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A model for replicative life span extension by calorie restriction (CR) in yeast has been proposed whereby reduced
glucose in the growth medium leads to activation of the NADþ–dependent histone deacetylase Sir2. One mechanism
proposed for this putative activation of Sir2 is that CR enhances the rate of respiration, in turn leading to altered levels
of NADþ or NADH, and ultimately resulting in enhanced Sir2 activity. An alternative mechanism has been proposed in
which CR decreases levels of the Sir2 inhibitor nicotinamide through increased expression of the gene coding for
nicotinamidase, PNC1. We have previously reported that life span extension by CR is not dependent on Sir2 in the long-
lived BY4742 strain background. Here we have determined the requirement for respiration and the effect of
nicotinamide levels on life span extension by CR. We find that CR confers robust life span extension in respiratory-
deficient cells independent of strain background, and moreover, suppresses the premature mortality associated with
loss of mitochondrial DNA in the short-lived PSY316 strain. Addition of nicotinamide to the medium dramatically
shortens the life span of wild type cells, due to inhibition of Sir2. However, even in cells lacking both Sir2 and the
replication fork block protein Fob1, nicotinamide partially prevents life span extension by CR. These findings (1)
demonstrate that respiration is not required for the longevity benefits of CR in yeast, (2) show that nicotinamide
inhibits life span extension by CR through a Sir2-independent mechanism, and (3) suggest that CR acts through a
conserved, Sir2-independent mechanism in both PSY316 and BY4742.
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Introduction

Calorie restriction (CR) has been shown to slow aging in
evolutionarily divergent species, including yeast, worms, flies,
and rodents [1–5]. In addition to increasing longevity, CR is
reported to cause additional phenotypes, including increased
resistance to oxidative stress [6–8], enhanced DNA damage
repair [9,10], decreased levels of oxidatively damaged proteins
[11–13], improved glucose homeostasis and insulin sensitivity
[14–16], altered levels of apoptosis [17], and delayed onset of a
number of age-related diseases [18–21]. Although it has been
known for more than 70 y that calorie restriction can increase
life span in mammals [22], a mechanistic understanding of
this phenomenon has remained elusive. It seems clear that
nutrient and growth factor responsive pathways, such as those
mediated by insulin, IGF-1, TOR, and Akt, are likely to
represent important conduits through which these signals
affect the aging rate. CR mediates enhancement of stress
response pathways in mammals [23,24], and signaling through
the insulin-like pathway in worms coordinates expression of a
variety of antioxidant, chaperone, and anti-bacterial stress
response proteins [25–27]. Similarly, TOR-mediated regula-
tion of translational machinery appears to play a role in the
response to nutrient deprivation in yeast [28], worms [29,30],
flies [31], and mammals [32]. Finally, models postulating a role
for Sir2-like protein deacetylases in CR-mediated life span
extension have gained popularity for yeast [33], flies [34], and
mammals, as well [4,35].

In the budding yeast Saccharomyces cerevisiae, CR can be
imposed by reducing the concentration of glucose in the
growth medium, resulting in a 20%–40% increase in
replicative life span in multiple strain backgrounds

[33,36,37]. In addition, genetic models of CR include deletion
of the gene coding for hexokinase, HXK2, and mutations that
decrease signaling through the cAMP-dependent protein
kinase, PKA, such as deletion of the genes coding for the
glucose sensing proteins GPA2 or GPR1, and temperature-
sensitive alleles of adenylate cyclase (cdc35–1) or the RAS-
associated GTPase (cdc25–10) [33].
CR has been proposed to increase yeast replicative life span

by a mechanism involving activation of Sir2 [33], an NADþ–
dependent histone deacetylase [38–40] that inhibits the
formation of extrachromosomal rDNA circles (ERCs) [41].
ERCs are self-replicating DNA molecules that accumulate in
the mother-cell nucleus with age and are thought to cause
senescence [42]. Overexpression of Sir2 increases life span in
multiple strain backgrounds [36,41,43], and deletion of Sir2
shortens life span by about 50% [41,44]. CR fails to increase
the life span of short-lived sir2D cells [33], consistent with the
idea that CR could be acting by a mechanism involving Sir2.
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The question of how CR might activate Sir2 has been a
source of considerable controversy [45]. Saccharomyces cerevisiae
is a facultative anaerobe that, under standard laboratory
growth conditions (2% glucose), generates ATP largely by
fermentation. Under conditions of reduced glucose, such as
CR, S. cerevisiae shifts from fermentation to respiration,
resulting in increased transcription of respiratory genes and
a higher rate of oxygen consumption [46]. In models put forth
by Lin et al., this metabolic shift results in activation of Sir2,
either through increased cellular NADþ [46] or decreased
cellular NADH [47]. Alternatively, Anderson et al. have
reported that CR does not alter NADþ levels [48], but leads
to enhanced expression of PNC1 and a reduction in cellular
nicotinamide [49]. Since nicotinamide is an inhibitor of the
Sir2 deacetylation reaction, its decreased concentration
could result in enhanced Sir2 activity [50,51]. Overexpression
of Pnc1 suppresses the effect of exogenously added nicoti-
namide on Sir2-dependent silencing at HM loci, telomeres,
and rDNA [52]; there are conflicting reports, however, on
whether Pnc1 overexpression alters Sir2 activity at endoge-
nous levels of nicotinamide [49,52].

More recently, we have questioned the importance of Sir2
in life span extension by CR [28,53]. In a long-lived strain
background, BY4742, CR increases life span to a greater
extent in cells lacking both Sir2 and the replication fork
barrier protein Fob1 than in wild-type cells [36]. Based on this
observation, and the fact that deletion of SIR2 shortens life
span by approximately 50%, we proposed a model whereby
the inability of CR to increase life span in sir2D FOB1 cells is
explained as an indirect effect, resulting from the hyper-
accumulation of ERCs [36]. Deletion of FOB1 in a sir2D

background suppresses the hyperaccumulation of ERCs, as
well as the longevity defect [41], thus allowing CR to
dramatically increase the life span of cells in the absence of
Sir2 [36].

Much of the early work suggesting a link between CR and
Sir2 was carried out in the PSY316 strain background
[33,37,46,47,49,50,54], a strain in which, paradoxically, over-
expression of Sir2 fails to increase life span [55]. Guarente
and Picard [35] have proposed that CR might act via different
mechanisms in the BY4742 and PSY316 strain backgrounds.
In order to further clarify the molecular mechanism(s)
underlying replicative life span extension by calorie restric-
tion in yeast, we have sought to directly test key components
of the models for Sir2-dependent CR in both of these strains.

Here, we examine in detail the role of respiratory metabolism
in life span extension by CR, finding that (1) respiration is not
required for life span extension by CR; and (2) CR suppresses
the enhanced early mortality, only apparent in PSY316, due
to loss of mitochondrial DNA. In contrast, exogenous
addition of nicotinamide partially, but not completely, blocks
Sir2-independent life span extension by CR.

Results

Life Span Extension by CR Is Independent of Respiration in
BY4742
A central facet of the Sir2-dependent models for life span

extension by CR is that a metabolic shift from fermentation
to respiration in response to CR results in activation of Sir2
[46,47]. Since Sir2 is not required for life span extension by
CR in BY4742 [36], we wished to determine whether
respiration was also dispensable. The effect of CR in the
absence of respiratory capacity was examined using rho0 cells,
which completely lack mitochondrial DNA. Rho0 yeast lack
three cytochrome c oxidase subunits (COX1, COX2, and
COX3), three ATP synthase subunits (ATP6, ATP8, and
ATP9), and apocytochrome b (CYTB), and are therefore
incapable of respiratory metabolism [56,57]. BY4742 rho0

cells were generated (see Materials and Methods), and the
absence of mitochondrial DNA was verified by staining cells
with DAPI (Figure 1A). Lack of respiratory capacity in rho0

cells was confirmed by inability to grow on the non-
fermentable carbon source, glycerol (Figure 1B). As previ-
ously observed [58], replicative life span under standard
conditions (2% glucose) was not altered by loss of mitochon-
drial DNA in this strain (Figure 1C). CR (0.05% glucose)
significantly enhanced the life span of both wild-type and
rho0 cells to a comparable degree. Thus, respiration is not
required for life span extension by CR in the long-lived
BY4742 strain background.

Life Span Extension by CR Is Independent of Respiration in
PSY316
Previous work indicating that life span extension by CR is

dependent on respiration was carried out in the PSY316
strain background, in which it was reported that deletion of
the gene coding for cytochrome c1, CYT1, prevents life span
extension by CR [46]. In order to address whether life span
extension by CR in mutants incapable of respiratory
metabolism is specific to BY4742, we generated respiratory-
deficient cyt1D and rho0 variants in the PSY316 background
(Figure 2A and 2B) and measured life span on medium
containing either 2% or 0.05% glucose. As in BY4742 rho0

cells, CR significantly increased both mean and maximum life
span in PSY316 rho0 (Figure 2C) and cyt1D cells (Figure 2D).
Unlike the case in BY4742 in which deletion of mitochon-

drial DNA has no effect on life span, PSY316 rho0 variants
exhibited a profound increase in early mortality under
standard growth conditions. This phenotype was not
observed in cyt1D cells, indicating that loss of mitochondrial
DNA, rather than general respiratory deficiency, is respon-
sible for the life span defect. Deletion of CYT1 in cells lacking
mitochondrial DNA, however, resulted in a short life span
comparable to that of rho0 cells (Figure 2E), demonstrating
that rho0 is epistatic to cyt1D for this phenotype. As observed
for rho0 cells, CR more than doubled the short life span of
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Synopsis

Calorie restriction slows aging and increases life span in nearly every
organism studied. The mechanism by which this occurs is one of the
most important unanswered questions in biogerontology. One
popular theory, based on work from the budding yeast Saccha-
romyces cerevisiae, proposes that calorie restriction works by causing
a metabolic shift toward increased mitochondrial respiration,
resulting in activation of a family of proteins known as Sirtuins.
This study demonstrates that life span extension by calorie
restriction does not require respiration and occurs even in cells
completely lacking mitochondrial DNA. Interestingly, calorie restric-
tion protects yeast cells against a severe longevity defect associated
with absence of mitochondrial DNA, suggesting the possibility that
the consequences of age-associated mitochondrial dysfunction
might be alleviated or prevented by calorie restriction.



cyt1D rho0 cells, which contain both nuclear and mitochon-
drial mutations that prevent respiration.

Our observation that CR increased life span in PSY316 cells
lacking CYT1 is in contrast to a previous report [46]. A

potential explanation for this difference is that 0.5% glucose
was used for CR in the prior study, rather than the 0.05%
glucose concentration used in this study. We therefore

measured the life span of respiratory deficient rho0 and
cyt1D cells grown on 0.5% glucose. As we observed for cells

grown on 0.05% glucose, growth on 0.5% glucose increased
the life span of rho0 and cyt1D cells, although the magnitude

of life span extension is reduced relative to 0.05% glucose
(Figure 3A). Thus, the use of a non-optimal level of CR may
have precluded detection of life span extension by CR in

cyt1D mutants in the prior study.

We also examined the effect of CR on Sir2 activity in

respiratory-deficient PSY316 cells. The PSY316AUT variant
has both URA3 and ADE2 marker genes integrated near

telomeres, thus allowing for efficient determination of Sir2-
dependent telomeric silencing in response to genetic or

environmental perturbations [55]. As previously reported,
increased Sir2 activity can be achieved by overexpression of
SIR2 in the PSY316 strain background [55], significantly

enhancing telomere silencing and survival on FOA, while
inhibition of Sir2 by addition of 5 mM nicotinamide to the

medium decreased telomere silencing (Figure 3B). CR,
however, had no detectable effect on Sir2-dependent silenc-

ing at telomeres. Similarly, respiratory deficiency caused by
deletion of CYT1 also fails to impact Sir2-dependent silencing

at either 2% or 0.05% glucose (Figure 3C). A decrease in
survival on FOA was observed in rho0 cells relative to wild-
type or cyt1D cells at 2% glucose (Figure S1); however, CR

failed to result in a detectable increase in Sir2 activity in
respiratory deficient or respiratory competent cells. There-

fore, we find no evidence that a metabolic shift from
fermentation toward respiration is involved in life span

extension by CR or that Sir2 is activated in response to CR.

Nicotinamide Blocks Life Span Extension by CR
CR has also been proposed to activate Sir2 by reducing

cellular pools of nicotinamide, a Sir2 inhibitor [50]. Addition

of 5 mM nicotinamide to the medium prevents life span
extension by CR in wild-type mother cells [49]; however,

interpretation of this experiment is complicated by the fact
that, like deletion of SIR2, high levels of nicotinamide result

in a dramatically shortened life span. We took advantage of
the fact that deletion of FOB1 suppresses the short life span
and ERC hyperaccumulation phenotypes associated with

deletion or inhibition of Sir2 [41] to ask whether nicotina-
mide could inhibit the longevity effect of calorie restriction,

even in the absence of Sir2. As expected, growth on 5 mM
nicotinamide reduced the life span of wild-type cells to a level

not significantly different from that of sir2D cells (Figure 4A).
The very short life span of sir2D cells or nicotinamide-treated

wild-type cells is most likely due to the hyperaccumulation of
ERCs in cells lacking Sir2 activity [36,41]. Also as expected,
nicotinamide had no effect on the life span of sir2D fob1D

double mutants (Figure 4B), because Sir2 is already absent
from these cells. CR dramatically increased the life span of

sir2D fob1D double mutants, but, unexpectedly, addition of
nicotinamide decreased the magnitude of life span extension

Figure 1. Respiration Is Not Required for Life Span Extension by CR in

BY4742

(A) BY4742 rho0 strains lack mitochondrial DNA. DAPI staining of BY4742
(i) wild-type or (ii) rho0 cells grown under standard conditions (2%
glucose) and calorie-restricted (iii) wild-type or (iv) rho0 cells (CR¼ 0.05%
glucose).
(B) BY4742 rho0 strains are unable to grow on glycerol as the sole carbon
source. (i) BY4742 wild-type or (ii) rho0 cells on YEP supplemented with
2% glucose or 3% glycerol.
(C) CR increase life span in BY4742 rho0 cells. Replicative life span analysis
for BY4742 wild-type and rho0 cells on 2% glucose and 0.05% glucose
(CR). Mean life span is shown in parentheses.
DOI: 10.1371/journal.pgen.0010069.g001
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conferred by CR (Figure 4B). Thus, Sir2-independent life

span extension by CR is partially prevented by nicotinamide.

Discussion

Role of Respiration and Nicotinamide in Life Span
Extension by CR

Sir2 is dispensable for life span extension by CR in yeast

[36]. It remains possible, however, that under some con-

ditions, CR might be mediated by Sir2. Central to this

possibility is the premise that CR results in activation of Sir2.

One mechanism by which CR has been hypothesized to

activate Sir2 involves altered levels of the nicotinamide

adenine dinucleotide cofactors NADþ and NADH, resulting

from a metabolic shift toward increased respiration in

response to CR [46,47]. The other mechanism by which CR
has been suggested to activate Sir2 is through a reduction in
nicotinamide levels [49].

An important test of the respiration-dependent model for
CR is whether CR can increase life span in cells that are
incapable of respiration. Contradictory to the prediction
from this model, we find that respiration is dispensable for
enhanced longevity in response to CR. Growth on reduced
glucose resulted in increased life span in two distinct models
of respiratory deficiency, cyt1D and rho0 (see Figures 1C and
2C–2E). These data, combined with the observation that
inhibition of Sir2 cannot account for the effect of nicotina-
mide on life span extension by CR (Figure 4B), call into
question the proposed molecular explanations for activation
of Sir2 in response to CR. Further, we find no evidence that

Figure 2. Respiration Is Not Required for Life Span Extension by CR in PSY316

(A) PSY316AUT rho0 strains lack mitochondrial DNA. DAPI staining of PSY316 (i) wild-type or (ii) rho0 cells grown under standard conditions (2% glucose)
and calorie-restricted (iii) wild-type or (iv) rho0 cells (CR¼ 0.05% glucose).
(B) PSY316AUT rho0 strains are unable to grow on glycerol as the sole carbon source. (i) PSY316AUT wild-type, (ii) cyt1D rho0, (iii) cyt1D, or (iv) rho0 cells
on YEP supplemented with 2% glucose or 3% glycerol.
(C) CR increases life span in PSY316AUT rho0 cells. Replicative life span analysis for PSY316AUT wild-type and rho0 cells on 2% glucose and 0.05%
glucose (CR). Mean life span is shown in parentheses.
(D) CR increases the life span of cyt1D cells. Replicative life span analysis for PSY316AUT wild-type and cyt1D cells on 2% glucose and 0.05% glucose
(CR). Mean life span is shown in parentheses.
(E) CR increases the life span of cyt1D rho0 cells. Replicative life span analysis for PSY316AUT wild-type and cyt1D rho0 cells on 2% glucose and cyt1D
rho0 cells on 0.05% glucose (CR). Mean life span is shown in parentheses.
DOI: 10.1371/journal.pgen.0010069.g002
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Sir2 activity is altered either by CR or by respiratory
deficiency, as measured by Sir2-dependent transcriptional
silencing near telomeres (see Figure 3B and 3C). This result
does not rule out the possibility that CR specifically enhances
Sir2 activity at the rDNA; however, like the case at telomeres,
Sir2-dependent silencing of a modified URA3 marker gene
inserted into the rDNA is not enhanced by CR (J. Smith,
personal communication). Thus, we propose that life span
extension by CR occurs through a conserved Sir2-independ-
ent, respiration-independent mechanism (Figure 5).
It should be noted that our results do not contradict

previous findings that increased respiration correlates with
replicative life span in PSY316. Overexpression of the HAP4

transcription factor, which results in transcriptional up-
regulation of respiratory genes and increased oxygen
consumption, or overexpression of a mitochondrial NADH
oxidoreductase, are reported to increase life span in PSY316
[46,47]. It remains possible that these interventions do indeed
activate Sir2 by altering levels of NADþ or NADH, as
proposed. Alternatively, these interventions may behave as
genetic mimics of CR, increasing life span through a Sir2-
independent mechanism.
Our data suggest that high levels of nicotinamide can alter

the response of yeast cells to CR. How might nicotinamide
interfere with life span extension by CR? We can imagine at
least three possible models. First, nicotinamide could partially
block CR by inhibiting the activity of the other yeast Sirtuins
(Hst1–4). This model seems unlikely because CR increases the
life span of yeast cells lacking both Sir2 and either Hst1, Hst2,
Hst3, or Hst4, and CR increases the life span of a sir2D fob1D

hst1D hst2D quadruple mutant by greater than 50% (unpub-
lished data). Second, nicotinamide could specifically interfere
with the longevity benefits of CR, but through a mechanism
unrelated to Sirtuin action. Nicotinamide, conventionally
classified as a vitamin, participates in many biological
processes distinct from Sirtuins [59], and could conceivably
alter the activity of any NADþ–binding protein in the cell.
Third, a reduction in nicotinamide levels conferred by CR
might be important to offset detrimental effects, resulting
from growth on reduced glucose medium, that are themselves
unrelated to replicative aging, but may shorten life span to an
extent that it masks life span extension by CR. Further study
will be required to distinguish between these models.

Mitochondrial Defects, CR, and Longevity
Defects in mitochondrial function cause several human

diseases, and mutation of mitochondrial DNA has been
suggested to result in age-associated phenotypes in mammals
[60–62]. Yeast provides a unique model in which to study the
phenotypic consequences of mutation to the mitochondrial
genome. With respect to replicative life span, complete
deletion of the mitochondrial genome (rho0) results in
different phenotypic outcomes depending on the genetic
background of the strain [58,63]. Indeed, we report here that
rho0 cells of BY4742 have a life span comparable to that of
wild-type cells, whereas, rho0 cells of PSY316 are extremely
short-lived (compare Figure 1C with Figure 2C). Presumably,
this difference is the result of polymorphisms present in the
nuclear genomes of these strains. Interestingly, in the PSY316
strain background, a nuclear mutation (cyt1D) that prevents
respiration results in a life span comparable to that of wild-
type cells (see Figure 2D). Thus, the short life span of PSY316

Figure 3. Effect of Glucose Concentration on Life Span and Sir2 Activity

in Respiratory-Deficient Mutants
(A) Mean replicative life span is significantly increased in PSY316 AUT
cyt1D and rho0 cells as the glucose concentration is decreased to either
0.5% or 0.05%, relative to life span on 2% glucose. *p , 0.05, **p , 0.01.
(B) Sir2 activity is not increased by CR but is responsive to increased
expression of Sir2 or to addition of exogenous nicotinamide. Transcrip-
tional silencing of the telomeric URA3 marker in PSY316AUT (WT) was
monitored by the survival of cells plated onto medium containing 5-FOA.
(C) Sir2 activity is not altered in respiratory deficient cyt1D cells and is
unaffected by CR. Transcriptional silencing of the telomeric URA3 marker
in PSY316AUT (WT) was monitored by the survival of cells plated onto
medium containing 5-FOA.
DOI: 10.1371/journal.pgen.0010069.g003
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rho0 cells is apparently caused by loss of mitochondrial DNA

rather than a general consequence of respiratory deficiency.

Although the PSY316 rho0 variant is extremely short-lived,

CR by growth on low glucose is capable of increasing the life

span of these cells by more than 100% (see Figure 3A). In fact,

CR increases life span of the rho0 strain to a level that is

comparable to calorie-restricted wild-type cells. To the best

of our knowledge, this is the first indication, in any organism,

that CR has a beneficial effect on defects caused by deletion

of mitochondrial DNA. It will be of interest to understand the

molecular basis for this effect and to determine whether this

is a general feature of CR in multicellular eukaryotes.

Conclusion
Three competing models of life span extension by CR in

yeast have been put forward: (1) Sir2 activation through a

metabolic shift to respiration [46,47], (2) Sir2 activation by
decreased nicotinamide levels [49], and (3) Sir2-independent
life span extension [28,36]. Although CR can increase life
span by a Sir2-independent mechanism [36], it remains to
be determined whether either of the Sir2-dependent models
account for a portion of the longevity benefits of CR under
any conditions. We show here that in two different strain
backgrounds, one of which is the PSY316 strain background
used to generate the data supporting the Sir2-dependent
models, life span extension by CR does not require
respiration. We also show that the partial inhibition of CR
by addition of exogenous nicotinamide does not act
through Sir2. Thus, activation of Sir2 through a metabolic
shift to respiration or through depletion of intracellular
nicotinamide cannot explain CR-mediated increases in
longevity.

Materials and Methods

Strains and media. Unless otherwise stated, all yeast strains were
derived from the parent strain for the haploid yeast open reading
frame (ORF) deletion collection [64], BY4742 (obtained from
Research Genetics, Invitrogen, Carlsbad, California, United States)
or from PSY316AUT [55]. Strains used in this study are listed in Table
1. Gene disruptions were carried out by transforming yeast with PCR-
amplified deletion constructs containing 45 nucleotides of homology
to regions flanking the ORF to be deleted and either HIS3, LEU2, or

Figure 4. Effect of Nicotinamide on Life Span Extension by CR

(A) Nicotinamide shortens the life span of wild-type cells. Replicative life
span analysis for BY4742 wild-type and sir2D cells on 2% glucose
containing or lacking 5 mM nicotinamide (nic). Mean life span is shown in
parentheses.
(B) Nicotinamide partially prevents Sir2-independent life span extension
by CR. Replicative life span analysis for BY4742 wild type on 2% glucose,
along with sir2D fob1D double mutant cells on 2% glucose or 0.05%
glucose (CR) containing or lacking 5 mM nicotinamide (nic). Mean life
span is shown in parentheses.
DOI: 10.1371/journal.pgen.0010069.g004

Figure 5. Genetic Pathways Determining Replicative Life Span in Yeast

Sir2 and CR act in parallel pathways to slow aging. Both pathways are
affected by nicotinamide levels.
DOI: 10.1371/journal.pgen.0010069.g005

Table 1. Yeast Strains Used in This Study

Strain Genotype

BY4742 MATa his3D1 leu2D0 lys2D0 ura3D0

KK86 BY4742 rho0

KK280 BY4742 cyt1D::HIS3

KK144 BY4742 sir2D::HIS3 fobD::LEU2

PSY316 MATa ura3–52 leu2-3,112 his3- 200 ade2–101 lys2–801

PSY316AT PSY316 TELVR::ADE2

PSY316AUT PSY316 TELVR::ADE2 TELVIIL::URA3

EW441 PSY316AUT rho0

DH399 PSY316AUT cyt1D::HIS3

EW443 PSY316AUT cyt1D::HIS3 rho0

DOI: 10.1371/journal.pgen.0010069.t001
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URA3 amplified from pRS403, pRS405, or pRS406 [65], respectively.
In each case, the entire ORF of the deleted gene was removed. All
gene disruptions were verified by PCR. Medium used for life span
studies was YEP (2% bacto peptone, 1% yeast extract) supplemented
with filter-sterilized glucose at the designated concentration. For
nicotinamide supplementation experiments, nicotinamide was added
to YEP from a 500 mM nicotinamide (1003) filter sterilized stock
solution to a final concentration of 5 mM just prior to pouring plates.
Nicotinamide was obtained from Sigma (St. Louis, Missouri, United
States).

Generation of rho0 strains and verification by DAPI staining. The
rho0 strains used for life span analysis were generated by treatment
with ethidium bromide. In each case, life span was determined for
more than one rho0 isolate in order to verify the observed phenotype.
In the case of PSY316AUT rho0, four different rho0 isolates were
examined, and the severe shortening in life span was observed in all
four cases. Life span was also determined for spontaneously arising
PSY316AUT rho0 cells, which showed a life span defect similar to that
of rho0 cells generated by ethidium bromide. Absence of mitochon-
drial DNA was verified by fluorescence microscopy of log phase cells
stained with DAPI.

Replicative life span analysis. Replicative life span analysis was
carried out as described [58]. For all life span experiments, strains
were coded such that the researcher performing the life span
experiment had no knowledge of the strain genotypes. Unless
otherwise stated, standard life span medium was YEP þ 2% glucose
(YPD) and CR medium was YEP þ 0.05% glucose. Life span
experiments in the presence of nicotinamide were carried out at a
final concentration of 5 mM nicotinamide in the plates. Cells were
grown on experimental medium for at least 8 h prior to micro-
dissection. Wilcoxon p-values were calculated using the MATLAB
‘‘ranksum’’ function, and strains are stated to have a significant
difference in life span for p , 0.05.

FOA telomere silencing assays. For the silencing experiment
shown in Figure 3B and Figure S1, three independent cultures were
inoculated from single colonies into liquid YPD for each genotype
and grown overnight. The next morning, each overnight culture was
diluted 1:100 into YPD or CR medium and grown for 4 h in a shaking
incubator. Cultures were then diluted to a cell density of approx-
imately 2 3 103 cells/ml in water, and plated in 100-ll aliquots onto
synthetic complete (SC) or FOA medium, containing either 2% or
0.05% glucose, such that cells cultured in 2% glucose were plated
onto 2% glucose plates and cells cultured in CR medium were plated
onto 0.05% glucose plates (CR plates). Percent survival was calculated
as the number of colonies arising on FOA medium divided by the
number of colonies arising on SC medium. Nicotinamide silencing
experiments were carried out as above, except that after the
overnight culture, cells were preincubated for 4 h in YPD þ 5 mM

nicotinamide and plated onto SC þ 5 mM nicotinamide or FOA þ 5
mM nicotinamide.

For the silencing experiment shown in Figure 3C, cultures of wild-
type or cyt1D cells were inoculated from single colonies into liquid
YPD or CR medium. The next morning, each overnight culture was
diluted 1:1000 into fresh control or CR medium, such that cells grown
overnight in control medium were diluted in control medium and
cells grown overnight in CR medium were diluted into CR medium,
and grown for 8 h in a shaking incubator. Cell cycle division time for
BY4742 control cells was approximately 95 min and for BY4742 CR
cells was approximately 105 min. After outgrowth, cultures were then
diluted to a cell density of approximately 2 3 103 cells/ml in water,
and plated in 100-ll aliquots onto SC or FOA medium, containing
either 2% or 0.05% glucose, such that cells cultured in 2% glucose
were plated onto 2% glucose plates and cells cultured in CR medium
were plated onto CR plates. Percent survival was calculated as the
number of colonies arising on FOA medium divided by the number
of colonies arising on SC medium.

Supporting Information

Figure S1. CR Has No Effect on Sir2 Activity in Respiratory-
Competent or Respiratory-Deficient Cells

Transcriptional silencing of the telomeric URA3 marker in PSY316-
AUT was monitored by the survival of cells plated onto medium
containing 5-FOA.

Found at DOI: 10.1371/journal.pgen.0010069.sg001 (42 KB PDF).
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