of the proinflammatory cytokine interleukin-1b is
elevated in first-episode patients.51 Indeed, gene expres-
sion of TDO as well as the density of TDO-immunopos-
itive cells are found to be elevated in postmortem brain of
patients with schizophrenia, whereas IDO expression is
unaffected.44,52

A decreased synthesis of 3-hydroxykynurenine from
KYN, resulting in increased KYN levels, is supported by ex-
perimental as well as genetic studies. It is well known that
pharmacological blockade of the enzyme converting KYN
to 3-hydroxykynurenine, kynurenine 3-monooxygenase
(KMO), results in elevated brain KYNA levels.19,34,53–55

In addition, we recently reported that a nonsynonymous
polymorphism in the KMO gene results in higher CSF
KYNA levels in both healthy volunteers and patients
with schizophrenia.56 Also, a postmortem study shows
decreased KMO gene expression as well as decreased
KMO enzyme activity in individuals with schizophrenia.57

These latter findings also imply that levels of quinolinic
acid, a neurotoxic NMDAR agonist synthesized in the
alternative branch of the KYN pathway, are not elevated
in patients with schizophrenia, in agreement with previous
reports.58

In conclusion, present results show that CSF concen-
trations of KYN and KYNA are elevated in patients with
schizophrenia. Because the availability of KYN critically
determines the formation of KYNA,18 an elevation of
KYN should explain the increased formation of brain
KYNA in patients with schizophrenia. The precise mech-
anism responsible for the elevation remains to be
revealed; however, present results further support an in-
volvement of metabolites of the KYN pathway in the
pathophysiology of schizophrenia.
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