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ABSTRACT 

Atypical sensory processing is now thought to be a core feature of the autism spectrum. Influential 

theories have proposed that both increased and decreased neural response reliability within sensory 

systems could underlie altered sensory processing in autism. Here, we report evidence for abnormally 

increased reliability of visual-evoked responses in layer 2/3 neurons of adult primary visual cortex in the 

MECP2-duplication syndrome animal model of autism. Increased response reliability was due in part to 

decreased response amplitude, decreased fluctuations in endogenous activity, and decreased neuronal 

coupling to endogenous activity. Similarly to what was observed neuronally, the optokinetic reflex 

occurred more reliably at low contrasts in mutant mice compared to controls. Retinal responses did not 

explain our observations. These data suggest that the circuit mechanisms for convolution of sensory-

evoked and endogenous signal and noise may be altered in this form of syndromic autism.  

INTRODUCTION 

Autism spectrum disorder (ASD) is classically a disorder of repetitive behaviors and impaired 

communication, but it is becoming better recognized that sensory perceptual dysfunction is a core 

feature of the disorder and is now a DSM5 ASD diagnostic criterion (Simmons et al., 2009; Grzadzinski et 

al., 2013; Robertson and Baron-Cohen, 2017). The great majority of individuals with ASD report hyper- 

or hyposensitivities in multiple sensory domains (Grzadzinski et al., 2013).  In psychophysical studies, 

ASD subjects can show remarkable impairment or enhancement in perceptual sensitivity depending on 

task parameters. For example, autistic individuals demonstrate accelerated visual search, enhanced 

motion perceptual sensitivity under low stimulus noise, and decreased susceptibility to visual illusions, 

while also showing impaired recognition for faces and biological motion, decreased motion perception 

under high stimulus noise, and visual sensory hypersensitivity (Simmons et al., 2009; Robertson and 

Baron-Cohen, 2017). Neurophysiological responses in the visual system are altered in autistic individuals 

(McCleery et al., 2007; Isler et al., 2010; Dinstein et al., 2012; Pei et al., 2012; Weinger et al., 2014; 

Takarae et al., 2016).  

Recent influential theories propose that disrupted neuronal response reliability underlies sensory 

processing deficits in autism (Dinstein et al., 2012; Haigh et al., 2015). While some have theorized that 

excess variability of endogenously generated activity (assessed either behaviorally or 

neurophysiologically) underlie abnormal reliability in autism (Simmons et al., 2009; Heeger et al., 2017; 

Park et al., 2017), others have proposed that there is insufficient endogenous variability in autism 

(Brock, 2012; Pellicano and Burr, 2012; Davis and Plaisted-Grant, 2015). Significant decreases in 

neuronal response reliability have been observed in ASD patients (Milne, 2011; Dinstein et al., 2012; 

Weinger et al., 2014; Haigh et al., 2015, 2016, 2020; Otto-Meyer et al., 2018) and animal models of 

autism (Banerjee et al., 2016; Geramita et al., 2020), but well-controlled studies have also found 

evidence for the opposite pattern (Coskun et al., 2009; Frey et al., 2013; Greenaway et al., 2013; Butler 

et al., 2017). Little work has been done to measure sensory-evoked and endogenous variability in 

cortical neurons in animal models of autism.  

Here we measure response reliability in the mouse model of MECP2 duplication syndrome (Collins et al., 

2004; Ramocki et al., 2010), a highly-penetrant syndromic ASD caused by genomic duplication of methyl-

CpG-binding protein 2 (Ramocki et al., 2010). This animal model demonstrates a range of autism-
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associated behaviors including repetitive stereotyped behaviors, abnormal ultrasonic vocalizations, and 

social avoidance as well as atypical sensory processing (Collins et al., 2004; Samaco et al., 2012; Jiang et 

al., 2013; Sztainberg et al., 2015; Zhang et al., 2017; Zhou et al., 2019; Ash et al., 2021). We find that 

response reliability is abnormally increased in visual cortical neurons in this mouse model. We identify 

three potential mechanisms for increased response reliability: decreased sensory-evoked responses, 

decreased fluctuations in endogenous spontaneous activity, and decreased coupling of neurons to 

endogenous fluctuations (Okun et al., 2015; Lee et al., 2019). Enhanced reliability at low contrasts was 

associated with enhanced optokinetic reflex responsiveness in these animals suggesting that changes in 

response reliability may propagate to midbrain circuits and influence perception. These data weigh 

against recent proposals for increased neural variability as a canonical pathophysiological mechanism in 

autism (Heeger et al., 2017), and instead support theories for insufficient endogenous noise in ASD (Davis 

and Plaisted-Grant, 2015).  

RESULTS 

Contrast-response functions are abnormal in the primary visual cortex of MECP2-duplication mice 

Neuronal responses to oriented gratings were recorded for a range of contrasts by in vivo 2-photon 

calcium imaging in GCaMP6s-expressing (Chen et al., 2013) L2/3 neurons in area V1 of F1 C57;FVB adult 

(4-6-month-old) MECP2-duplication mice (Tg1, see Collins et al., 2004) and control littermates under 

fentanyl-dexmetotomidine sedation (note that Tg1 mice on F1 C57;FVB background do not have 

seizures). Visual stimuli consisted of oriented gratings at 12 different directions (0, 30…330o) and 3 

contrasts (10, 30, 100%), randomly-interleaved (Fig. 1A, see Methods). We recorded from 7 transgenic 

mice and 4 control littermates, identifying 238 and 223 layer 2/3 neurons, respectively. The percentage 

of neurons that were visually responsive (see Methods) was similar between control and mutants 

(46±19%, 102 cells, and 51±12%, 114 cells, respectively). The rest of the analysis was restricted to these 

visually responsive cells. 

Spontaneous activity levels were first assessed by quantifying the rates of calcium events while the 

fentanyl-sedated mice viewed the mean luminance background. DF/F calcium traces were thresholded 

(see Methods) (Lu et al., 2016), and peaks were counted. Spontaneous event rates were slightly 

decreased in MECP2-duplication mice (0.027±0.001 Hz, n=114) compared to controls (0.033±0.002 Hz, 

n=102, P=0.04, 2-way ANOVA followed by Tukey post-hoc test), and spontaneous calcium transient 

amplitudes trended towards a slight decrease in mutant animals (MECP2-dup: 1.8±0.05 dF/F, control: 

2±0.1 dF/F, P=0.06).  

Visually-evoked responses averaged across all orientations and neurons (Fig. 1B) showed a strong 

interaction between genotype and contrast: Neuronal responses to low-contrast stimuli (dashed line 

30%, dotted line 10%) were much decreased, whereas responses to high (100%, solid line) contrast 

stimuli were similar to controls, if not somewhat higher, in the mutant (Fig. 1B).  

Response amplitudes were calculated for each visually responsive neuron across trials (Fig.1C) to generate 

orientation tuning curves (Fig. 1D). The response to the preferred stimulus markedly decreased at low 

contrasts in the majority of MECP2-duplication L2/3 V1 cells (Fig. 1D). Fig. 1E shows example contrast-

response functions for control (left) and mutant (right) neurons. Contrast-response curves obtained from 

the preferred stimulus (solid lines) show the same functional trend (Fig. 1E) as curves obtained from the 
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orthogonal stimulus (dotted lines); curves are normalized to the response of the high contrast preferred 

stimulus. While the response of the majority of control neurons increases significantly from 10% to 30% 

contrast then levels off, mutant neurons increase their response amplitude approximately linearly with 

contrast. Plotting the mean response amplitude across visually responsive neurons to the preferred and 

non-preferred stimulus (Fig. 1F) revealed a dramatic decrease in V1 neuronal responses specifically at low 

contrasts for mutant mice compared to controls (P < 0.01; Tukey post-hoc pairwise comparison following 

2-way ANOVA; n=102 control, 114 MECP2-duplication neurons). The difference between mutants and 

controls remains significant also across animals (P=0.02 at 30% contrast, n=7 MECP2-duplication mice, 4 

control; responses are normalized to the high-contrast preferred stimulus response per cell). Fig. 1G 

histograms the fractional decrease in response amplitude between 100% and 30% contrast ((R100%-

R30%)/R100%) demonstrating that the responses of mutant neurons drop markedly as contrast decreases 

(Fig. 1G).  

The decrease in response amplitude at low contrasts was also clearly observable in calcium signals 

arising in the neuropil surrounding cells (Fig. 1H). The neuropil signal arises from calcium transients in 

dendrites and axons arising from hundreds to thousands of GCaMP6s-expressing neurons whose 

processes lie within or traverse L2/3 of area V1. The neuropil signal gives a good average readout of 

overall V1 population activity and is known to correlate well with the local field potential (LFP) (Kerr et 

al., 2005). Decreased neuropil responses therefore indicate decreased aggregate evoked activity in 

primary visual cortex during low-contrast visual stimulation in the MECP2-duplication mouse. 

Orientation selectivity index (OSI= (Rpreferred-Rorthogonal)/Rpreferred) (Mazurek et al., 2014)) was similar 

between genotypes at 100% contrast (control: 0.32±0.02; MECP2-dup: 0.35±0.02, P=0.05, Tukey post-

hoc pairwise comparison following 2-way ANOVA), while at 30% contrast OSI decreased in mutants 

(0.2±0.015 at 30% contrast versus 0.35±0.02 at 100% contrast, P<0.01) but remained approximately 

unchanged in controls (0.27±0.02 at 30% versus 0.32±0.02 at 100% contrast). At 10% contrast, the 

responses were weak and OSI calculation was not reliable (control: 0.12±0.01, MECP2-dup: 0.08±0.01). 

In agreement with the decreased response amplitude and fall in orientation selectivity at 30% contrast, 

the tuning width of mutant neurons increased at 30% contrast (64±2°) compared to control (54±2°; 

P<0.01, Tukey post-hoc pairwise comparison following 2-way ANOVA). At 100% contrast tuning widths 

remained similar (control: 53±2°, MECP2-dup: 58±2°). Direction selectivity in MECP2-duplication mice 

behaved similarly to orientation selectivity, decreasing significantly for stimuli at 30% contrast (control: 

0.13±0.01, MECP2-dup: 0.073±0.006; p<0.01, Tukey pairwise comparison after 2-way ANOVA) but 

remaining essentially unchanged at 100% contrast (control: 0.17±0.01, MECP2-dup: 0.14±0.01; p > 0.05). 

Response Reliability as a Function of Contrast in V1 neurons of MECP2 duplication mice  

As expected (Werner and Mountcastle, 1963), neuronal responses in our experiment fluctuated from trial 

to trial, even in response to the same stimulus (Fig. 2A). We quantified the variation in each neuron’s 

response amplitude by measuring the Fano factor (FF, defined as response variance divided by response 

mean, σ2/µ) across multiple repetitions of the same stimulus (Fig. 2B). Interestingly, we observed a 

significant increase in response reliability (decreased FF) in MECP2-duplication compared to control 

neurons (compare Fig. 2A top row to bottom row) that, similar to the response amplitude changes, was 

more pronounced to low (10% and 30%) contrast stimuli (Fig. 2C). The effect was observable in responses 

to both the preferred (left panel, P<0.01 at 10% contrast, P<0.01 at 30% contrast, P=0.09 at 100% contrast, 

Tukey post-hoc pairwise comparison following 2-way ANOVA, n=102 control neurons, 114 MECP2-dup 
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neurons) and orthogonal (right panel, P<0.01 at 10%, P<0.01 at 30%, P=0.39 at 100% contrast) stimuli. 

Although FF decreases with decreasing neuronal response amplitude (Fig. 2D) as expected (Goris et al., 

2014), the decrease in response variability in mutants could not be explained simply by the decrease in 

firing at low contrasts, as the difference in FF was observable across a range of mean response amplitudes 

(Fig. 2D). Note also that our observations cannot be explained by non-specific decreased variability in the 

calcium responses of mutant animals, because they are apparent in the relative magnitude of the Fano 

Factors between 100% and 30% contrast, and results were the same whether they were measured as 

calcium Fano Factors or spiking Fano factors (i.e. by dividing each Fano factor by the Fano factor at 100% 

contrast to factor out the calcium-related response constant, see Montijn et al., 2014). 

Reported changes in response reliability are not genetic background-specific 

We wanted to replicate our finding of increased response reliability in an independent data set with a 

different genetic background. 129-background MECP2-duplication mice were crossed to C57 thy1-

GCaMP6 mice to generate F1 hybrid C57;129 experimental animals, which genomically express GCaMP6 

in excitatory neurons (in contrast to the previous experiment which used C57;FVB animals and virally-

mediated GCaMP6 expression), allowing ensured specificity to pyramidal neurons (Thy1-GCaMP6 is 

pyramidal-neuron specific, while with virally-mediated GCAMP6 a subset of cells will be GABAergic) and 

more cells recorded per mouse. In the replication experiment, similar to what was observed in F1 C57;FVB 

mice, V1 neuronal response amplitude was decreased in mutants vs. controls, this time more 

pronouncedly in responses to high-contrast stimuli (Fig. 2E). Response variability (FF) was also decreased, 

this time observable across all contrasts and for both preferred and non-preferred visual stimuli (Fig. 2F). 

We note that there were differences in the measured values of response amplitude and Fano Factor in 

the replication experiment compared to the original experiment, likely due to a combination of 

differences in genetic background, GCaMP expression method, and microscope used, which do not affect 

the validity of the comparisons between mutant animals and littermate controls. 

Potential mechanisms for increased response reliability in MECP2-duplication mice 

We hypothesized that the decreased neuronal response variability at low contrasts could be due to a 

decrease in cortical activity fluctuations, and/or a decreased coupling of V1 neurons to these cortical 

fluctuations (Ecker et al., 2016; Denfield et al., 2017). Neuropil activity reflects the aggregate of calcium 

transients in axons and dendrites immediately surrounding the soma and thereby can serves as a measure 

of cortical activity flux (Grinvald, 2005; Kerr et al., 2005).  Neuropil visual responses were much weaker in 

mutants compared to controls (Fig. 1H) at low contrast, and neuropil response variability (FF) across trials 

was also significantly decreased (Fig. 3A). These observations suggest that global, trial-to-trial, 

fluctuations in activity are significantly decreased in mutant mice when low-contrast stimuli are 

presented. In addition, V1 neurons appear to be more weakly coupled to aggregate activity in mutant 

animals: On average the Pearson correlation coefficient between the activity of a neuron and the 

surrounding neuropil was significantly decreased in MeCP2-duplication animals, particularly at low 

contrasts (Fig. 3B). Note that Pearson correlation was computed after subtracting the estimated optical 

neuropil contamination from the somatic signal (see Methods, (Lee et al., 2017)), so correlation values 

reported here are unlikely to reflect significant optical neuropil contamination. In any event, even if there 

were a degree of residual optical contamination this would not explain our results, as there was no 

significant difference in optical quality in the mutant versus the control preparations. Note also that no 
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thresholding was performed that might decrease variability or artificially bias cell-neuropil correlations by 

setting small responses to zero.  

Interestingly, neuropil response variability was not decreased in mutant mice in the C57;129 background 

(Fig. 3C), suggesting that spontaneous fluctuations in background activity are not as affected. 

Nonetheless, the coupling to background fluctuations was signficinatly decreased in mutants vs. WT in 

the C57;129 genetic background as well (Fig. 3D). 

These results reveal that visual response variability is significantly decreased in MECP2-duplication 

animals across two different genetic backgrounds. Furthermore, this is driven in part by the reduced 

coupling of individual layer 2/3 V1 neurons to aggregate evoked neuropil fluctuations, which correlates 

with moment-to-moment activity in incoming inputs (Kerr et al., 2005).  

 

Retinal responses in MECP2-duplication mice do not explain our findings   

We wanted to investigate whether abnormal contrast-response functions in MECP2-duplication V1 

neurons could be due to abnormal retinal input. Electroretinogram responses to full field flash stimuli at 

different luminance intensity, recorded from the optic nerves of 4 MECP2-duplication mice and 4 

littermate controls in vivo, revealed no difference in the amplitude of the a or b waves between 

genotypes (Fig. 4A-C), suggesting no major functional abnormality in the photoreceptor or inner retinal 

layer. Interestingly, ex vivo retinal ganglion cell (RGC) responses from mutants were similar at low 

contrasts and actually increased at high contrasts relative to control responses (Fig. 4D-E, P=0.0001, t=-

12.2, genotype x contrast interaction; P=0.02, t=2.2, effect of genotype; P=0.0005, t=3.4, effect of 

contrast; n=55 control cells, 97 MECP2-dup cells, linear mixed-effects models ANOVA, neurons nested 

within retinae). Importantly, the contrast at which we observe a prominent decrease in the firing of 

MECP2-duplication V1 neurons (30%) generates essentially normal if not slightly higher (non-significant 

trend) RGC responses (Fig. 4E). Similarly, Ex vivo retinal ganglion cell Fano Factors were not significantly 

different between genotypes (10% contrast, MECP2-dup: 2.6± 0.3, control: 3.3±0.5; 30% contrast, 

MECP2-dup: 2.2±0.2, control: 2.7±0.4; 100% contrast, MECP2-dup: 2.3±0.3, control: 2.3±0.4). These data 

suggest that changes in retinal function are not likely to account for the decreased responsiveness and 

variability observed in mutant cortical neurons. 

Possible perceptual effects of abnormal signal-to-noise across contrasts  

To begin to evaluate perceptual effects of visual system abnormalities in MECP2-duplication mice, we 

measured the optokinetic reflex (Fig. 5). Animals (n=8 per genotype) were placed head-fixed in a 

chamber surrounded on 3 sides by monitors displaying horizontally-drifting vertical gratings at different 

contrasts and spatial frequencies, while pupil location was tracked with an infrared camera (Fig. 5A). 

Similar or greater numbers of eye-tracking movements (ETMs) were observed across spatial frequencies 

in mutants (Fig. 5B), indicating that visual acuity is intact in MECP2-duplication mice. Interestingly, while 

similar numbers of eye-tracking movements (ETMs) were observed at high contrasts between genotypes 

(Fig. 5C), ETM rate decreased more in control mice at low contrast compared to mutants. This suggests 

that perceptual sensitivity was increased at low contrasts in mutant animals compared to controls. Our 

retinal recordings suggest that this does not happen in the retina, but it might be a property of increased 
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response reliability in the subsequent circuits including the visual cortex, tectum, and/or midbrain (Giolli 

et al., 2006; Liu et al., 2016).  

 

DISCUSSION 

We assessed in vivo responses to oriented gratings in layer 2/3 of the primary visual cortex (area V1) of 

the MECP2-duplication mouse model of autism. MECP2-duplication neurons respond less strongly at low 

contrasts but similarly at high contrasts compared to littermate controls, leading to more linear contrast-

response functions. Interestingly, this does not necessarily imply defective encoding of visual stimuli 

compared to controls: Mean-normalized response variability, as measured by the Fano factor, drops 

significantly at low contrasts in mutants compared to controls, and OKR responsiveness is enanced, 

reflecting an increase in response reliability that could compensate for decreased response amplitude for 

adequate sensory encoding.  

In the primary sensory cortex of normal animals, neuronal responses are typically variable, fluctuating 

significantly even to identical repetitions of the same stimulus (Werner and Mountcastle, 1963). Neuronal 

response variability has multiple sources (Faisal et al., 2008; Gjorgjieva et al., 2016; Nolte et al., 2019), but 

one of the chief contributions arises through the interaction of feedforward sensory-evoked activity with 

endogenously generated activity fluctuations (Stringer et al., 2019). Endogenous activity manifests as 

large-scale neural activity modulations across brain areas, mediated in part by feedback projections and 

reflecting, among others, behaviorally-relevant brain state fluctuations (Ecker et al., 2014; Lin et al., 2015; 

Okun et al., 2015; Denfield et al., 2017; Stringer et al., 2019), mnemonic activity patterns enabling storage 

and retrieval of sensory representations (Miller et al., 2014), and spontaneous activity patterns 

corresponding to Bayesian priors used for statistical inference (Berkes et al., 2011; Orbán et al., 2016). 

The coupling of neurons to these global patterns of activity varies across individual cells (Okun et al., 2015; 

Lee et al., 2019), timescales (Okun et al., 2019), and behavioral state (Canolty et al., 2012), making an 

important contribution to the variability of individual neuronal responses. The increased variability in 

sensory-evoked responses in autism patients have led to the suggestion that the interaction between 

sensory evoked and endogenous activity is disrupted in ASD cortex leading to a loss of response reliability 

(Heeger et al., 2017). 

The fact that visual response reliability is higher in MECP2-duplication animals (Fig. 2,3) shows that 

sensory encoding is not universally characterized by increased variability in autism spectrum disorders, as 

has been previously hypothesized (Dinstein et al., 2012). Indeed, area V1 layer 2/3 neuronal responses 

fluctuated less from trial to trial in MECP2-duplication animals compared to littermate controls. Two 

separate mechanisms account for this difference: First, V1 neuropil responses, which provide an LFP-like 

read-out of large-scale neuronal input activity fluctuations (Kerr et al., 2005; Greenberg et al., 2008; Lee 

et al., 2019), exhibited decreased variability in mutants (Fig. 3A). Such fluctuations are known to drive 

trial-to-trial variability in V1 neurons (Ecker et al., 2014).  Second, mutant neurons exhibited weaker 

coupling to these endogenous fluctuations, particularly at low contrast (Fig. 3B,D). Notably, these 

mechanisms are unlikely to be inherited from the retina: retinal ganglion cell response amplitudes were 

not diminished and Fano factors remained unchanged at low contrast (Fig. 4). Instead, our data suggest 

that thalamocortical mechanisms regulating V1 response reliability (Heeger, 1992; Nauhaus et al., 2009) 

are disrupted in the MECP2-duplication mouse, particularly at low (<~30%) contrasts.  
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It is interesting to speculate about candidate mechanisms that may explain our observations. Increased 

tonic inhibitory neuron activity could explain both suppressed response amplitude and decreased 

variability at low contrasts (Shen et al., 2011; Li et al., 2012; Thiele et al., 2012; Rikhye and Sur, 2015; 

Zhu et al., 2015). Excessive inhibition has already been demonstrated in MECP2-overexpressing mice (Na 

et al., 2012, 2014), and GABA antagonism has been shown to rescue phenotypes (Na et al., 2014). For 

example, increased tone in mutant somatostatin neurons could inhibit dendritic tufts in layer 1 

weakening feedback from higher areas, thereby decreasing associated trial-to-trial variability (Rikhye et 

al., 2017). In contrast, our results do not align well with theories of impaired GABAergic inhibition, which  

lead to increased excitatory-inhibitory balance in autism (Vattikuti and Chow, 2010). Contrast response 

functions in mutant mice lay below those of littermate controls, suggesting inhibition mediated 

normalization mechanisms are, if anything, stronger in mutant animals.  Other potential contributing 

mechanisms include failure of the local recurrent circuitry between L4 and L2/3 pyramidal neurons 

(Anderson et al., 2000; Nauhaus et al., 2009; Lien and Scanziani, 2013; Cossell et al., 2015) or perhaps 

the thalamo-cortical loop (Noutel et al., 2011; Yagasaki et al., 2018). Altered intrinsic cellular properties , 

such as firing thresholds(Anderson et al., 2000), may also contribute, though, to our knowledge such 

changes have not been described in MECP2-duplication animals (Lu et al., 2016). Future work will be 

required to further differentiate between these mechanisms.  

Optokinetic responses at low contrast were enhanced in mutant animals (Fig. 5) and it is tempting to 

speculate that this may have something to do with the increased reliability we observed at similar 

contrasts. If so, it may well be that the observed increase in reliability has also other behavioral correlates. 

Be that as it may, the fact that OKR were preserved in mutants is certainly reassuring, since it excludes 

the possibility that low visual acuity or other peripheral optical issues could have confounded our 

observations. Our finding of enhanced contrast-sensitivity by optokinetic reflex measurements is similar 

to what was seen in the BTBR autism mouse model (Cheng et al., 2020), which also shows dendritic 

overgrowth and excessive ERK signaling similar to what has been observed in the MECP2-duplication 

mouse (Jiang et al., 2013; Ash et al., 2017).  

Interestingly, decreased V1  neuron response reliability has been observed in response to natural movie 

stimulation in the mouse model of Rett syndrome (MeCP2 loss-of-function) (Banerjee et al., 2016). It is 

perhaps not surprising that this is opposite to our observations in MECP2-duplication mice, as MeCP2 loss 

vs gain effects have also been observed to be opposite for other neuronal phenotypes, including long term 

potentiation (Collins et al., 2004; Moretti et al., 2006), synapse strength/number (Chao et al., 2007; Lu et 

al., 2016), and dendritic spine motility (Landi et al., 2011; Jiang et al., 2013). More generally, there are 

several conflicting reports arguing for increased (Coskun et al., 2009; Greenaway et al., 2013; Butler et al., 

2017) versus decreased (Milne, 2011; Dinstein et al., 2012; Weinger et al., 2014; Haigh et al., 2015; 

Banerjee et al., 2016; Kovarski et al., 2019) visual response reliability in autism spectrum disorders. The 

reasons for this have yet to be fully clarified. One proposed explanation hinges on different recording 

modalities (Butler et al., 2017). For example, the majority of fMRI studies in autism (Haigh et al., 2015) 

report increased variability. The decreased variability we report here was evident in neuropil fluctuations, 

which, as a readout of overall population activity, is expected to correlate well with the BOLD (Blood 

Oxygen Level Dependent) signal (Logothetis et al., 2001; Kerr et al., 2005). However, the possibility 

remains that BOLD, which has a vascular origin, may partially reflect variability in vascular tone (Hillman, 

2014) that may also be differentially affected in autism (Reynell and Harris, 2013). We note in this regard 

that visual-evoked field potentials, which correlate more closely to neuropil activity (Kerr et al., 2005), 
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have demonstrated normal or increased reliability in autism (Coskun et al., 2009; Butler et al., 2017). 

Another explanation relates to experimental differences in attentional factors and brain state. In (Dinstein 

et al., 2012), subjects performed a letter detection task, in (Milne, 2011) and (Weinger et al., 2014) 

participants were asked to fixate, while in (Kovarski et al., 2019) subjects did not have a task to perform; 

therefore attentional allocation to the visual stimulus and overall alertness may have fluctuated more 

over time in ASD subjects vs. controls (Ecker et al., 2014, 2016; Denfield et al., 2017). In our study mice 

were fentanyl-sedated, so activity fluctuations due to attentional state should be minimal. Finally, perhaps 

the most likely explanation is that different cortical circuit mechanisms of malfunction operate in different 

subtypes of autism, even though they result in overall similar core phenotypes (Ramocki and Zoghbi, 2008; 

Lu et al., 2016; Ash et al., 2021).  

One limitation of our study is that recordings were made under fentanyl-dexmetotomidine sedation. 

Under this form of sedation, animals remain awake but in a state of heavy physiological relaxation (Souter 

et al., 2007). This regimen tends to generate responses that are closer to quiet wakefulness compared to 

full anesthesia with ketamine or gas anesthetics (Mrsic-Flogel et al., 2007; Lee et al., 2017). Assessing 

response reliability under awake behaving conditions is a key area of future work, which will require 

precise monitoring of the behavioral state (Stringer et al., 2019).  

In summary, we report that endogenous activity is less variable and that neuronal coupling to global 

patterns of activity is weaker in MECP2-duplication animals compared to littermate controls. These 

results point out a potential mechanism for the “hypo-prior” theory of autism (Pellicano and Burr, 2012). 

In this theory, Bayesian priors are communicated to local circuits through feedback connections and 

projections from other areas (Ma et al., 2006; Berkes et al., 2011). Since V1 neurons in mutant animals 

are weakly modulated by fluctuations of endogenous activity during sensory processing, they may be 

less able to properly process Bayesian priors embedded in global patterns of activity arising from higher 

areas. This relative reduction in global information processing (weak coherence theory (Happé, 2021)) 

could result in more rigid or dominant sensory feature representations in the local circuitry, with 

potentially detrimental information processing consequences. For example, decreased coupling to 

endogenously generated activity can produce more reliable but less flexible neural representations, 

potentially leading to enhanced perceptual sensitivity for simple features but impaired capacity for 

global computations that require coordination across areas (Robertson and Baron-Cohen, 2017). The 

failure of neuronal stochastic behavior may also result in poor cortical circuit regularization during 

learning, leading to excessively rigid neuronal network architectures and failure of generalization (Ash et 

al., 2017, 2021).  These effects may be compounded over time, potentially contributing to stereotyped 

patterns of circuit activity, repetitive patterns of behavior and behavioral inflexibility (Harris et al., 

2015). It remains an appealing hypothesis that abnormal balance between circuit reliability and 

stochasticity could lead to neural circuit inflexibility that may underlie behavioral inflexibility in autism 

spectrum disorders (Ash et al., 2021).  

FIGURES 
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Figure 1. Abnormal contrast-response functions in primary visual cortex of MECP2-duplication mice. A. 

Top left, Experiment schematic. Mice were head-fixed under the 2-photon microscope, and randomly-

interleaved oriented gratings (12 directions, 3 contrasts) were presented. Top right, sample optical image 

of a cranial window and averaged 2-photon movie showing V1 neurons expressing GCaMP6s. Bottom, 

example fractional dF/F calcium responses to oriented gratings. Tracing color depicts the recorded neuron 

circled in top right panel. Vertical lines depict stimulus onset. Horizontal lines, stimulus duration (2 sec). 

Grating images show the stimulus on each trial. Intertrial period was 2 sec. B. Visual-evoked calcium 

transients at different contrasts. Transients are computed by averaging across all trials, across all 

orientations, per neuron, then averaging across neurons. Error bars calculated across neurons; Control: 

n=102 neurons from 4 mice; MECP2-duplication, n=114 neurons from 7 mice. C. Illustration of how per-

trial responses are calculated. Average responses of one neuron to the three contrasts are shown as 

yellow, red, and blue error bars. The response for each trial is calculated as the average of the 3 frames 
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centered at the peak of the mean 100%-contrast response across all orientations +/- 1 frame (yellow bar). 

The peak is detected within the frames denoted by the green box. The black line shows the stimulus 

duration. The grey box shows the frames in which pre-stimulus activity is calculated (see methods).  D. 

Example tuning curves from control (left) and MECP2-duplication (right) neurons at 100% (solid) and 30% 

(dashed) contrasts. These neurons did not display noticeable tuning at 10% contrast. E. Example single-

neuron contrast-response functions, at the preferred (solid) and non-preferred (dotted) stimulus, 

normalized to the response at 100% contrast.  Black: control. Orange: MECP2-duplication mice. Note that 

control neuronal responses increase at low contrasts then begin to saturate, while mutant responses 

increase more linearly with contrast. F. Response amplitude as a function of contrast. Left panel: dF/F 

response amplitude to each neuron’s preferred stimulus (peak of the orientation tuning curve) averaged 

across neurons as a function of contrast. Right panel: Similar plot for the non-preferred stimulus, i.e. 

gratings of orthogonal orientation to the peak of the tuning curve.  G, Histogram of the fractional decrease 

of the response amplitude to the preferred stimulus from 100% to 30% contrast ((R100%-R30%)/R100%), across 

neurons. A value of 1 indicates complete loss of responsiveness at 30% contrast, while -1 indicates 

doubling of response amplitude at 30% contrast. Gray: control; Orange: MECP2-duplication. H. Neuropil 

response amplitude by contrast. * P<0.01, 2-way ANOVA followed by Tukey test for multiple comparisons. 

All values are shown as mean±SEM. 
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Fig. 2 Response variability of V1 neurons drops at low contrast in MECP2-duplication mice. A. Single 

trial responses recorded from an example WT neuron (top row) and MECP2-duplication neuron (bottom 

row) across three different contrasts (10%, 30%, and 100% left to right). Each trial response was baseline 

subtracted and smoothed with a 5-bin moving averages filter for illustration putposes. Horizontal grey 

line in top left of each paneldepicts stimulus on time. Calculated Fano Factor is indicated for each set of 

responses.   B. Schematic showing how the Fano Factor (FF=variance/mean) across trials was calculated. 

C. FF of calcium responses as a function of stimulus contrast for responses to the preferred (left) and the 

orthogonal (right) stimulus, across all visually responsive neurons, in F1 C57;FVB genetic background 

mice. Control: n=102 neurons from 4 mice; MECP2-duplication: n=114 neurons from 7 mice. Note that 

response variability of V1 neurons drops at low contrast. The effect remained statistically significant 

(P<0.05 at 10% and 30% contrast) when FF was calculated per-animal (Tukey pairwise comparison 

following 2-way ANOVA).  D. FF binned by response amplitude to the preferred stimulus at each 

contrast. Neurons were grouped into bins of low (0-0.34), moderate (0.34-1.35) and high (1.35-5.3) 

activity. Values below each bar denote the percentage of cells in each bin. Note that the Fano factor 

decreases with decreasing neuronal response amplitude, but differences in mutants vs. controls cannot 

be explained simply as a result of different firing rates elicited by different contrasts. E, D. Replication of 

decreased V1 response variability in an independent genetic background and calcium imaging setup. The 

replication experiment was identical to the main experiment except in two regards:  Experimental 

animals were F1 C57;129 (vs. F1 C57;FVB), and GCaMP6s was expressed transgenically in layer 2/3 
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pyramidal neurons under the thy1 promoter (vs. pan-neuronal viral expression using injection of AAV-

GCaMP6s), allowing more cells recorded per mouse and ensuring that all recorded neurons are 

pyramidal cells.  E. Response amplitude in F1 C57;129 mice for cells (solid lines) and surrounding 

neuropil (dotted lines) for the preferred (left panel) and non-preferred (right panel) stimulus. Control: 

n=561 neurons from 2 mice; MECP2-duplication: n=1325 neurons from 4 mice.  Error bars depict 99% 

confidence intervals.  F. Fano Factor (response variability) in F1 C57;129 mice for the preferred (left 

panel) and orthogonal (right panel) stimulus, across all visually responsive neurons, showing a 

replication of decreased response variability in MECP2-duplication mice. 

 

 

 

Fig. 3. Potential mechanisms for decreased response variability in MECP2-duplication mice. A. 

Neuropil FF by contrast in C57;FVB background mice for preferred (left panel) and orthogonal non-

preferred (right panel) stimuli. Control: n=102 neurons from 4 mice; MECP2-duplication: n=114 neurons 

from 7 mice. B. Coupling of each neuron to aggregate evoked visual cortical activity fluctuations 

(neuropil activity). The correlation coefficient between each cell’s responses and the activity of the 

surrounding neuropil, after correcting for optical contamination (see Methods), averaged across cells. * 

P<0.01, Tukey post-hoc pairwise comparison following 2-way ANOVA. All values are shown as 

mean±SEM. C. Neuropil Fano Factor, as in panel A,  in the replication experiment with F1 C57;129 mice 

and transgenic thy1-GCaMP6 expression. Control: n=561 neurons from 2 mice; MECP2-duplication: 

n=1325 neurons from 4 mice.  D. The correlation coefficient between each cell’s responses and the 

activity of the surrounding neuropil, averaged across cells, in C57l129 background mice. * P<0.01, Tukey 

post-hoc pairwise comparison following 2-way ANOVA.  
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Figure 4. Intact retinal physiology in MECP2-duplication mice.  A. Mean electroretinogram responses to 

full field luminance flashes at different flash strengths (numbers at left), recorded from the optic nerve of 

MECP2- duplication mice and control littermates. Grey, control, n=4 mice. Black: MECP2-duplication, n=4 

mice. Axes labeled in figure. B. Amplitude of the a-wave (initial negative response, labeled in panel A, 

produced by depolarization of the photoreceptor layer) as a function of flash strength. C. Amplitude of 

the b-wave (large positive response, labeled in panel A, produced by depolarization in the inner retinal 

layer) as a function of flash strength. D. Schematic illustration of ex vivo retinal ganglion cell (RGC) 

multielectrode array extracellular recording. The stimulus paradigm consisted in randomly interleaved 

moving square gratings, 8 directions (45o apart), 5 contrasts (5, 10, 30, 50, and 100%), 20 repetitions, 1 

sec stimulus duration, 1.5 sec interstimulus interval (mean luminance background). E. Mean RGC firing 

rate by stimulus contrast. Control littermates: n= 52 cells from 4 retinas, 2 animals. MECP2-duplication: 

n=95 cells from 4 retinas, 2 animals. P<0.0001, t=-0.12.2, genotype x contrast interaction; P=0.02, t=2.2, 

effect of genotype; P=0.0005, t=3.4, effect of contrast; n=55 control cells, 97 MECP2-duplication cells, 
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linear mixed-models ANOVA, neurons nested within retinae. RGC firing rates were similar between 

genotypes at 30% contrast, the contrast at which we see the most dramatic differences in visual cortical 

neurons (Fig. 1F), suggesting that decreased V1 responses at low contrast are not inherited from the 

retina. The slight increase in high-contrast responses we see in V1 (most clearly seen in Fig. 1B) could be 

due in part to the increased RGC firing rates we see at 100% contrast.   

 

 

Fig. 5 Optokinetic reflex across contrasts and spatial frequencies in MECP2-duplication mice. A. Left 

panel: Schematic of optokinetic reflex (OKR) experiment setup. Animals were head-fixed in a chamber 

surrounded on 3 sides by monitors showing horizontal gratings at different contrasts and spatial 

frequencies. Right panel: The mouse’s pupil was automatically tracked by a custom MATLAB algorithm. 

OKR movements were parsed into slow eye-tracking movements (ETMs) and fast saccades and counted 

across 10 minute periods. B. Visual acuity assessed by optokinetic nystagmus. Number of ETMs in 10 

minutes averaged across animals (n=8 per genotype) at each contrast. Contrast was constant at 100%. 

Error bars show standard error of the mean. C. ETMs reported as in B but as a function of contrast. Spatial 

frequency was constant at 0.03 cycles per degree. Note the greater fall-off of ETMs in controls compared 

to mutants at lower contrasts, indicative of enhanced visual sensitivity in MECP2-duplication mice at low 

contrasts. 

 

 

METHODS 
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Experimental procedures 

Animals. All experiments and animal procedures were performed in accordance with guidelines of the 
National Institutes of Health for the care and use of laboratory animals and were approved by the IACUC 
at Baylor College of Medicine and Brigham and Women’s Hospital (BWH) Institution Animal Care and Use 
Committee. In the main experiment (Fig. 1-4F), C57Bl6J mice were crossed to FVB MECP2-duplication 
(Tg1, Collins et al., 2004) mice to generate F1 C57;FVB MECP2-duplication mice and nontransgenic 
littermate controls. In the replication experiment (Fig. 3), C57Bl6j Thy1-GCaMP6S mice were crossed to 
129-background MECP2-duplication mice to generate F1 129;FVB MECP2-duplication;Thy1-GCaMP6 mice 
and thy1-GCaMP6 littermate controls. Experiments were performed in 4-6-month-old animals. 
 
Surgery. All procedures were carried out according to animal welfare guidelines authorized by the Baylor 
College of Medicine and Brigham and Women’s Hospital IACUC committees. Surgeries were performed 
following (Holtmaat et al., 2009) and (Mostany and Portera-Cailliau, 2011). Mice were anesthetized with 
1.5% isoflurane. The mouse head was fixed in a stereotactic stage (Kopf Instruments), and eyes were 
protected with a thin layer of polydimethylsiloxane (30,000 cst, Sigma-Aldrich). The scalp was shaved and 
disinfected with chlorhexidine, and the scalp was resected. A 3 mm wide circular craniotomy centered 2.5 
mm lateral of the lambda suture was made, targeting the middle of the monocular region of left V1 (Chen 
et al., 2013). Fifty nL aliquots of AAV-syn-GCaMP6s virus (1:10 dilution) were injected at 2-3 sites ~ 600 
microns apart avoiding large blood vessels, targeted to the posterior 2/3 of the window. A glass cover slip 
was placed into the craniotomy and sealed with cyanoacrylate, krazy glue, and dental cement. A custom-
made titanium headplate was attached to the skull with dental acrylic (Lang Dental). 
 
Imaging.  About 3 weeks following surgery and virus injection, animals’ eyes were visually inspected to 
exclude mice with cataracts (rare in the C57;FVB F1 background). Mice were sedated with fentanyl (0.5 
mg/kg) and dexmetetomidine (0.5 mg/kg) and 20-30 minutes later head-fixed under the microscope. A 
plane of neurons was selected at 170-200 microns depth, and correct placement of the mouse’s head 
relative to the visual stimulus was confirmed by a retinotopy stimulus. A 20x, 0.95 NA (Olympus) in a 
modified Prairie Ultima IV two-photon laser scanning microscope (Prairie Technologies, Middleton, WI), 
fed by a Chameleon Ultra II laser (Coherent, Santa Clara, CA), was used for 2-photon imaging. Images were 
acquired by spiral scan at 256x256 micron field of view (FOV), 0.9-1 microns per pixel, 5.5-7 Hz fps. In the 
replication experiment, images were acquired at 0.92-1.25 microns per pixel, 3.4-4.2 Hz fps. Appropriate 
imaging sites were screened under 2-photon by recording GCaMP6 responses to a retinotopy stimulus to 
confirm appropriate virus expression and targeting to V1 (in our hands V1 neurons respond highly reliably 
to this stimulus).   
 
Visual stimulation. Visual stimuli were generated in MATLAB and displayed using Psychtoolbox (Brainard, 
1997). The stimuli were presented on an LCD monitor (DELL 2408WFP, Dell, Texas, USA) at 60 Hz frame 
rate, positioned 32 cm in front of the right eye, centered at 45° clockwise from the mouse’s body axis. The 
visual angle of the screen spanned 540 elevation and 780 azimuth. The screen was gamma-corrected, and 
the mean luminance level was photopic at 80 cd/m2. Our visual stimulation paradigm consisted of square-
wave drifting grating stimuli. Twelve different grating orientations (30°, 60°,... 360°) at 3 contrasts (10%, 
30%, 100% Michelson contrast (Michelson, 1927) were shown, giving a total of 36 stimuli pseudorandomly 
interleaved. Temporal frequency was set to 2Hz, and spatial frequency was set to 0.04 cycles/degree. The 
duration of each trial was 2 seconds on, 2 seconds off. Trials were presented in 2 blocks of 5-6 repetitions 
per stimulus orientation/contrast, giving a total of 10-12 repetitions per stimulus orientation/contrast. 
Each grating stimulus was followed by an inter-stimulus interval during which a full-field gray screen at 
the same mean luminance (background illumination) was presented.  
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Electroretinograms. ERGs were performed as in (Tse et al., 2015). Briefly, mice were dark-adapted 
overnight. Under dim red light, mice were anesthetized with ketamine-xylazine (100/10 mg/ml), and their 
pupils were dilated with a single drop of 0.5% mydryacil and 2.5% phenylephrine. A small amount of 2.5% 
methylcellulose gel was placed on the eye and a platinum electrode was placed in contact with the center 
of the cornea. Reference and ground electrodes were placed on the forehead and tail respectively. Mice 
were placed in a Ganzfeld dome coated with reflective white paint.  Scotopic a-wave and b-wave 
measurements were made with 0.5 ms square flashes of 503 nm peak wavelength, 40 repetitions, 2 
seconds between each stimulus. Electrical signals were analyzed with custom software in MATLAB. The b-
wave was digitally filtered using the filtfilt function in MATLAB (low-pass filter, Fc=60 Hz) to remove 
oscillatory potentials. The a-wave was measured from baseline to the trough of the initial negative 
deflection (unfiltered) and the b-wave was measured from the a-wave trough to the peak of the 
subsequent positive deflection (filtered). 
 
Retinal ganglion cell recording. Experimental preparation was performed as in (Cowan et al., 2016; 
Sabharwal et al., 2017; Seilheimer et al., 2020). Two 16-week-old MECP2-duplication and two litter-mate 
controls were used in experiments.  Prior to euthanization, mice were dark adapted for at least 90 min. 
Eyes were removed under infrared illumination using night vision (Nitemare, BE Meyers, Oregon) and 
their retinas were dissected in a dish containing carboxygenated recording solution. Retinas were placed 
ganglion cell side up onto nitrocellulose filter paper (0.45 μm HA, Millipore) and transferred onto an 
electrode array where the preparation was retained with a plastic ring. 
The retina was kept at 35.6°C and perfused at 2 mL/min with prewarmed and carboxygenated (95% O2, 
5% CO2) recording medium (in mmol/L: NaCl, 124; KCl, 2.5; CaCl2, 2; MgCl2, 2; NaH2PO4, 1.25; NaHCO3, 26; 
and glucose, 22) at pH 7.35. The multielectrode array (MEA‐60, Multichannel Systems, Tübingen Germany) 
had 60 electrodes spaced 100 μm apart and with diameters of 10 μm. Ganglion cell action potentials were 
recorded at 20 KHz and prefiltered with a 0.1 Hz high‐pass hardware filter. Visual stimuli were presented 
from a computer monitor (Dell, SXGA‐JF311‐5100) optically reduced and presented from below the MEA 
onto the ganglion cell side of the retina. The stimulus paradigm consisted in randomly interleaved moving 
square gratings, 8 directions (45o apart), 5 contrasts (5, 10, 30, 50, and 100%), 20 repetitions, 1 sec 
stimulus duration, 1.5 sec interstimulus interval (mean luminance background). 
 
Visual acuity assessment by optokinetic reflex. Nystagmoid responses to square-wave drifting gratings 

were recorded in 8 MECP2-duplication mice and 8 littermate controls. The stimulus was presented on 

three screens, positioned around the mouse to cover ~270° of mouse’s visual field. The center of each 

screen was located at 27 cm from the mouse. An infrared camera (GC660, Allied Visual Technologies) 

was used to record the movements of the right eye at 60Hz. Ten- to twenty-minute-long movies were 

analyzed off-line using custom Matlab code to determine the position of the pupil relative to the 

position of the reflection of the infrared light source on the surface of the cornea. Periods containing 

eyeblink artifacts were removed. Horizontal eye tracking movements (ETMs), consisting of slow pursuit 

movement in the direction of the global stimulus drift ±89o and preceded by a saccade in the opposite 

direction ±89o, were selected for further analysis. A linear fit was applied to the slow pursuit phase of 

each EM, and EMs with r2 > 0.5 were accepted for further analysis. The total number of ETMs in 10 

minutes was quantified for each contrast and spatial frequency. 

Data analysis 

Preprocessing. Movies were motion-corrected using a Fourier transform method (Yatsenko et al., 2015). 
For cell identification, a local region-of-interest (ROI) over a cell body was manually defined with a circular 
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disk to cover the cell body, then scanned for the pixel with the highest fluorescence value within the disk 
(cell body center) using the matlab function roigui from Chen et al., 2013. The boundary of the region 
containing the cell signal was then defined by thresholding at 0.5x maximum fluorescence within the disk 
along the polar coordinates. To correct for slow signal drift over time, the signal time series from each 
pixel was high-pass filtered (HPF) at 0.05 Hz using the discrete cosine transformation. We then measured 
the ratio between the mean calcium signal within the lumen of non-radial blood vessels (≤10 μm) and the 
surrounding neuropil patch (Kerlin et al., 2010). This gave us an approximate measure of neuropil 
contamination at the cell soma, the so called contamination scale, whose typical value was 0.6. To correct 
for the neuropil contamination at the soma, the mean fluorescence of the adjacent neuropil patch, Fn, 
was subtracted using the contamination scale S: Fcorrect = F - S*Fn. The patch Fn formed an annulus with a 
radius of 7-15 μm centered around the soma, excluding pixels that belonged to other cell bodies. In the 
calcium images, the majority of optical contamination was particularly along the z-axis, and local neuropil 
activity was highly coherent. The correction factor compensated for neuropil contamination along the z-
axis. The contamination of the neuronal signal by the neuropil signal varied with cell size as well as with 
the in-plane diameter of the soma cross-section. We therefore examined a range of values around the 
empirically estimated value S was in range 0.5-0.6 and verified that reasonable variation in the level of 
contamination (S) did not significantly affect our conclusions. Note that, unless explicitly mentioned, all 
cell responses shown were calculated by implementing a neuropil contamination correction with the 
empirically determined factor S = 0.6. All the analyses presented here are based on the calcium 
fluorescence dF/F signal per recording. 
Cell and Neuropil Analysis. To calculate percent fluorescent change in a cell, the mean dF/F was computed 
by projecting the dF/F matrix (time-point samples x pixels in the cell) onto the spatial filter a (pixels x1) 
and normalizing by the sum of the coefficients ai to produce a weighted mean. The filter a was optimized 
using deconvolution. Around each cell (ROI defined as in preprocessing section above), a local neuropil 
patch was defined by selecting an annulus centered on the middle of the cell body. A variety of inner outer 
radii of the annulus were chosen. The annulus sizes ranged from 7-9 μm, 9-11 μm, and so on by 
incrementally increasing the radius size with a step size of 2μm, and also one for a large patch size: 7 μm 
to 15 μm, respectively. We chose the minimum inner radius as 7 μm to minimize contamination from the 
cell signal onto the neuropil patch. In accordance with a previous report for the size of cell somata in 
mouse visual cortex (Braitenberg and Schüz, 1998), this was indeed large enough to exclude any pixels 
from other cell somata, by visual inspection. Other cell bodies, glia, and dark blood vessel regions were 
similarly excluded. After the application of high-pass filtering (cut-off at 0.05 Hz), the dF/F was calculated 
in single pixels with the same method as for the cell somata, and then averaged across all pixels within 
the patch.  
Spontaneous activity. Five minutes of spontaneous activity were recorded in each animal at the beginning 
of experiments. dF/F traces were thresholded with all dF/F <0.8 set to 0 as in (Lu et al., 2016), and peaks 
were detected using automated scripts in MATLAB, to quantify spontaneous event rate and event 
amplitude. Similar results were scene for a range of dF/F thresholds (0.2 to 1). 
Responsive cells. Cell responsiveness was based on orientation selectivity recordings. Visually responsive 
cells were selected if there was a significant difference in mean dF/F plus standard deviation around the 
peak of the expected response (i.e. 12 frames after stimulus onset ±8 frames; total number of frames 
during stimulus=22 frames) compared to the pre-stimulus response.  
Calculation of response amplitude. The mean response to the visual stimulus was calculated for each ROI 
(cell or neuropil) as illustrated in Fig. 1C.  Each trial response was calculated as the average of the 3 frames 
centered at the peak of the mean 100%-contrast response across all orientations +/- 1 frame, minus the 
baseline activity (the average of first 3 frames post-stimulus-onset). These frames were used for 
calculating the baseline activity on the observation that in our data the GCaMP6s calcium signal generally 
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reached its minimum at these frames. Mean response amplitude was then calculated as the average 
across all trials for each stimulus orientation (independent of direction).  
 
Analysis of tuning properties and response reliability. Orientation selectivity index (OSI) was determined 
using Mazurek et al.’s method (Mazurek et al., 2014) as the normalized measures of “peak to trough” 
orientation selectivity and direction selectivity: OSI = (Rpreferred - Rorthogonal)/Rpreferred. The response at the 
preferred orientation Rpreferred was taken to be the best response to one of the stimulus orientations by 
measuring the responses at stimulus directions θ1, θ2,…, θn, then we choose the response at the best θi. 
An OSI value of 0 indicated the absence of orientation selectivity, whereas a value of 1 indicates maximum 
orientation selectivity. Tuning width was calculated as the full width of the tuning curve at half the mean 
response to the preferred stimulus. Direction selectivity index (DSI) was calculated as the response to the 
preferred stimulus minus the response to the null (180-degree-opposite) stimulus, DSI = (Rpreferred – 
Rnull)/Rpreferred. Fano factor was calculated as the variance in the response amplitude across trials for the 
preferred or non-preferred stimulus divided by the mean response amplitude for that stimulus, σ2/µ.  
 
Statistics. Calcium imaging data was analyzed by 2-way ANOVA, followed by Tukey test for multiple 
comparisons. Retinal recordings were analyzed with the linear mixed-effects models ANOVA, with 
neurons nested within retinae, nested within animals.  
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